Merge branch 'master' of github.com:AleoHQ/leo into fix/prefer-index-map

This commit is contained in:
collin 2020-12-08 16:07:49 -05:00
commit 00dac3709a
125 changed files with 1871 additions and 1403 deletions

View File

@ -1,5 +1,5 @@
[hooks]
pre-commit = "cargo +nightly fmt --all -- --check"
pre-commit = "cargo +nightly clippy && cargo +nightly fmt --all -- --check"
[logging]
verbose = false

4
Cargo.lock generated
View File

@ -2485,9 +2485,9 @@ dependencies = [
[[package]]
name = "serde_json"
version = "1.0.59"
version = "1.0.60"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dcac07dbffa1c65e7f816ab9eba78eb142c6d44410f4eeba1e26e4f5dfa56b95"
checksum = "1500e84d27fe482ed1dc791a56eddc2f230046a040fa908c08bda1d9fb615779"
dependencies = [
"itoa",
"ryu",

View File

@ -15,10 +15,9 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{Function, Identifier, Type};
use leo_grammar::circuits::{
CircuitFunction as GrammarCircuitFunction,
CircuitMember as GrammarCircuitMember,
CircuitVariableDefinition as GrammarCircuitVariableDefinition,
use leo_grammar::{
circuits::{CircuitMember as GrammarCircuitMember, CircuitVariableDefinition as GrammarCircuitVariableDefinition},
functions::Function as GrammarFunction,
};
use serde::{Deserialize, Serialize};
@ -26,28 +25,24 @@ use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub enum CircuitMember {
// (is_mutable, variable_name, variable_type)
CircuitVariable(bool, Identifier, Type),
// (is_static, function)
CircuitFunction(bool, Function),
// (variable_name, variable_type)
CircuitVariable(Identifier, Type),
// (function)
CircuitFunction(Function),
}
impl<'ast> From<GrammarCircuitVariableDefinition<'ast>> for CircuitMember {
fn from(circuit_value: GrammarCircuitVariableDefinition<'ast>) -> Self {
CircuitMember::CircuitVariable(
circuit_value.mutable.is_some(),
Identifier::from(circuit_value.identifier),
Type::from(circuit_value.type_),
)
}
}
impl<'ast> From<GrammarCircuitFunction<'ast>> for CircuitMember {
fn from(circuit_function: GrammarCircuitFunction<'ast>) -> Self {
CircuitMember::CircuitFunction(
circuit_function._static.is_some(),
Function::from(circuit_function.function),
)
impl<'ast> From<GrammarFunction<'ast>> for CircuitMember {
fn from(circuit_function: GrammarFunction<'ast>) -> Self {
CircuitMember::CircuitFunction(Function::from(circuit_function))
}
}
@ -63,16 +58,10 @@ impl<'ast> From<GrammarCircuitMember<'ast>> for CircuitMember {
impl fmt::Display for CircuitMember {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
CircuitMember::CircuitVariable(ref mutable, ref identifier, ref type_) => {
if *mutable {
write!(f, "mut ")?;
}
CircuitMember::CircuitVariable(ref identifier, ref type_) => {
write!(f, "{}: {}", identifier, type_)
}
CircuitMember::CircuitFunction(ref static_, ref function) => {
if *static_ {
write!(f, "static ")?;
}
CircuitMember::CircuitFunction(ref function) => {
write!(f, "{}", function)
}
}

View File

@ -14,12 +14,18 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use crate::{InputKeyword, MutSelfKeyword, SelfKeyword, Span};
use leo_grammar::{
annotations::AnnotationArgument,
common::{Identifier as GrammarIdentifier, KeywordOrIdentifier, SelfKeyword, SelfKeywordOrIdentifier},
common::{
Identifier as GrammarIdentifier,
KeywordOrIdentifier,
MutSelfKeyword as GrammarMutSelfKeyword,
SelfKeyword as GrammarSelfKeyword,
SelfKeywordOrIdentifier,
},
expressions::CircuitName,
functions::InputKeyword,
functions::InputKeyword as GrammarInputKeyword,
imports::PackageName as GrammarPackageName,
types::SelfType,
};
@ -128,20 +134,56 @@ impl<'ast> From<SelfKeywordOrIdentifier<'ast>> for Identifier {
}
}
impl<'ast> From<SelfKeyword<'ast>> for Identifier {
fn from(self_: SelfKeyword<'ast>) -> Self {
impl<'ast> From<GrammarSelfKeyword<'ast>> for Identifier {
fn from(grammar: GrammarSelfKeyword<'ast>) -> Self {
Self {
name: self_.keyword,
span: Span::from(self_.span),
name: grammar.keyword,
span: Span::from(grammar.span),
}
}
}
impl<'ast> From<InputKeyword<'ast>> for Identifier {
fn from(input: InputKeyword<'ast>) -> Self {
impl From<SelfKeyword> for Identifier {
fn from(keyword: SelfKeyword) -> Self {
Self {
name: input.keyword,
span: Span::from(input.span),
name: keyword.to_string(),
span: keyword.span,
}
}
}
impl<'ast> From<GrammarMutSelfKeyword<'ast>> for Identifier {
fn from(grammar: GrammarMutSelfKeyword<'ast>) -> Self {
Self {
name: grammar.to_string(),
span: Span::from(grammar.span),
}
}
}
impl From<MutSelfKeyword> for Identifier {
fn from(keyword: MutSelfKeyword) -> Self {
Self {
name: keyword.to_string(),
span: keyword.span,
}
}
}
impl<'ast> From<GrammarInputKeyword<'ast>> for Identifier {
fn from(grammar: GrammarInputKeyword<'ast>) -> Self {
Self {
name: grammar.keyword,
span: Span::from(grammar.span),
}
}
}
impl From<InputKeyword> for Identifier {
fn from(keyword: InputKeyword) -> Self {
Self {
name: keyword.to_string(),
span: keyword.span,
}
}
}

View File

@ -0,0 +1,42 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use leo_grammar::functions::InputKeyword as GrammarInputKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
/// The `input` keyword can view program register, record, and state values.
/// Values cannot be modified. The `input` keyword cannot be made mutable.
#[derive(Clone, Serialize, Deserialize)]
pub struct InputKeyword {
pub span: Span,
}
impl<'ast> From<GrammarInputKeyword<'ast>> for InputKeyword {
fn from(grammar: GrammarInputKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for InputKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "input")
}
}

View File

@ -26,12 +26,21 @@ pub use declare::*;
pub mod identifier;
pub use identifier::*;
pub mod input_keyword;
pub use input_keyword::*;
pub mod mut_self_keyword;
pub use mut_self_keyword::*;
pub mod positive_number;
pub use positive_number::*;
pub mod range_or_expression;
pub use range_or_expression::*;
pub mod self_keyword;
pub use self_keyword::*;
pub mod span;
pub use span::*;

View File

@ -0,0 +1,41 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use leo_grammar::common::MutSelfKeyword as GrammarMutSelfKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
/// The `mut self` keyword can view and modify circuit values inside of a circuit function.
#[derive(Clone, Serialize, Deserialize)]
pub struct MutSelfKeyword {
pub span: Span,
}
impl<'ast> From<GrammarMutSelfKeyword<'ast>> for MutSelfKeyword {
fn from(grammar: GrammarMutSelfKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for MutSelfKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "mut self")
}
}

View File

@ -0,0 +1,42 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Span;
use leo_grammar::common::SelfKeyword as GrammarSelfKeyword;
use serde::{Deserialize, Serialize};
use std::fmt;
/// The `self` keyword can view circuit values inside of a circuit function.
/// Circuit values cannot be modified. To modify values use the `mut self` [MutSelfKeyword].
#[derive(Clone, Serialize, Deserialize)]
pub struct SelfKeyword {
pub span: Span,
}
impl<'ast> From<GrammarSelfKeyword<'ast>> for SelfKeyword {
fn from(grammar: GrammarSelfKeyword<'ast>) -> Self {
Self {
span: Span::from(grammar.span),
}
}
}
impl fmt::Display for SelfKeyword {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "self")
}
}

View File

@ -14,7 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{FunctionInput, Identifier, Span, Statement, Type};
use crate::{Block, FunctionInput, Identifier, Span, Type};
use leo_grammar::functions::Function as GrammarFunction;
use serde::{Deserialize, Serialize};
@ -25,7 +25,7 @@ pub struct Function {
pub identifier: Identifier,
pub input: Vec<FunctionInput>,
pub output: Option<Type>,
pub statements: Vec<Statement>,
pub block: Block,
pub span: Span,
}
@ -43,13 +43,13 @@ impl<'ast> From<GrammarFunction<'ast>> for Function {
let parameters = function.parameters.into_iter().map(FunctionInput::from).collect();
let returns = function.returns.map(Type::from);
let statements = function.statements.into_iter().map(Statement::from).collect();
let block = Block::from(function.block);
Function {
identifier: function_name,
input: parameters,
output: returns,
statements,
block,
span: Span::from(function.span),
}
}
@ -60,21 +60,38 @@ impl Function {
&self.identifier.name
}
///
/// Returns `true` if the function has input `self` or `mut self`.
/// Returns `false` otherwise.
///
pub fn contains_self(&self) -> bool {
self.input.iter().any(|param| param.is_self())
}
///
/// Returns `true` if the function has input `mut self`.
/// Returns `false` otherwise.
///
pub fn contains_mut_self(&self) -> bool {
self.input.iter().any(|param| param.is_mut_self())
}
///
/// Returns an iterator of [&FunctionInput] removing `self` and `mut self` inputs.
///
pub fn filter_self_inputs(&self) -> impl Iterator<Item = &FunctionInput> {
self.input.iter().filter(|input| !input.is_self())
}
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "function {}", self.identifier)?;
let parameters = self.input.iter().map(|x| x.to_string()).collect::<Vec<_>>().join(",");
let returns = self.output.as_ref().map(|type_| type_.to_string());
let statements = self
.statements
.iter()
.map(|s| format!("\t{}\n", s))
.collect::<Vec<_>>()
.join("");
if returns.is_none() {
write!(f, "({}) {{\n{}}}", parameters, statements,)
write!(f, "({}) {}", parameters, self.block)
} else {
write!(f, "({}) -> {} {{\n{}}}", parameters, returns.unwrap(), statements,)
write!(f, "({}) -> {} {}", parameters, returns.unwrap(), self.block)
}
}
}

View File

@ -14,29 +14,27 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{FunctionInputVariable, Identifier, Span};
use crate::{FunctionInputVariable, InputKeyword, MutSelfKeyword, SelfKeyword};
use leo_grammar::functions::input::Input as GrammarInput;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
/// Enumerates the possible inputs to a function.
#[derive(Clone, Serialize, Deserialize)]
pub enum FunctionInput {
InputKeyword(Identifier),
InputKeyword(InputKeyword),
SelfKeyword(SelfKeyword),
MutSelfKeyword(MutSelfKeyword),
Variable(FunctionInputVariable),
}
impl<'ast> From<GrammarInput<'ast>> for FunctionInput {
fn from(input: GrammarInput<'ast>) -> Self {
match input {
GrammarInput::InputKeyword(input_keyword) => {
let id = Identifier {
name: input_keyword.keyword,
span: Span::from(input_keyword.span),
};
FunctionInput::InputKeyword(id)
}
GrammarInput::InputKeyword(keyword) => FunctionInput::InputKeyword(InputKeyword::from(keyword)),
GrammarInput::SelfKeyword(keyword) => FunctionInput::SelfKeyword(SelfKeyword::from(keyword)),
GrammarInput::MutSelfKeyword(keyword) => FunctionInput::MutSelfKeyword(MutSelfKeyword::from(keyword)),
GrammarInput::FunctionInput(function_input) => {
FunctionInput::Variable(FunctionInputVariable::from(function_input))
}
@ -45,9 +43,37 @@ impl<'ast> From<GrammarInput<'ast>> for FunctionInput {
}
impl FunctionInput {
///
/// Returns `true` if the function input is the `self` or `mut self` keyword.
/// Returns `false` otherwise.
///
pub fn is_self(&self) -> bool {
match self {
FunctionInput::InputKeyword(_) => false,
FunctionInput::SelfKeyword(_) => true,
FunctionInput::MutSelfKeyword(_) => true,
FunctionInput::Variable(_) => false,
}
}
///
/// Returns `true` if the function input is the `mut self` keyword.
/// Returns `false` otherwise.
///
pub fn is_mut_self(&self) -> bool {
match self {
FunctionInput::InputKeyword(_) => false,
FunctionInput::SelfKeyword(_) => false,
FunctionInput::MutSelfKeyword(_) => true,
FunctionInput::Variable(_) => false,
}
}
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
FunctionInput::InputKeyword(id) => write!(f, "{}", id),
FunctionInput::InputKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::SelfKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::MutSelfKeyword(keyword) => write!(f, "{}", keyword),
FunctionInput::Variable(function_input) => write!(f, "{}", function_input),
}
}
@ -64,3 +90,18 @@ impl fmt::Debug for FunctionInput {
self.format(f)
}
}
impl PartialEq for FunctionInput {
/// Returns true if `self == other`. Does not compare spans.
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(FunctionInput::InputKeyword(_), FunctionInput::InputKeyword(_)) => true,
(FunctionInput::SelfKeyword(_), FunctionInput::SelfKeyword(_)) => true,
(FunctionInput::MutSelfKeyword(_), FunctionInput::MutSelfKeyword(_)) => true,
(FunctionInput::Variable(left), FunctionInput::Variable(right)) => left.eq(right),
_ => false,
}
}
}
impl Eq for FunctionInput {}

View File

@ -0,0 +1,48 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::Statement;
use leo_grammar::statements::Block as GrammarBlock;
use serde::{Deserialize, Serialize};
use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct Block {
pub statements: Vec<Statement>,
}
impl<'ast> From<GrammarBlock<'ast>> for Block {
fn from(block: GrammarBlock<'ast>) -> Self {
Block {
statements: block.statements.into_iter().map(Statement::from).collect(),
}
}
}
impl fmt::Display for Block {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "{{")?;
if self.statements.is_empty() {
writeln!(f, "\t")?;
} else {
self.statements
.iter()
.try_for_each(|statement| writeln!(f, "\t{}", statement))?;
}
write!(f, "}}")
}
}

View File

@ -14,7 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ConditionalStatement, Statement};
use crate::{Block, ConditionalStatement};
use leo_grammar::statements::ConditionalNestedOrEndStatement as GrammarConditionalNestedOrEndStatement;
use serde::{Deserialize, Serialize};
@ -23,7 +23,7 @@ use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub enum ConditionalNestedOrEndStatement {
Nested(Box<ConditionalStatement>),
End(Vec<Statement>),
End(Block),
}
impl<'ast> From<GrammarConditionalNestedOrEndStatement<'ast>> for ConditionalNestedOrEndStatement {
@ -32,8 +32,8 @@ impl<'ast> From<GrammarConditionalNestedOrEndStatement<'ast>> for ConditionalNes
GrammarConditionalNestedOrEndStatement::Nested(nested) => {
ConditionalNestedOrEndStatement::Nested(Box::new(ConditionalStatement::from(*nested)))
}
GrammarConditionalNestedOrEndStatement::End(statements) => {
ConditionalNestedOrEndStatement::End(statements.into_iter().map(Statement::from).collect())
GrammarConditionalNestedOrEndStatement::End(block) => {
ConditionalNestedOrEndStatement::End(Block::from(block))
}
}
}
@ -43,13 +43,7 @@ impl fmt::Display for ConditionalNestedOrEndStatement {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ConditionalNestedOrEndStatement::Nested(ref nested) => write!(f, "else {}", nested),
ConditionalNestedOrEndStatement::End(ref statements) => {
writeln!(f, "else {{")?;
for statement in statements.iter() {
writeln!(f, "\t\t{}", statement)?;
}
write!(f, "\t}}")
}
ConditionalNestedOrEndStatement::End(ref block) => write!(f, "else {}", block),
}
}
}

View File

@ -14,7 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ConditionalNestedOrEndStatement, Expression, Statement};
use crate::{Block, ConditionalNestedOrEndStatement, Expression};
use leo_grammar::statements::ConditionalStatement as GrammarConditionalStatement;
use serde::{Deserialize, Serialize};
@ -23,7 +23,7 @@ use std::fmt;
#[derive(Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct ConditionalStatement {
pub condition: Expression,
pub statements: Vec<Statement>,
pub block: Block,
pub next: Option<ConditionalNestedOrEndStatement>,
}
@ -31,7 +31,7 @@ impl<'ast> From<GrammarConditionalStatement<'ast>> for ConditionalStatement {
fn from(statement: GrammarConditionalStatement<'ast>) -> Self {
ConditionalStatement {
condition: Expression::from(statement.condition),
statements: statement.statements.into_iter().map(Statement::from).collect(),
block: Block::from(statement.block),
next: statement
.next
.map(|n_or_e| Some(ConditionalNestedOrEndStatement::from(n_or_e)))
@ -42,13 +42,10 @@ impl<'ast> From<GrammarConditionalStatement<'ast>> for ConditionalStatement {
impl fmt::Display for ConditionalStatement {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "if ({}) {{", self.condition)?;
for statement in self.statements.iter() {
writeln!(f, "\t\t{}", statement)?;
}
write!(f, "if ({}) {}", self.condition, self.block)?;
match self.next.clone() {
Some(n_or_e) => write!(f, "\t}} {}", n_or_e),
None => write!(f, "\t}}"),
Some(n_or_e) => write!(f, " {}", n_or_e),
None => write!(f, ""),
}
}
}

View File

@ -22,3 +22,6 @@ pub use conditional_statement::*;
pub mod statement;
pub use statement::*;
pub mod block;
pub use block::*;

View File

@ -14,7 +14,17 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{Assignee, ConditionalStatement, ConsoleFunctionCall, Declare, Expression, Identifier, Span, Variables};
use crate::{
Assignee,
Block,
ConditionalStatement,
ConsoleFunctionCall,
Declare,
Expression,
Identifier,
Span,
Variables,
};
use leo_grammar::{
console::ConsoleFunctionCall as GrammarConsoleFunctionCall,
operations::AssignOperation,
@ -38,7 +48,7 @@ pub enum Statement {
Definition(Declare, Variables, Expression, Span),
Assign(Assignee, Expression, Span),
Conditional(ConditionalStatement, Span),
Iteration(Identifier, Box<(Expression, Expression)>, Vec<Statement>, Span),
Iteration(Identifier, Box<(Expression, Expression)>, Block, Span),
Console(ConsoleFunctionCall),
Expression(Expression, Span),
}
@ -127,7 +137,7 @@ impl<'ast> From<ForStatement<'ast>> for Statement {
Statement::Iteration(
Identifier::from(statement.index),
Box::new((Expression::from(statement.start), Expression::from(statement.stop))),
statement.statements.into_iter().map(Statement::from).collect(),
Block::from(statement.block),
Span::from(statement.span),
)
}
@ -176,12 +186,8 @@ impl fmt::Display for Statement {
}
Statement::Assign(ref variable, ref statement, ref _span) => write!(f, "{} = {};", variable, statement),
Statement::Conditional(ref statement, ref _span) => write!(f, "{}", statement),
Statement::Iteration(ref var, ref start_stop, ref list, ref _span) => {
writeln!(f, "for {} in {}..{} {{", var, start_stop.0, start_stop.1)?;
for l in list {
writeln!(f, "\t\t{}", l)?;
}
write!(f, "\t}}")
Statement::Iteration(ref var, ref start_stop, ref block, ref _span) => {
write!(f, "for {} in {}..{} {}", var, start_stop.0, start_stop.1, block)
}
Statement::Console(ref console) => write!(f, "{}", console),
Statement::Expression(ref expression, ref _span) => write!(f, "{};", expression),

View File

@ -8,6 +8,7 @@
"identifier": "{\"name\":\"main\",\"span\":\"{\\\"text\\\":\\\" function main() {\\\",\\\"line\\\":1,\\\"start\\\":10,\\\"end\\\":14}\"}",
"input": [],
"output": null,
"block" : {
"statements": [
{
"Return": [
@ -51,7 +52,8 @@
}
]
}
],
]
},
"span": {
"text": " function main() {",
"line": 1,

View File

@ -16,7 +16,13 @@
//! Enforces an assert equals statement in a compiled Leo program.
use crate::{errors::ConsoleError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
use crate::{
errors::ConsoleError,
get_indicator_value,
program::ConstrainedProgram,
value::ConstrainedValue,
GroupType,
};
use leo_ast::{Expression, Span, Type};
use snarkos_models::{
@ -30,7 +36,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
expression: Expression,
span: &Span,
) -> Result<(), ConsoleError> {
@ -42,12 +48,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// If the indicator bit is false, do not evaluate the assertion
// This is okay since we are not enforcing any constraints
let false_boolean = Boolean::Constant(false);
if let Some(indicator_bool) = indicator {
if indicator_bool.eq(&false_boolean) {
return Ok(()); // continue execution
}
if !get_indicator_value(indicator) {
return Ok(()); // Continue execution.
}
// Unwrap assertion value and handle errors

View File

@ -16,7 +16,7 @@
//! Evaluates a macro in a compiled Leo program.
use crate::{errors::ConsoleError, program::ConstrainedProgram, GroupType};
use crate::{errors::ConsoleError, program::ConstrainedProgram, statement::get_indicator_value, GroupType};
use leo_ast::{ConsoleFunction, ConsoleFunctionCall};
use snarkos_models::{
@ -30,7 +30,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
console: ConsoleFunctionCall,
) -> Result<(), ConsoleError> {
match console.function {
@ -40,21 +40,21 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
ConsoleFunction::Debug(string) => {
let string = self.format(cs, file_scope, function_scope, string)?;
if unwrap_indicator_value(indicator) {
if get_indicator_value(indicator) {
tracing::debug!("{}", string);
}
}
ConsoleFunction::Error(string) => {
let string = self.format(cs, file_scope, function_scope, string)?;
if unwrap_indicator_value(indicator) {
if get_indicator_value(indicator) {
tracing::error!("{}", string);
}
}
ConsoleFunction::Log(string) => {
let string = self.format(cs, file_scope, function_scope, string)?;
if unwrap_indicator_value(indicator) {
if get_indicator_value(indicator) {
tracing::info!("{}", string);
}
}
@ -63,16 +63,3 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
Ok(())
}
}
// Return the indicator boolean gadget value or true if it is None
// This is okay since we are not enforcing any constraints
fn unwrap_indicator_value(indicator: Option<Boolean>) -> bool {
let false_boolean = Boolean::constant(false);
if let Some(indicator_bool) = indicator {
if indicator_bool.eq(&false_boolean) {
return false;
}
}
true
}

View File

@ -206,7 +206,7 @@ impl ExpressionError {
}
pub fn undefined_identifier(identifier: Identifier) -> Self {
let message = format!("cannot find value `{}` in this scope", identifier.name);
let message = format!("Cannot find value `{}` in this scope", identifier.name);
Self::new_from_span(message, identifier.span)
}

View File

@ -82,12 +82,6 @@ impl FunctionError {
FunctionError::Error(FormattedError::new_from_span(message, span))
}
pub fn arguments_length(expected: usize, actual: usize, span: Span) -> Self {
let message = format!("function expected {} input variables, found {}", expected, actual);
Self::new_from_span(message, span)
}
pub fn invalid_array(actual: String, span: Span) -> Self {
let message = format!("Expected function input array, found `{}`", actual);

View File

@ -135,6 +135,22 @@ impl StatementError {
Self::new_from_span(message, span)
}
pub fn multiple_returns(span: Span) -> Self {
let message = "This function returns multiple times and produces unreachable circuits with undefined behavior."
.to_string();
Self::new_from_span(message, span)
}
pub fn no_returns(expected: Type, span: Span) -> Self {
let message = format!(
"function expected `{}` return type but no valid branches returned a result",
expected
);
Self::new_from_span(message, span)
}
pub fn select_fail(first: String, second: String, span: Span) -> Self {
let message = format!(
"Conditional select gadget failed to select between `{}` or `{}`",

View File

@ -67,7 +67,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
match matched_member {
Some(member) => {
match &member.1 {
ConstrainedValue::Function(ref _circuit_identifier, ref _function) => {
ConstrainedValue::Function(ref _circuit_identifier, ref function) => {
// Check for function input `self` or `mut self`.
if function.contains_self() {
// Pass circuit members into function call by value
for stored_member in members {
let circuit_scope = new_scope(&file_scope, &circuit_name.name);
@ -77,6 +79,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
self.store(variable, stored_member.1.clone());
}
}
}
ConstrainedValue::Static(value) => {
return Err(ExpressionError::invalid_static_access(value.to_string(), span));
}

View File

@ -58,7 +58,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
for member in circuit.members.into_iter() {
match member {
CircuitMember::CircuitVariable(is_mutable, identifier, type_) => {
CircuitMember::CircuitVariable(identifier, type_) => {
let matched_variable = members
.clone()
.into_iter()
@ -66,7 +66,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
match matched_variable {
Some(variable) => {
// Resolve and enforce circuit variable
let mut variable_value = self.enforce_expression(
let variable_value = self.enforce_expression(
cs,
file_scope,
function_scope,
@ -74,25 +74,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
variable.expression,
)?;
// Add mutability to circuit variable
if is_mutable {
variable_value = ConstrainedValue::Mutable(Box::new(variable_value))
}
resolved_members.push(ConstrainedCircuitMember(identifier, variable_value))
}
None => return Err(ExpressionError::expected_circuit_member(identifier.to_string(), span)),
}
}
CircuitMember::CircuitFunction(_static, function) => {
CircuitMember::CircuitFunction(function) => {
let identifier = function.identifier.clone();
let mut constrained_function_value =
let constrained_function_value =
ConstrainedValue::Function(Some(circuit_identifier.clone()), function);
if _static {
constrained_function_value = ConstrainedValue::Static(Box::new(constrained_function_value));
}
resolved_members.push(ConstrainedCircuitMember(identifier, constrained_function_value));
}
};

View File

@ -56,22 +56,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Find static circuit function
let matched_function = circuit.members.into_iter().find(|member| match member {
CircuitMember::CircuitFunction(_static, function) => function.identifier == circuit_member,
CircuitMember::CircuitFunction(function) => function.identifier == circuit_member,
_ => false,
});
// Return errors if no static function exists
let function = match matched_function {
Some(CircuitMember::CircuitFunction(_static, function)) => {
if _static {
function
} else {
return Err(ExpressionError::invalid_member_access(
function.identifier.to_string(),
span,
));
}
}
Some(CircuitMember::CircuitFunction(function)) => function,
_ => {
return Err(ExpressionError::undefined_member_access(
circuit.circuit_name.to_string(),

View File

@ -23,22 +23,13 @@ use crate::{
GroupType,
};
use leo_ast::{Expression, Function, FunctionInput, Span, Type};
use leo_ast::{Expression, Function, FunctionInput};
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::r1cs::ConstraintSystem,
gadgets::{r1cs::ConstraintSystem, utilities::boolean::Boolean},
};
pub fn check_arguments_length(expected: usize, actual: usize, span: &Span) -> Result<(), FunctionError> {
// Make sure we are given the correct number of arguments
if expected != actual {
Err(FunctionError::arguments_length(expected, actual, span.to_owned()))
} else {
Ok(())
}
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub(crate) fn enforce_function<CS: ConstraintSystem<F>>(
&mut self,
@ -51,17 +42,29 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
) -> Result<ConstrainedValue<F, G>, FunctionError> {
let function_name = new_scope(scope, function.get_name());
// Make sure we are given the correct number of input variables
check_arguments_length(function.input.len(), input.len(), &function.span)?;
// Store if function contains input `mut self`.
let mut_self = function.contains_mut_self();
// Store input values as new variables in resolved program
for (input_model, input_expression) in function.input.iter().zip(input.into_iter()) {
for (input_model, input_expression) in function.filter_self_inputs().zip(input.into_iter()) {
let (name, value) = match input_model {
FunctionInput::InputKeyword(identifier) => {
let input_value =
FunctionInput::InputKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(&identifier.name, input_value)
(keyword.to_string(), value)
}
FunctionInput::SelfKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(keyword.to_string(), value)
}
FunctionInput::MutSelfKeyword(keyword) => {
let value =
self.enforce_function_input(cs, scope, caller_scope, &function_name, None, input_expression)?;
(keyword.to_string(), value)
}
FunctionInput::Variable(input_model) => {
// First evaluate input expression
@ -78,7 +81,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
input_value = ConstrainedValue::Mutable(Box::new(input_value))
}
(&input_model.identifier.name, input_value)
(input_model.identifier.name.clone(), input_value)
}
};
@ -89,42 +92,25 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Evaluate every statement in the function and save all potential results
let mut results = vec![];
let indicator = Boolean::constant(true);
for statement in function.statements.iter() {
for statement in function.block.statements.iter() {
let mut result = self.enforce_statement(
cs,
scope,
&function_name,
None,
&indicator,
statement.clone(),
function.output.clone(),
declared_circuit_reference,
mut_self,
)?;
results.append(&mut result);
}
// Conditionally select a result based on returned indicators
let mut return_values = ConstrainedValue::Tuple(vec![]);
Self::conditionally_select_result(cs, &mut return_values, results, &function.span)?;
if let ConstrainedValue::Tuple(ref returns) = return_values {
let return_types = match function.output {
Some(Type::Tuple(types)) => types.len(),
Some(_) => 1usize,
None => 0usize,
};
if return_types != returns.len() {
return Err(FunctionError::return_arguments_length(
return_types,
returns.len(),
function.span.clone(),
));
}
}
Ok(return_values)
Self::conditionally_select_result(cs, function.output, results, &function.span)
.map_err(FunctionError::StatementError)
}
}

View File

@ -15,7 +15,7 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{errors::FunctionError, ConstrainedCircuitMember, ConstrainedProgram, ConstrainedValue, GroupType};
use leo_ast::{Identifier, Input};
use leo_ast::{Identifier, Input, InputKeyword};
use snarkos_models::{
curves::{Field, PrimeField},
@ -31,26 +31,26 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn allocate_input_keyword<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
identifier: Identifier,
keyword: InputKeyword,
input: &Input,
) -> Result<ConstrainedValue<F, G>, FunctionError> {
// Create an identifier for each input variable
let registers_name = Identifier {
name: REGISTERS_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let record_name = Identifier {
name: RECORD_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let state_name = Identifier {
name: STATE_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
let state_leaf_name = Identifier {
name: STATE_LEAF_VARIABLE_NAME.to_string(),
span: identifier.span.clone(),
span: keyword.span.clone(),
};
// Fetch each input variable's definitions
@ -82,6 +82,6 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Return input variable keyword as circuit expression
Ok(ConstrainedValue::CircuitExpression(identifier, members))
Ok(ConstrainedValue::CircuitExpression(Identifier::from(keyword), members))
}
}

View File

@ -23,7 +23,7 @@ use crate::{
OutputBytes,
};
use leo_ast::{Expression, Function, FunctionInput, Input};
use leo_ast::{Expression, Function, FunctionInput, Identifier, Input};
use snarkos_models::{
curves::{Field, PrimeField},
@ -44,11 +44,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Iterate over main function input variables and allocate new values
let mut input_variables = Vec::with_capacity(function.input.len());
for input_model in function.input.clone().into_iter() {
let (identifier, value) = match input_model {
FunctionInput::InputKeyword(identifier) => {
let value = self.allocate_input_keyword(cs, identifier.clone(), &input)?;
let (input_id, value) = match input_model {
FunctionInput::InputKeyword(keyword) => {
let input_id = Identifier::new_with_span(&keyword.to_string(), &keyword.span);
let value = self.allocate_input_keyword(cs, keyword, &input)?;
(identifier, value)
(input_id, value)
}
FunctionInput::SelfKeyword(_) => unimplemented!("cannot access self keyword in main function"),
FunctionInput::MutSelfKeyword(_) => {
unimplemented!("cannot access mut self keyword in main function")
}
FunctionInput::Variable(input_model) => {
let name = input_model.identifier.name.clone();
@ -63,12 +68,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
};
// Store input as variable with {function_name}_{identifier_name}
let input_name = new_scope(&function_name, &identifier.name);
let input_name = new_scope(&function_name, &input_id.to_string());
// Store a new variable for every allocated main function input
self.store(input_name, value);
input_variables.push(Expression::Identifier(identifier));
input_variables.push(Expression::Identifier(input_id));
}
let span = function.span.clone();

View File

@ -16,9 +16,16 @@
//! Enforces that one return value is produced in a compiled Leo program.
use crate::{errors::StatementError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
use crate::{
check_return_type,
errors::StatementError,
get_indicator_value,
program::ConstrainedProgram,
value::ConstrainedValue,
GroupType,
};
use leo_ast::Span;
use leo_ast::{Span, Type};
use snarkos_models::{
curves::{Field, PrimeField},
@ -29,49 +36,82 @@ use snarkos_models::{
};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
/// iterates through a vector of results and selects one based off of indicators
///
/// Returns a conditionally selected result from the given possible function returns and
/// given function return type.
///
pub fn conditionally_select_result<CS: ConstraintSystem<F>>(
cs: &mut CS,
return_value: &mut ConstrainedValue<F, G>,
results: Vec<(Option<Boolean>, ConstrainedValue<F, G>)>,
expected_return: Option<Type>,
results: Vec<(Boolean, ConstrainedValue<F, G>)>,
span: &Span,
) -> Result<(), StatementError> {
// if there are no results, continue
) -> Result<ConstrainedValue<F, G>, StatementError> {
// Initialize empty return value.
let mut return_value = ConstrainedValue::Tuple(vec![]);
// If the function does not expect a return type, then make sure there are no returned results.
let return_type = match expected_return {
Some(return_type) => return_type,
None => {
if results.is_empty() {
return Ok(());
// If the function has no returns, then return an empty tuple.
return Ok(return_value);
} else {
return Err(StatementError::invalid_number_of_returns(
0,
results.len(),
span.to_owned(),
));
}
}
};
// Error if the function or one of its branches does not return.
if results
.iter()
.find(|(indicator, _res)| get_indicator_value(indicator))
.is_none()
{
return Err(StatementError::no_returns(return_type, span.to_owned()));
}
// If all indicators are none, then there are no branch conditions in the function.
// We simply return the last result.
// Find the return value
let mut ignored = vec![];
let mut found_return = false;
for (indicator, result) in results.into_iter() {
// Error if a statement returned a result with an incorrect type
let result_type = result.to_type(span)?;
check_return_type(&return_type, &result_type, span)?;
if results.iter().all(|(indicator, _res)| indicator.is_none()) {
let result = &results[results.len() - 1].1;
*return_value = result.clone();
return Ok(());
if get_indicator_value(&indicator) {
// Error if we already have a return value.
if found_return {
return Err(StatementError::multiple_returns(span.to_owned()));
} else {
// Set the function return value.
return_value = result;
found_return = true;
}
} else {
// Ignore a possible function return value.
ignored.push((indicator, result))
}
}
// Conditionally select out the ignored results in the circuit.
//
// If there are branches in the function we need to use the `ConditionalSelectGadget` to parse through and select the correct one.
// This can be thought of as de-multiplexing all previous wires that may have returned results into one.
for (i, (indicator, result)) in results.into_iter().enumerate() {
// Set the first value as the starting point
if i == 0 {
*return_value = result.clone();
}
let condition = indicator.unwrap_or(Boolean::Constant(true));
let selected_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", result, span.line, span.start)),
&condition,
for (i, (indicator, result)) in ignored.into_iter().enumerate() {
return_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select result {} {}:{}", i, span.line, span.start)),
&indicator,
&result,
return_value,
&return_value,
)
.map_err(|_| StatementError::select_fail(result.to_string(), return_value.to_string(), span.to_owned()))?;
*return_value = selected_value;
}
Ok(())
Ok(return_value)
}
}

View File

@ -34,14 +34,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
name: &str,
range_or_expression: RangeOrExpression,
mut new_value: ConstrainedValue<F, G>,
span: &Span,
) -> Result<(), StatementError> {
let condition = indicator.unwrap_or(Boolean::Constant(true));
// Resolve index so we know if we are assigning to a single value or a range of values
match range_or_expression {
RangeOrExpression::Expression(index) => {
@ -54,7 +52,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
let selected_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
&condition,
indicator,
&new_value,
&old[index],
)
@ -90,7 +88,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
};
let selected_array = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", new_array, span.line, span.start)),
&condition,
indicator,
&new_array,
old_array,
)

View File

@ -42,7 +42,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
file_scope: &str,
function_scope: &str,
declared_circuit_reference: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
mut_self: bool,
assignee: Assignee,
expression: Expression,
span: &Span,
@ -55,14 +56,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
// Mutate the old value into the new value
if assignee.accesses.is_empty() {
let condition = indicator.unwrap_or(Boolean::Constant(true));
let old_value = self.get_mutable_assignee(&variable_name, span)?;
new_value.resolve_type(Some(old_value.to_type(&span)?), span)?;
let selected_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
&condition,
indicator,
&new_value,
old_value,
)
@ -88,7 +88,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
}
AssigneeAccess::Member(identifier) => {
// Mutate a circuit variable using the self keyword.
if assignee.identifier.is_self() {
if assignee.identifier.is_self() && mut_self {
let self_circuit_variable_name = new_scope(&assignee.identifier.name, &identifier.name);
let self_variable_name = new_scope(file_scope, &self_circuit_variable_name);
let value = self.mutate_circuit_variable(

View File

@ -31,14 +31,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn mutate_circuit_variable<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
indicator: Option<Boolean>,
indicator: &Boolean,
circuit_name: &str,
variable_name: Identifier,
mut new_value: ConstrainedValue<F, G>,
span: &Span,
) -> Result<ConstrainedValue<F, G>, StatementError> {
let condition = indicator.unwrap_or(Boolean::Constant(true));
// Get the mutable circuit by name
match self.get_mutable_assignee(circuit_name, span)? {
ConstrainedValue::CircuitExpression(_variable, members) => {
@ -61,16 +59,14 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
span.to_owned(),
))
}
ConstrainedValue::Mutable(value) => {
// Mutate the circuit variable's value in place
value => {
// Check that the new value type == old value type
new_value.resolve_type(Some(value.to_type(span)?), span)?;
// Conditionally select the value if this branch is executed.
let mut selected_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
&condition,
indicator,
&new_value,
&member.1,
)
@ -89,13 +85,6 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
Ok(selected_value)
}
_ => {
// Throw an error if we try to mutate an immutable circuit variable
Err(StatementError::immutable_circuit_variable(
variable_name.name,
span.to_owned(),
))
}
},
None => {
// Throw an error if the circuit variable does not exist in the circuit

View File

@ -31,15 +31,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn assign_tuple<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
indicator: Option<Boolean>,
indicator: &Boolean,
name: &str,
index: PositiveNumber,
mut new_value: ConstrainedValue<F, G>,
span: &Span,
) -> Result<(), StatementError> {
// Get the indicator value.
let condition = indicator.unwrap_or(Boolean::Constant(true));
// Parse the index.
let index_usize = parse_index(&index, &span)?;
@ -50,7 +47,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
let selected_value = ConstrainedValue::conditionally_select(
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
&condition,
indicator,
&new_value,
&old[index_usize],
)

View File

@ -17,7 +17,7 @@
//! Enforces a branch of a conditional or iteration statement in a compiled Leo program.
use crate::{program::ConstrainedProgram, GroupType, IndicatorAndConstrainedValue, StatementResult};
use leo_ast::{Statement, Type};
use leo_ast::{Block, Type};
use snarkos_models::{
curves::{Field, PrimeField},
@ -25,18 +25,22 @@ use snarkos_models::{
};
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
pub fn evaluate_branch<CS: ConstraintSystem<F>>(
/// Evaluates a branch of one or more statements and returns a result in
/// the given scope.
#[allow(clippy::too_many_arguments)]
pub fn evaluate_block<CS: ConstraintSystem<F>>(
&mut self,
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
statements: Vec<Statement>,
indicator: &Boolean,
block: Block,
return_type: Option<Type>,
mut_self: bool,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = Vec::with_capacity(statements.len());
let mut results = Vec::with_capacity(block.statements.len());
// Evaluate statements. Only allow a single return argument to be returned.
for statement in statements.into_iter() {
for statement in block.statements.into_iter() {
let mut value = self.enforce_statement(
cs,
file_scope,
@ -45,6 +49,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
statement,
return_type.clone(),
"",
mut_self,
)?;
results.append(&mut value);

View File

@ -17,5 +17,5 @@
//! Methods to enforce constraints on a branch of a conditional or iteration statement
//! in a compiled Leo program.
pub mod branch;
pub use self::branch::*;
pub mod block;
pub use self::block::*;

View File

@ -49,15 +49,16 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
statement: ConditionalStatement,
return_type: Option<Type>,
mut_self: bool,
span: &Span,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let statement_string = statement.to_string();
// Inherit the indicator from a previous conditional statement or assume that we are the outer parent
let outer_indicator = indicator.unwrap_or(Boolean::Constant(true));
// Inherit an indicator from a previous statement.
let outer_indicator = indicator;
// Evaluate the conditional boolean as the inner indicator
let inner_indicator = match self.enforce_expression(
@ -72,7 +73,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
};
// If outer_indicator && inner_indicator, then select branch 1
let outer_indicator_string = indicator_to_string(&outer_indicator);
let outer_indicator_string = indicator_to_string(outer_indicator);
let inner_indicator_string = indicator_to_string(&inner_indicator);
let branch_1_name = format!(
"branch indicator 1 {} && {}",
@ -80,7 +81,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
);
let branch_1_indicator = Boolean::and(
&mut cs.ns(|| format!("branch 1 {} {}:{}", statement_string, span.line, span.start)),
&outer_indicator,
outer_indicator,
&inner_indicator,
)
.map_err(|_| StatementError::indicator_calculation(branch_1_name, span.to_owned()))?;
@ -88,13 +89,14 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
let mut results = vec![];
// Evaluate branch 1
let mut branch_1_result = self.evaluate_branch(
let mut branch_1_result = self.evaluate_block(
cs,
file_scope,
function_scope,
Some(branch_1_indicator),
statement.statements,
&branch_1_indicator,
statement.block,
return_type.clone(),
mut_self,
)?;
results.append(&mut branch_1_result);
@ -120,18 +122,20 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs,
file_scope,
function_scope,
Some(branch_2_indicator),
&branch_2_indicator,
*nested,
return_type,
mut_self,
span,
)?,
ConditionalNestedOrEndStatement::End(statements) => self.evaluate_branch(
ConditionalNestedOrEndStatement::End(block) => self.evaluate_block(
cs,
file_scope,
function_scope,
Some(branch_2_indicator),
statements,
&branch_2_indicator,
block,
return_type,
mut_self,
)?,
},
None => vec![],

View File

@ -25,7 +25,7 @@ use crate::{
Integer,
StatementResult,
};
use leo_ast::{Expression, Identifier, Span, Statement, Type};
use leo_ast::{Block, Expression, Identifier, Span, Type};
use snarkos_models::{
curves::{Field, PrimeField},
@ -42,12 +42,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
index: Identifier,
start: Expression,
stop: Expression,
statements: Vec<Statement>,
block: Block,
return_type: Option<Type>,
mut_self: bool,
span: &Span,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = vec![];
@ -67,13 +68,14 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
);
// Evaluate statements and possibly return early
let mut result = self.evaluate_branch(
let mut result = self.evaluate_block(
&mut cs.ns(|| format!("for loop iteration {} {}:{}", i, span.line, span.start)),
file_scope,
function_scope,
indicator,
statements.clone(),
block.clone(),
return_type.clone(),
mut_self,
)?;
results.append(&mut result);

View File

@ -19,8 +19,8 @@
pub mod assign;
pub use self::assign::*;
pub mod branch;
pub use self::branch::*;
pub mod block;
pub use self::block::*;
pub mod conditional;
pub use self::conditional::*;

View File

@ -24,20 +24,17 @@ use snarkos_models::{
gadgets::r1cs::ConstraintSystem,
};
fn check_return_type(expected: Option<Type>, actual: Type, span: &Span) -> Result<(), StatementError> {
match expected {
Some(expected) => {
/// Returns `Ok` if the expected type == actual type, returns `Err` otherwise.
pub fn check_return_type(expected: &Type, actual: &Type, span: &Span) -> Result<(), StatementError> {
if expected.ne(&actual) {
if (expected.is_self() && actual.is_circuit()) || expected.eq_flat(&actual) {
return Ok(());
// If the return type is `SelfType` returning the circuit type is okay.
return if (expected.is_self() && actual.is_circuit()) || expected.eq_flat(&actual) {
Ok(())
} else {
return Err(StatementError::arguments_type(&expected, &actual, span.to_owned()));
}
Err(StatementError::arguments_type(&expected, &actual, span.to_owned()))
};
}
Ok(())
}
None => Ok(()),
}
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
@ -53,7 +50,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
let result = self.enforce_operand(cs, file_scope, function_scope, return_type.clone(), expression, span)?;
// Make sure we return the correct type.
check_return_type(return_type, result.to_type(&span)?, span)?;
if let Some(expected) = return_type {
check_return_type(&expected, &result.to_type(span)?, span)?;
}
Ok(result)
}

View File

@ -25,7 +25,7 @@ use snarkos_models::{
};
pub type StatementResult<T> = Result<T, StatementError>;
pub type IndicatorAndConstrainedValue<T, U> = (Option<Boolean>, ConstrainedValue<T, U>);
pub type IndicatorAndConstrainedValue<T, U> = (Boolean, ConstrainedValue<T, U>);
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
///
@ -41,17 +41,18 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
cs: &mut CS,
file_scope: &str,
function_scope: &str,
indicator: Option<Boolean>,
indicator: &Boolean,
statement: Statement,
return_type: Option<Type>,
declared_circuit_reference: &str,
mut_self: bool,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
let mut results = vec![];
match statement {
Statement::Return(expression, span) => {
let return_value = (
indicator,
indicator.to_owned(),
self.enforce_return_statement(cs, file_scope, function_scope, expression, return_type, &span)?,
);
@ -75,6 +76,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
function_scope,
declared_circuit_reference,
indicator,
mut_self,
variable,
expression,
&span,
@ -88,12 +90,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
indicator,
statement,
return_type,
mut_self,
&span,
)?;
results.append(&mut result);
}
Statement::Iteration(index, start_stop, statements, span) => {
Statement::Iteration(index, start_stop, block, span) => {
let mut result = self.enforce_iteration_statement(
cs,
file_scope,
@ -102,8 +105,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
index,
start_stop.0,
start_stop.1,
statements,
block,
return_type,
mut_self,
&span,
)?;
@ -116,22 +120,25 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
let expression_string = expression.to_string();
let value = self.enforce_expression(cs, file_scope, function_scope, None, expression)?;
// handle empty return value cases
// Handle empty return value cases.
match &value {
ConstrainedValue::Tuple(values) => {
if !values.is_empty() {
return Err(StatementError::unassigned(expression_string, span));
results.push((*indicator, value));
}
}
_ => return Err(StatementError::unassigned(expression_string, span)),
}
let result = (indicator, value);
results.push(result);
}
};
Ok(results)
}
}
/// Returns the indicator boolean gadget value.
/// We can directly compare a boolean constant to the indicator since we are not enforcing any
/// constraints
pub fn get_indicator_value(indicator: &Boolean) -> bool {
indicator.eq(&Boolean::constant(true))
}

View File

@ -229,8 +229,15 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedValue<F, G> {
}
}
///
/// Modifies the `self` [ConstrainedValue] so there are no `mut` keywords wrapping the `self` value.
///
pub(crate) fn get_inner_mut(&mut self) {
if let ConstrainedValue::Mutable(inner) = self {
// Recursively remove `mut` keywords.
inner.get_inner_mut();
// Modify the value.
*self = *inner.clone()
}
}

View File

@ -22,72 +22,72 @@ static TEST_ADDRESS_2: &str = "aleo18qgam03qe483tdrcc3fkqwpp38ehff4a2xma6lu7hams
#[test]
fn test_valid() {
let bytes = include_bytes!("valid.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("valid.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program)
}
#[test]
fn test_invalid_prefix() {
let bytes = include_bytes!("invalid_prefix.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("invalid_prefix.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_invalid_length() {
let bytes = include_bytes!("invalid_length.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("invalid_length.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_empty() {
let bytes = include_bytes!("empty.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("empty.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_implicit_valid() {
let bytes = include_bytes!("implicit_valid.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("implicit_valid.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_implicit_invalid() {
let bytes = include_bytes!("implicit_invalid.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("implicit_invalid.leo");
let program = parse_program(program_string).unwrap();
let _output = expect_compiler_error(program);
}
#[test]
fn test_console_assert_pass() {
let bytes = include_bytes!("console_assert_pass.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert_pass.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_console_assert_fail() {
let bytes = include_bytes!("console_assert_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert_fail.leo");
let program = parse_program(program_string).unwrap();
let _output = expect_compiler_error(program);
}
#[test]
fn test_ternary() {
let bytes = include_bytes!("ternary.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("s", Some(InputValue::Boolean(true))),
@ -98,7 +98,7 @@ fn test_ternary() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("s", Some(InputValue::Boolean(false))),
@ -112,8 +112,8 @@ fn test_ternary() {
#[test]
fn test_equal() {
let bytes = include_bytes!("equal.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("equal.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Address(TEST_ADDRESS_1.to_string()))),
@ -125,7 +125,7 @@ fn test_equal() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Address(TEST_ADDRESS_1.to_string()))),

View File

@ -41,17 +41,17 @@ pub fn output_zeros(program: EdwardsTestCompiler) {
#[test]
fn test_registers() {
let program_bytes = include_bytes!("registers.leo");
let ones_input_bytes = include_bytes!("input/registers_ones.in");
let zeros_input_bytes = include_bytes!("input/registers_zeros.in");
let program_string = include_str!("registers.leo");
let ones_input_string = include_str!("input/registers_ones.in");
let zeros_input_string = include_str!("input/registers_zeros.in");
// test ones input register => ones output register
let program = parse_program_with_input(program_bytes, ones_input_bytes).unwrap();
let program = parse_program_with_input(program_string, ones_input_string).unwrap();
output_ones(program);
// test zeros input register => zeros output register
let program = parse_program_with_input(program_bytes, zeros_input_bytes).unwrap();
let program = parse_program_with_input(program_string, zeros_input_string).unwrap();
output_zeros(program);
}
@ -60,171 +60,171 @@ fn test_registers() {
#[test]
fn test_inline() {
let program_bytes = include_bytes!("inline.leo");
let input_bytes = include_bytes!("input/three_ones.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("inline.leo");
let input_string = include_str!("input/three_ones.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_inline_fail() {
let program_bytes = include_bytes!("inline.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("inline.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_initializer() {
let program_bytes = include_bytes!("initializer.leo");
let input_bytes = include_bytes!("input/three_ones.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("initializer.leo");
let input_string = include_str!("input/three_ones.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_initializer_fail() {
let program_bytes = include_bytes!("initializer_fail.leo");
let input_bytes = include_bytes!("input/three_ones.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("initializer_fail.leo");
let input_string = include_str!("input/three_ones.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_initializer_input() {
let program_bytes = include_bytes!("initializer_input.leo");
let input_bytes = include_bytes!("input/six_zeros.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("initializer_input.leo");
let input_string = include_str!("input/six_zeros.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_initializer_input_fail() {
let program_bytes = include_bytes!("initializer_input.leo");
let input_bytes = include_bytes!("input/initializer_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("initializer_input.leo");
let input_string = include_str!("input/initializer_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_nested_3x2() {
let program_bytes = include_bytes!("input_nested_3x2.leo");
let input_bytes = include_bytes!("input/input_nested_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("input_nested_3x2.leo");
let input_string = include_str!("input/input_nested_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_nested_3x2_fail() {
let program_bytes = include_bytes!("input_nested_3x2_fail.leo");
let input_bytes = include_bytes!("input/input_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("input_nested_3x2_fail.leo");
let input_string = include_str!("input/input_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_tuple_3x2() {
let program_bytes = include_bytes!("input_tuple_3x2.leo");
let input_bytes = include_bytes!("input/input_tuple_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("input_tuple_3x2.leo");
let input_string = include_str!("input/input_tuple_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_tuple_3x2_fail() {
let program_bytes = include_bytes!("input_tuple_3x2_fail.leo");
let input_bytes = include_bytes!("input/input_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("input_tuple_3x2_fail.leo");
let input_string = include_str!("input/input_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_multi_fail_initializer() {
let program_bytes = include_bytes!("multi_fail_initializer.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("multi_fail_initializer.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_multi_inline_fail() {
let program_bytes = include_bytes!("multi_fail_inline.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("multi_fail_inline.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_multi_initializer() {
let program_bytes = include_bytes!("multi_initializer.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("multi_initializer.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_multi_initializer_fail() {
let program_bytes = include_bytes!("multi_initializer_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("multi_initializer_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_nested_3x2_value() {
let program_bytes = include_bytes!("nested_3x2_value.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("nested_3x2_value.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_nested_3x2_value_fail() {
let program_bytes = include_bytes!("nested_3x2_value_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("nested_3x2_value_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_tuple_3x2_value() {
let program_bytes = include_bytes!("tuple_3x2_value.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("tuple_3x2_value.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_tuple_3x2_value_fail() {
let program_bytes = include_bytes!("tuple_3x2_value_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("tuple_3x2_value_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_spread() {
let program_bytes = include_bytes!("spread.leo");
let input_bytes = include_bytes!("input/three_ones.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("spread.leo");
let input_string = include_str!("input/three_ones.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_slice() {
let program_bytes = include_bytes!("slice.leo");
let input_bytes = include_bytes!("input/three_ones.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("slice.leo");
let input_string = include_str!("input/three_ones.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
@ -233,136 +233,136 @@ fn test_slice() {
#[test]
fn test_type_fail() {
let program_bytes = include_bytes!("type_fail.leo");
let syntax_error = parse_program(program_bytes).is_err();
let program_string = include_str!("type_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_type_nested_value_nested_3x2() {
let program_bytes = include_bytes!("type_nested_value_nested_3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_nested_3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_nested_value_nested_3x2_fail() {
let program_bytes = include_bytes!("type_nested_value_nested_3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_nested_3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_nested_value_nested_4x3x2() {
let program_bytes = include_bytes!("type_nested_value_nested_4x3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_nested_4x3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_nested_value_nested_4x3x2_fail() {
let program_bytes = include_bytes!("type_nested_value_nested_4x3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_nested_4x3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_nested_value_tuple_3x2() {
let program_bytes = include_bytes!("type_nested_value_tuple_3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_tuple_3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_nested_value_tuple_3x2_fail() {
let program_bytes = include_bytes!("type_nested_value_tuple_3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_tuple_3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_nested_value_tuple_4x3x2() {
let program_bytes = include_bytes!("type_nested_value_tuple_4x3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_tuple_4x3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_nested_value_tuple_4x3x2_fail() {
let program_bytes = include_bytes!("type_nested_value_tuple_4x3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_nested_value_tuple_4x3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_tuple_value_nested_3x2() {
let program_bytes = include_bytes!("type_tuple_value_nested_3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_nested_3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_tuple_value_nested_3x2_fail() {
let program_bytes = include_bytes!("type_tuple_value_nested_3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_nested_3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_tuple_value_nested_4x3x2() {
let program_bytes = include_bytes!("type_tuple_value_nested_4x3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_nested_4x3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_tuple_value_nested_4x3x2_fail() {
let program_bytes = include_bytes!("type_tuple_value_nested_4x3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_nested_4x3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_tuple_value_tuple_3x2() {
let program_bytes = include_bytes!("type_tuple_value_tuple_3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_tuple_3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_tuple_value_tuple_3x2_fail() {
let program_bytes = include_bytes!("type_tuple_value_tuple_3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_tuple_3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_type_tuple_value_tuple_4x3x2() {
let program_bytes = include_bytes!("type_tuple_value_tuple_4x3x2.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_tuple_4x3x2.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_type_tuple_value_tuple_4x3x2_fail() {
let program_bytes = include_bytes!("type_tuple_value_tuple_4x3x2_fail.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("type_tuple_value_tuple_4x3x2_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
@ -371,72 +371,72 @@ fn test_type_tuple_value_tuple_4x3x2_fail() {
#[test]
fn test_input_type_nested_value_nested_3x2() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_nested_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_nested_value_nested_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_nested_value_nested_3x2_fail() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_nested_value_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_nested_value_nested_4x3x2() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_nested_4x3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_nested_value_nested_4x3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_nested_value_nested_4x3x2_fail() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_nested_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_nested_value_nested_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_nested_value_tuple_3x2() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_tuple_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_nested_value_tuple_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_nested_value_tuple_3x2_fail() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_nested_value_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_nested_value_tuple_4x3x2() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_tuple_4x3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_nested_value_tuple_4x3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program)
}
#[test]
fn test_input_type_nested_value_tuple_4x3x2_fail() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_nested_value_tuple_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_nested_value_tuple_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
@ -445,72 +445,72 @@ fn test_input_type_nested_value_tuple_4x3x2_fail() {
#[test]
fn test_input_type_tuple_value_nested_3x2() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_nested_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_tuple_value_nested_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_tuple_value_nested_3x2_fail() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_tuple_value_nested_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_tuple_value_nested_4x3x2() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_nested_4x3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_tuple_value_nested_4x3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_tuple_value_nested_4x3x2_fail() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_nested_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_tuple_value_nested_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_tuple_value_tuple_3x2() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_tuple_3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_tuple_value_tuple_3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_tuple_value_tuple_3x2_fail() {
let program_bytes = include_bytes!("type_input_3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_3x2.leo");
let input_string = include_str!("input/type_tuple_value_tuple_3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_type_tuple_value_tuple_4x3x2() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_tuple_4x3x2.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_tuple_value_tuple_4x3x2.in");
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_type_tuple_value_tuple_4x3x2_fail() {
let program_bytes = include_bytes!("type_input_4x3x2.leo");
let input_bytes = include_bytes!("input/type_tuple_value_tuple_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_bytes, input_bytes).is_err();
let program_string = include_str!("type_input_4x3x2.leo");
let input_string = include_str!("input/type_tuple_value_tuple_4x3x2_fail.in");
let syntax_error = parse_program_with_input(program_string, input_string).is_err();
assert!(syntax_error);
}

View File

@ -40,37 +40,37 @@ pub fn output_false(program: EdwardsTestCompiler) {
#[test]
fn test_input_pass() {
let program_bytes = include_bytes!("assert_eq_input.leo");
let input_bytes = include_bytes!("input/true_true.in");
let program_string = include_str!("assert_eq_input.leo");
let input_string = include_str!("input/true_true.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_fail() {
let program_bytes = include_bytes!("assert_eq_input.leo");
let input_bytes = include_bytes!("input/true_false.in");
let program_string = include_str!("assert_eq_input.leo");
let input_string = include_str!("input/true_false.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_registers() {
let program_bytes = include_bytes!("output_register.leo");
let true_input_bytes = include_bytes!("input/registers_true.in");
let false_input_bytes = include_bytes!("input/registers_false.in");
let program_string = include_str!("output_register.leo");
let true_input_string = include_str!("input/registers_true.in");
let false_input_string = include_str!("input/registers_false.in");
// test true input register => true output register
let program = parse_program_with_input(program_bytes, true_input_bytes).unwrap();
let program = parse_program_with_input(program_string, true_input_string).unwrap();
output_true(program);
// test false input register => false output register
let program = parse_program_with_input(program_bytes, false_input_bytes).unwrap();
let program = parse_program_with_input(program_string, false_input_string).unwrap();
output_false(program);
}
@ -79,32 +79,32 @@ fn test_registers() {
#[test]
fn test_not_true() {
let bytes = include_bytes!("not_true.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("not_true.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_not_false() {
let bytes = include_bytes!("not_false.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("not_false.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_not_mutable() {
let bytes = include_bytes!("not_mutable.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("not_mutable.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_not_u32() {
let bytes = include_bytes!("not_u32.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("not_u32.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
@ -113,32 +113,32 @@ fn test_not_u32() {
#[test]
fn test_true_or_true() {
let bytes = include_bytes!("true_or_true.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("true_or_true.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_true_or_false() {
let bytes = include_bytes!("true_or_false.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("true_or_false.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_false_or_false() {
let bytes = include_bytes!("false_or_false.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("false_or_false.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_true_or_u32() {
let bytes = include_bytes!("true_or_u32.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("true_or_u32.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
@ -147,32 +147,32 @@ fn test_true_or_u32() {
#[test]
fn test_true_and_true() {
let bytes = include_bytes!("true_and_true.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("true_and_true.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_true_and_false() {
let bytes = include_bytes!("true_and_false.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("true_and_false.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_false_and_false() {
let bytes = include_bytes!("false_and_false.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("false_and_false.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_true_and_u32() {
let bytes = include_bytes!("true_and_u32.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("true_and_u32.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
@ -181,8 +181,8 @@ fn test_true_and_u32() {
#[test]
fn test_all() {
let bytes = include_bytes!("all.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("all.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -3,7 +3,7 @@ circuit Foo {
}
circuit Bar {
static function bar() {
function bar() {
let f = Foo { a: 0u32 };
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -1,18 +1,18 @@
circuit Foo {
x: u32,
function add_x(y: u32) -> u32 {
function add_x(self, y: u32) -> u32 {
return self.x + y
}
function call_add_x(y: u32) -> u32 {
function call_add_x(self, y: u32) -> u32 {
return self.add_x(y)
}
}
function main() {
let a = Foo { x: 1u32 };
let b = a.call_add_x(1u32);
let b = a.add_x(1u32);
console.assert(b == 2u32);
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -5,5 +5,5 @@ circuit Foo {
}
function main() {
let err = Foo::echo(1u32); // echo is a non-static function and must be accessed using `.`
let err = Foo.echo(1u32); // Invalid, echo is a static function and must be accessed using `::`
}

View File

@ -1,11 +1,11 @@
circuit Foo {
static function qux() {}
function qux() {}
static function bar() {
function bar() {
Self::qux();
}
static function baz() {
function baz() {
Self::bar();
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function echo(x: u32) -> u32 {
function echo(x: u32) -> u32 {
return x
}
}

View File

@ -1,7 +1,7 @@
circuit Foo {
foo: u32,
static function bar() -> u32 {
function bar() -> u32 {
return 1u32
}
}

View File

@ -20,24 +20,24 @@ use crate::{assert_satisfied, expect_compiler_error, expect_type_inference_error
#[test]
fn test_inline() {
let bytes = include_bytes!("inline.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("inline.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_inline_fail() {
let bytes = include_bytes!("inline_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("inline_fail.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_inline_undefined() {
let bytes = include_bytes!("inline_undefined.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("inline_undefined.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
@ -46,88 +46,88 @@ fn test_inline_undefined() {
#[test]
fn test_member_variable() {
let bytes = include_bytes!("member_variable.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_variable.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_variable_fail() {
let bytes = include_bytes!("member_variable_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("member_variable_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_member_variable_and_function() {
let bytes = include_bytes!("member_variable_and_function.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_variable_and_function.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_function() {
let bytes = include_bytes!("member_function.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_function.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_function_fail() {
let bytes = include_bytes!("member_function_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("member_function_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_member_function_invalid() {
let bytes = include_bytes!("member_function_invalid.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("member_function_invalid.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_member_function_nested() {
let bytes = include_bytes!("member_function_nested.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_function_nested.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_static_function() {
let bytes = include_bytes!("member_static_function.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_static_function.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_static_function_nested() {
let bytes = include_bytes!("member_static_function_nested.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("member_static_function_nested.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_member_static_function_invalid() {
let bytes = include_bytes!("member_static_function_invalid.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("member_static_function_invalid.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error)
}
#[test]
fn test_member_static_function_undefined() {
let bytes = include_bytes!("member_static_function_undefined.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("member_static_function_undefined.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error)
}
@ -136,64 +136,64 @@ fn test_member_static_function_undefined() {
#[test]
fn test_mutate_function_fail() {
let bytes = include_bytes!("mut_function_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("mut_function_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_mutate_self_variable() {
let bytes = include_bytes!("mut_self_variable.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("mut_self_variable.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_mutate_self_variable_fail() {
let bytes = include_bytes!("mut_self_variable_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("mut_self_variable_fail.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_mutate_self_function_fail() {
let bytes = include_bytes!("mut_self_function_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("mut_self_function_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_mutate_self_static_function_fail() {
let bytes = include_bytes!("mut_self_static_function_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("mut_self_static_function_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_mutate_static_function_fail() {
let bytes = include_bytes!("mut_static_function_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("mut_static_function_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_mutate_variable() {
let bytes = include_bytes!("mut_variable.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("mut_variable.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_mutate_variable_fail() {
let bytes = include_bytes!("mut_variable_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("mut_variable_fail.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
@ -202,32 +202,32 @@ fn test_mutate_variable_fail() {
#[test]
fn test_self_fail() {
let bytes = include_bytes!("self_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("self_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_self_member_pass() {
let bytes = include_bytes!("self_member.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("self_member.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_self_member_invalid() {
let bytes = include_bytes!("self_member_invalid.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("self_member_invalid.leo");
let error = parse_program(program_string).err().unwrap();
let _err = expect_compiler_error(program);
expect_type_inference_error(error);
}
#[test]
fn test_self_member_undefined() {
let bytes = include_bytes!("self_member_undefined.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("self_member_undefined.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
@ -236,16 +236,16 @@ fn test_self_member_undefined() {
#[test]
fn test_pedersen_mock() {
let bytes = include_bytes!("pedersen_mock.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("pedersen_mock.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_define_circuit_inside_circuit_function() {
let bytes = include_bytes!("define_circuit_inside_circuit_function.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("define_circuit_inside_circuit_function.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -3,7 +3,7 @@ circuit Foo {
function bar() {}
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.bar = new;
}
}

View File

@ -1,9 +1,9 @@
circuit Foo {
a: u8,
static function bar() {}
function bar() {}
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.bar = new;
}
}

View File

@ -1,7 +1,7 @@
circuit Foo {
mut a: u8,
a: u8,
function set_a(new: u8) {
function set_a(mut self, new: u8) {
self.a = new;
console.assert(self.a == new);
}

View File

@ -1,7 +1,7 @@
circuit Foo {
a: u8,
function set_a(new: u8) {
function set_a(self, new: u8) {
self.a = new;
}
}

View File

@ -1,5 +1,5 @@
circuit Foo {
static function bar() {}
function bar() {}
}
function main() {

View File

@ -1,5 +1,5 @@
circuit Foo {
mut a: u8,
a: u8,
}
function main() {

View File

@ -3,7 +3,7 @@ circuit Foo {
}
function main() {
let mut f = Foo { a: 0u8 };
let f = Foo { a: 0u8 };
f.a = 1u8;
}

View File

@ -1,11 +1,11 @@
circuit PedersenHash {
parameters: [u32; 512]
static function new(parameters: [u32; 512]) -> Self {
function new(parameters: [u32; 512]) -> Self {
return Self { parameters: parameters }
}
function hash(bits: [bool; 512]) -> u32 {
function hash(self, bits: [bool; 512]) -> u32 {
let mut digest: u32 = 0;
for i in 0..512 {
let base = if bits[i] ? self.parameters[i] : 0u32;

View File

@ -1,7 +1,7 @@
circuit Foo {
f: u32,
function bar() -> u32 {
function bar(self) -> u32 {
return self.f
}
}

View File

@ -19,63 +19,63 @@ use leo_ast::InputValue;
#[test]
fn test_log() {
let bytes = include_bytes!("log.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_log_fail() {
let bytes = include_bytes!("log_fail.leo");
let program_string = include_str!("log_fail.leo");
assert!(parse_program(bytes).is_err());
assert!(parse_program(program_string).is_err());
}
#[test]
fn test_log_parameter() {
let bytes = include_bytes!("log_parameter.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log_parameter.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_log_parameter_many() {
let bytes = include_bytes!("log_parameter_many.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log_parameter_many.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_log_parameter_fail_unknown() {
let bytes = include_bytes!("log_parameter_fail_unknown.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log_parameter_fail_unknown.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_log_parameter_fail_empty() {
let bytes = include_bytes!("log_parameter_fail_empty.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log_parameter_fail_empty.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_log_parameter_fail_none() {
let bytes = include_bytes!("log_parameter_fail_empty.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("log_parameter_fail_empty.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_log_input() {
let bytes = include_bytes!("log_input.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("log_input.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]);
@ -88,8 +88,8 @@ fn test_log_input() {
#[test]
fn test_debug() {
let bytes = include_bytes!("debug.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("debug.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -98,8 +98,8 @@ fn test_debug() {
#[test]
fn test_error() {
let bytes = include_bytes!("error.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("error.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -108,8 +108,8 @@ fn test_error() {
#[test]
fn test_assert() {
let bytes = include_bytes!("assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]);
@ -117,7 +117,7 @@ fn test_assert() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(false)))]);
@ -128,15 +128,15 @@ fn test_assert() {
#[test]
fn test_conditional_assert() {
let bytes = include_bytes!("conditional_assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("conditional_assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]);
program.set_main_input(main_input);
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(false)))]);

View File

@ -20,40 +20,40 @@ use crate::{assert_satisfied, expect_symbol_table_error, parse_program};
#[test]
fn test_core_circuit_invalid() {
let program_bytes = include_bytes!("core_package_invalid.leo");
let program = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("core_package_invalid.leo");
let error = parse_program(program_string).err().unwrap();
expect_symbol_table_error(program);
expect_symbol_table_error(error);
}
#[test]
fn test_core_circuit_star_fail() {
let program_bytes = include_bytes!("core_circuit_star_fail.leo");
let error = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("core_circuit_star_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_symbol_table_error(error);
}
#[test]
fn test_core_package_invalid() {
let program_bytes = include_bytes!("core_package_invalid.leo");
let error = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("core_package_invalid.leo");
let error = parse_program(program_string).err().unwrap();
expect_symbol_table_error(error);
}
#[test]
fn test_core_unstable_package_invalid() {
let program_bytes = include_bytes!("core_unstable_package_invalid.leo");
let error = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("core_unstable_package_invalid.leo");
let error = parse_program(program_string).err().unwrap();
expect_symbol_table_error(error);
}
#[test]
fn test_unstable_blake2s_sanity() {
let program_bytes = include_bytes!("unstable_blake2s.leo");
let program = parse_program(program_bytes).unwrap();
let program_string = include_str!("unstable_blake2s.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -32,33 +32,32 @@ use snarkos_models::algorithms::PRF;
#[test]
fn test_arguments_length_fail() {
let program_bytes = include_bytes!("arguments_length_fail.leo");
let error = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("arguments_length_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_arguments_type_fail() {
let program_bytes = include_bytes!("arguments_type_fail.leo");
let error = parse_program(program_bytes).err().unwrap();
let program_string = include_str!("arguments_type_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_blake2s_input() {
let input_bytes = include_bytes!("inputs/valid_input.in");
let program_bytes = include_bytes!("blake2s_input.leo");
let expected_bytes = include_bytes!("outputs/valid_output.out");
let input_string = include_str!("inputs/valid_input.in");
let program_string = include_str!("blake2s_input.leo");
let expected_string = include_str!("outputs/valid_output.out");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
let expected = std::str::from_utf8(expected_bytes).unwrap();
let actual_bytes = get_output(program);
let actual = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
let actual_string = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
assert_eq!(expected, actual)
assert_eq!(expected_string, actual_string)
}
#[test]
@ -81,7 +80,7 @@ fn test_blake2s_random() {
// The `blake2s_random.leo` program will compute a blake2s hash digest and compare it against
// the expected value
let bytes = include_bytes!("blake2s_random.leo");
let bytes = include_str!("blake2s_random.leo");
let mut program = parse_program(bytes).unwrap();
let main_input = generate_main_input(vec![

View File

@ -18,9 +18,9 @@ use crate::{assert_satisfied, import::set_local_dir, parse_program};
#[test]
fn test_out_of_order() {
let program_bytes = include_bytes!("out_of_order.leo");
let program_string = include_str!("out_of_order.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -30,9 +30,9 @@ fn test_out_of_order() {
fn test_out_of_order_with_import() {
set_local_dir();
let program_bytes = include_bytes!("out_of_order_with_import.leo");
let program_string = include_str!("out_of_order_with_import.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -52,8 +52,8 @@ fn test_negate() {
let a_string = field_to_decimal_string(a);
let b_string = field_to_decimal_string(b);
let bytes = include_bytes!("negate.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("negate.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -81,8 +81,8 @@ fn test_add() {
let b_string = field_to_decimal_string(b);
let c_string = field_to_decimal_string(c);
let bytes = include_bytes!("add.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("add.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -111,8 +111,8 @@ fn test_sub() {
let b_string = field_to_decimal_string(b);
let c_string = field_to_decimal_string(c);
let bytes = include_bytes!("sub.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("sub.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -140,8 +140,8 @@ fn test_div() {
let b_string = field_to_decimal_string(b);
let c_string = field_to_decimal_string(c);
let bytes = include_bytes!("div.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("div.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -169,8 +169,8 @@ fn test_mul() {
let b_string = field_to_decimal_string(b);
let c_string = field_to_decimal_string(c);
let bytes = include_bytes!("mul.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("mul.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -197,8 +197,8 @@ fn test_eq() {
// test equal
let bytes = include_bytes!("eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string.clone()))),
@ -214,7 +214,7 @@ fn test_eq() {
let c = a.eq(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -237,8 +237,8 @@ fn test_console_assert_pass() {
let a_string = field_to_decimal_string(a);
let bytes = include_bytes!("console_assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string.clone()))),
@ -266,8 +266,8 @@ fn test_console_assert_fail() {
let a_string = field_to_decimal_string(a);
let b_string = field_to_decimal_string(b);
let bytes = include_bytes!("console_assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Field(a_string))),
@ -290,8 +290,8 @@ fn test_ternary() {
let a_string = field_to_decimal_string(a);
let b_string = field_to_decimal_string(b);
let bytes = include_bytes!("ternary.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary.leo");
let mut program = parse_program(program_string).unwrap();
// true -> field a
let main_input = generate_main_input(vec![
@ -305,7 +305,7 @@ fn test_ternary() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
// false -> field b
let main_input = generate_main_input(vec![
@ -322,24 +322,24 @@ fn test_ternary() {
//
// pub fn output_one(program: EdwardsTestCompiler) {
// let expected = include_bytes!("output_/register_one.out");
// let expected = include_str!("output_/register_one.out");
// let actual = get_output(program);
//
// assert_eq!(expected, actual.bytes().as_slice());
// assert_eq!(expected, actual.program_string().as_slice());
// }
//
// pub fn output_zero(program: EdwardsTestCompiler) {
// let expected = include_bytes!("output_/register_zero.out");
// let expected = include_str!("output_/register_zero.out");
// let actual = get_output(program);
//
// assert_eq!(expected, actual.bytes().as_slice());
// assert_eq!(expected, actual.program_string().as_slice());
// }
//
// #[test]
// fn test_registers() {
// let program_bytes = include_bytes!("output_register.leo");
// let one_input_bytes = include_bytes!("input/register_one.in");
// let zero_input_bytes = include_bytes!("input/register_zero.in");
// let program_bytes = include_str!("output_register.leo");
// let one_input_bytes = include_str!("input/register_one.in");
// let zero_input_bytes = include_str!("input/register_zero.in");
//
// // test 1field input register => 1field output register
// let program = parse_program_with_input(program_bytes, one_input_bytes).unwrap();

View File

@ -26,85 +26,99 @@ use leo_compiler::errors::{CompilerError, ExpressionError, FunctionError, Statem
#[test]
fn test_empty() {
let bytes = include_bytes!("empty.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("empty.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_iteration() {
let bytes = include_bytes!("iteration.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("iteration.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_iteration_repeated() {
let bytes = include_bytes!("iteration_repeated.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("iteration_repeated.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_newlines() {
let input_bytes = include_bytes!("input/newlines.in");
let program_bytes = include_bytes!("newlines.leo");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let input_string = include_str!("input/newlines.in");
let program_string = include_str!("newlines.leo");
let program = parse_program_with_input(program_string, input_string).unwrap();
let expected_bytes = include_bytes!("output/newlines.out");
let expected = std::str::from_utf8(expected_bytes).unwrap();
let expected_string = include_str!("output/newlines.out");
let actual_bytes = get_output(program);
let actual = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
let actual_string = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
assert_eq!(expected, actual);
assert_eq!(expected_string, actual_string);
}
#[test]
fn test_multiple_returns() {
let bytes = include_bytes!("multiple.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("multiple_returns.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_multiple_returns_fail() {
let program_string = include_str!("multiple_returns_fail.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_multiple_returns_fail_conditional() {
let program_string = include_str!("multiple_returns_fail_conditional.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_multiple_returns_main() {
let program_bytes = include_bytes!("multiple_main.leo");
let input_bytes = include_bytes!("input/registers.in");
let program_string = include_str!("multiple_returns_main.leo");
let input_string = include_str!("input/registers.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
let expected_bytes = include_bytes!("output/registers.out");
let expected = std::str::from_utf8(expected_bytes).unwrap();
let expected_string = include_str!("output/registers.out");
let actual_bytes = get_output(program);
let actual = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
let actual_string = std::str::from_utf8(actual_bytes.bytes().as_slice()).unwrap();
assert_eq!(expected, actual);
assert_eq!(expected_string, actual_string);
}
#[test]
fn test_repeated_function_call() {
let bytes = include_bytes!("repeated.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("repeated.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_return() {
let bytes = include_bytes!("return.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_scope_fail() {
let bytes = include_bytes!("scope_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("scope_fail.leo");
let program = parse_program(program_string).unwrap();
match expect_compiler_error(program) {
CompilerError::FunctionError(FunctionError::StatementError(StatementError::ExpressionError(
@ -119,24 +133,24 @@ fn test_scope_fail() {
#[test]
fn test_undefined() {
let bytes = include_bytes!("undefined.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("undefined.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_value_unchanged() {
let bytes = include_bytes!("value_unchanged.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("value_unchanged.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_array_input() {
let bytes = include_bytes!("array_input.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("array_input.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error)
}
@ -145,32 +159,32 @@ fn test_array_input() {
#[test]
fn test_return_array_nested_fail() {
let bytes = include_bytes!("return_array_nested_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_array_nested_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_return_array_nested_pass() {
let bytes = include_bytes!("return_array_nested_pass.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_array_nested_pass.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_return_array_tuple_fail() {
let bytes = include_bytes!("return_array_tuple_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_array_tuple_fail.leo");
let program = parse_program(program_string).unwrap();
let _err = expect_compiler_error(program);
}
#[test]
fn test_return_array_tuple_pass() {
let bytes = include_bytes!("return_array_tuple_pass.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_array_tuple_pass.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -179,16 +193,16 @@ fn test_return_array_tuple_pass() {
#[test]
fn test_return_tuple() {
let bytes = include_bytes!("return_tuple.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_tuple.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_return_tuple_conditional() {
let bytes = include_bytes!("return_tuple_conditional.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("return_tuple_conditional.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -0,0 +1,7 @@
function main () -> i8 {
if true {
return 1i8 //ignored
}
return 2i8 //ignored
return 3i8 //returns
}

View File

@ -0,0 +1,9 @@
function main () -> u16 {
if false {
let a = 1u16;
let b = a + 1u16;
return b
} else if false {
return 0u16
}
}

View File

@ -15,8 +15,13 @@
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
assert_satisfied, expect_compiler_error, expect_synthesis_error, field::field_to_decimal_string,
generate_main_input, parse_program, parse_program_with_input,
assert_satisfied,
expect_compiler_error,
expect_synthesis_error,
field::field_to_decimal_string,
generate_main_input,
parse_program,
parse_program_with_input,
};
use leo_ast::{GroupCoordinate, GroupTuple, GroupValue, InputValue, Span};
@ -47,124 +52,124 @@ pub fn group_element_to_input_value(g: EdwardsAffine) -> GroupValue {
#[test]
fn test_one() {
let bytes = include_bytes!("one.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("one.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_zero() {
let bytes = include_bytes!("zero.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("zero.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_point() {
let bytes = include_bytes!("point.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("point.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_x_sign_high() {
let bytes = include_bytes!("x_sign_high.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("x_sign_high.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_x_sign_low() {
let bytes = include_bytes!("x_sign_low.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("x_sign_low.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_x_sign_inferred() {
let bytes = include_bytes!("x_sign_inferred.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("x_sign_inferred.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_y_sign_high() {
let bytes = include_bytes!("y_sign_high.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("y_sign_high.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_y_sign_low() {
let bytes = include_bytes!("y_sign_low.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("y_sign_low.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_y_sign_inferred() {
let bytes = include_bytes!("y_sign_inferred.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("y_sign_inferred.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_both_sign_high() {
let bytes = include_bytes!("both_sign_high.leo");
let program_string = include_str!("both_sign_high.leo");
let program = parse_program(bytes).unwrap();
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_both_sign_low() {
let bytes = include_bytes!("both_sign_low.leo");
let program_string = include_str!("both_sign_low.leo");
let program = parse_program(bytes).unwrap();
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_both_sign_inferred() {
let bytes = include_bytes!("both_sign_inferred.leo");
let program_string = include_str!("both_sign_inferred.leo");
let program = parse_program(bytes).unwrap();
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_point_input() {
let program_bytes = include_bytes!("point_input.leo");
let input_bytes = include_bytes!("input/point.in");
let program_string = include_str!("point_input.leo");
let input_bytes = include_str!("input/point.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_bytes).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input() {
let program_bytes = include_bytes!("input.leo");
let input_bytes_pass = include_bytes!("input/valid.in");
let input_bytes_fail = include_bytes!("input/invalid.in");
let program_string = include_str!("input.leo");
let input_string_pass = include_str!("input/valid.in");
let input_string_fail = include_str!("input/invalid.in");
let program = parse_program_with_input(program_bytes, input_bytes_pass).unwrap();
let program = parse_program_with_input(program_string, input_string_pass).unwrap();
assert_satisfied(program);
let program = parse_program_with_input(program_bytes, input_bytes_fail).unwrap();
let program = parse_program_with_input(program_string, input_string_fail).unwrap();
expect_compiler_error(program);
}
@ -182,8 +187,8 @@ fn test_negate() {
let a_element = group_element_to_input_value(a);
let b_element = group_element_to_input_value(b);
let bytes = include_bytes!("negate.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("negate.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element))),
@ -210,8 +215,8 @@ fn test_add() {
let b_element = group_element_to_input_value(b);
let c_element = group_element_to_input_value(c);
let bytes = include_bytes!("add.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("add.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element))),
@ -239,8 +244,8 @@ fn test_sub() {
let b_element = group_element_to_input_value(b);
let c_element = group_element_to_input_value(c);
let bytes = include_bytes!("sub.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("sub.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element))),
@ -262,8 +267,8 @@ fn test_console_assert_pass() {
let a_element = group_element_to_input_value(a);
let bytes = include_bytes!("assert_eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("assert_eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element.clone()))),
@ -291,8 +296,8 @@ fn test_console_assert_fail() {
let a_element = group_element_to_input_value(a);
let b_element = group_element_to_input_value(b);
let bytes = include_bytes!("assert_eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("assert_eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element))),
@ -318,8 +323,8 @@ fn test_eq() {
// test equal
let bytes = include_bytes!("eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element.clone()))),
@ -335,7 +340,7 @@ fn test_eq() {
let c = a.eq(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Group(a_element))),
@ -359,8 +364,8 @@ fn test_ternary() {
let a_element = group_element_to_input_value(a);
let b_element = group_element_to_input_value(b);
let bytes = include_bytes!("ternary.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary.leo");
let mut program = parse_program(program_string).unwrap();
// true -> field a
let main_input = generate_main_input(vec![
@ -374,7 +379,7 @@ fn test_ternary() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
// false -> field b
let main_input = generate_main_input(vec![

View File

@ -34,8 +34,8 @@ pub fn set_local_dir() {
fn test_basic() {
set_local_dir();
let bytes = include_bytes!("basic.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("basic.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -45,8 +45,8 @@ fn test_basic() {
fn test_multiple() {
set_local_dir();
let bytes = include_bytes!("multiple.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("multiple.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -56,8 +56,8 @@ fn test_multiple() {
fn test_star() {
set_local_dir();
let bytes = include_bytes!("star.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("star.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -67,8 +67,8 @@ fn test_star() {
fn test_star_fail() {
set_local_dir();
let bytes = include_bytes!("star_fail.leo");
assert!(parse_program(bytes).is_err());
let program_string = include_str!("star_fail.leo");
assert!(parse_program(program_string).is_err());
}
#[test]
@ -76,8 +76,8 @@ fn test_star_fail() {
fn test_alias() {
set_local_dir();
let bytes = include_bytes!("alias.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("alias.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -88,8 +88,8 @@ fn test_alias() {
fn test_names_pass() {
set_local_dir();
let bytes = include_bytes!("names.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("names.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -99,8 +99,8 @@ fn test_names_pass() {
fn test_names_fail_1() {
set_local_dir();
let bytes = include_bytes!("names_dash_a.leo");
assert!(parse_program(bytes).is_err());
let program_string = include_str!("names_dash_a.leo");
assert!(parse_program(program_string).is_err());
}
#[test]
@ -108,8 +108,8 @@ fn test_names_fail_1() {
fn test_names_fail_2() {
set_local_dir();
let bytes = include_bytes!("names_a_dash.leo");
assert!(parse_program(bytes).is_err());
let program_string = include_str!("names_a_dash.leo");
assert!(parse_program(program_string).is_err());
}
#[test]
@ -117,8 +117,8 @@ fn test_names_fail_2() {
fn test_names_fail_3() {
set_local_dir();
let bytes = include_bytes!("names_underscore.leo");
assert!(parse_program(bytes).is_err());
let program_string = include_str!("names_underscore.leo");
assert!(parse_program(program_string).is_err());
}
#[test]
@ -126,8 +126,8 @@ fn test_names_fail_3() {
fn test_names_fail_4() {
set_local_dir();
let bytes = include_bytes!("names_dollar.leo");
assert!(parse_program(bytes).is_err());
let program_string = include_str!("names_dollar.leo");
assert!(parse_program(program_string).is_err());
}
// more complex tests
@ -136,8 +136,8 @@ fn test_names_fail_4() {
fn test_many_import() {
set_local_dir();
let bytes = include_bytes!("many_import.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("many_import.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -147,8 +147,8 @@ fn test_many_import() {
fn test_many_import_star() {
set_local_dir();
let bytes = include_bytes!("many_import_star.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("many_import_star.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}

View File

@ -26,40 +26,40 @@ fn expect_fail(program: EdwardsTestCompiler) {
#[test]
fn test_input_pass() {
let program_bytes = include_bytes!("main.leo");
let input_bytes = include_bytes!("input/main.in");
let program_string = include_str!("main.leo");
let input_string = include_str!("input/main.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_input_fail_name() {
let program_bytes = include_bytes!("main.leo");
let input_bytes = include_bytes!("input/main_fail_name.in");
let program_string = include_str!("main.leo");
let input_string = include_str!("input/main_fail_name.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_fail(program);
}
#[test]
fn test_input_fail_type() {
let program_bytes = include_bytes!("main.leo");
let input_bytes = include_bytes!("input/main_fail_type.in");
let program_string = include_str!("main.leo");
let input_string = include_str!("input/main_fail_type.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_fail(program);
}
#[test]
fn test_input_multiple() {
let program_bytes = include_bytes!("main_multiple.leo");
let input_bytes = include_bytes!("input/main_multiple.in");
let program_string = include_str!("main_multiple.leo");
let input_string = include_str!("input/main_multiple.in");
let program = parse_program_with_input(program_bytes, input_bytes).unwrap();
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}

View File

@ -18,27 +18,27 @@ use crate::{assert_satisfied, parse_input_and_state, parse_program_with_input_an
#[test]
fn test_basic() {
let input_bytes = include_bytes!("input/basic.in");
let state_bytes = include_bytes!("input/basic.state");
let input_string = include_str!("input/basic.in");
let state_string = include_str!("input/basic.state");
parse_input_and_state(input_bytes, state_bytes).unwrap();
parse_input_and_state(input_string, state_string).unwrap();
}
#[test]
fn test_full() {
let input_bytes = include_bytes!("input/token_withdraw.in");
let state_bytes = include_bytes!("input/token_withdraw.state");
let input_string = include_str!("input/token_withdraw.in");
let state_string = include_str!("input/token_withdraw.state");
parse_input_and_state(input_bytes, state_bytes).unwrap();
parse_input_and_state(input_string, state_string).unwrap();
}
#[test]
fn test_access() {
let program_bytes = include_bytes!("access.leo");
let input_bytes = include_bytes!("input/token_withdraw.in");
let state_bytes = include_bytes!("input/token_withdraw.state");
let program_string = include_str!("access.leo");
let input_string = include_str!("input/token_withdraw.in");
let state_string = include_str!("input/token_withdraw.state");
let program = parse_program_with_input_and_state(program_bytes, input_bytes, state_bytes).unwrap();
let program = parse_program_with_input_and_state(program_string, input_string, state_string).unwrap();
assert_satisfied(program);
}

View File

@ -18,61 +18,61 @@ use crate::{assert_satisfied, parse_program_with_state, parse_state};
#[test]
fn test_basic() {
let bytes = include_bytes!("input/basic.state");
let state_string = include_str!("input/basic.state");
parse_state(bytes).unwrap();
parse_state(state_string).unwrap();
}
#[test]
fn test_token_withdraw() {
let bytes = include_bytes!("input/token_withdraw.state");
let state_string = include_str!("input/token_withdraw.state");
parse_state(bytes).unwrap();
parse_state(state_string).unwrap();
}
#[test]
fn test_access_state() {
let program_bytes = include_bytes!("access_state.leo");
let state_bytes = include_bytes!("input/token_withdraw.state");
let program_string = include_str!("access_state.leo");
let state_string = include_str!("input/token_withdraw.state");
let program = parse_program_with_state(program_bytes, state_bytes).unwrap();
let program = parse_program_with_state(program_string, state_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_access_all() {
let program_bytes = include_bytes!("access_all.leo");
let state_bytes = include_bytes!("input/token_withdraw.state");
let program_string = include_str!("access_all.leo");
let state_string = include_str!("input/token_withdraw.state");
let program = parse_program_with_state(program_bytes, state_bytes).unwrap();
let program = parse_program_with_state(program_string, state_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_visibility_fail() {
let state_bytes = include_bytes!("input/visibility_fail.state");
let state_string = include_str!("input/visibility_fail.state");
let is_err = parse_state(state_bytes).is_err();
let is_err = parse_state(state_string).is_err();
assert!(is_err);
}
#[test]
fn test_section_undefined() {
let state_bytes = include_bytes!("input/section_undefined.state");
let state_string = include_str!("input/section_undefined.state");
let is_err = parse_state(state_bytes).is_err();
let is_err = parse_state(state_string).is_err();
assert!(is_err);
}
#[test]
fn test_section_invalid() {
let state_bytes = include_bytes!("input/section_invalid.state");
let state_string = include_str!("input/section_invalid.state");
let is_err = parse_state(state_bytes).is_err();
let is_err = parse_state(state_string).is_err();
assert!(is_err);
}

View File

@ -28,8 +28,8 @@ macro_rules! test_int {
None => continue,
};
let bytes = include_bytes!("negate.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("negate.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
("b", Some(InputValue::Integer($integer_type, b.to_string()))),
@ -42,15 +42,15 @@ macro_rules! test_int {
}
fn test_negate_min_fail() {
let bytes = include_bytes!("negate_min.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("negate_min.leo");
let program = parse_program(program_string).unwrap();
expect_computation_error(program);
}
fn test_negate_zero() {
let bytes = include_bytes!("negate_zero.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("negate_zero.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
@ -58,29 +58,29 @@ macro_rules! test_int {
impl IntegerTester for $name {
fn test_min() {
let bytes = include_bytes!("min.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("min.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
fn test_min_fail() {
let bytes = include_bytes!("min_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("min_fail.leo");
let program = parse_program(program_string).unwrap();
expect_parsing_error(program);
}
fn test_max() {
let bytes = include_bytes!("max.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("max.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
fn test_max_fail() {
let bytes = include_bytes!("max_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("max_fail.leo");
let program = parse_program(program_string).unwrap();
expect_parsing_error(program);
}
@ -95,8 +95,8 @@ macro_rules! test_int {
None => continue,
};
let bytes = include_bytes!("add.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("add.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -124,8 +124,8 @@ macro_rules! test_int {
None => continue,
};
let bytes = include_bytes!("sub.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("sub.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -149,8 +149,8 @@ macro_rules! test_int {
None => continue,
};
let bytes = include_bytes!("mul.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("mul.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -176,8 +176,8 @@ macro_rules! test_int {
continue;
}
let bytes = include_bytes!("div.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("div.leo");
let mut program = parse_program(program_string).unwrap();
// expect an error when dividing by zero
if b == 0 {
@ -220,8 +220,8 @@ macro_rules! test_int {
None => continue,
};
let bytes = include_bytes!("pow.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("pow.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -242,8 +242,8 @@ macro_rules! test_int {
// test equal
let bytes = include_bytes!("eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -259,7 +259,7 @@ macro_rules! test_int {
let c = a.eq(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -280,8 +280,8 @@ macro_rules! test_int {
// test a != a == false
let bytes = include_bytes!("ne.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ne.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -297,7 +297,7 @@ macro_rules! test_int {
let c = a.ne(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -318,8 +318,8 @@ macro_rules! test_int {
// test equal
let bytes = include_bytes!("ge.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ge.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -335,7 +335,7 @@ macro_rules! test_int {
let c = a.ge(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -356,8 +356,8 @@ macro_rules! test_int {
// test equal
let bytes = include_bytes!("gt.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("gt.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -373,7 +373,7 @@ macro_rules! test_int {
let c = a.gt(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -394,8 +394,8 @@ macro_rules! test_int {
// test equal
let bytes = include_bytes!("le.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("le.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -411,7 +411,7 @@ macro_rules! test_int {
let c = a.le(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -432,8 +432,8 @@ macro_rules! test_int {
// test equal
let bytes = include_bytes!("lt.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("lt.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -449,7 +449,7 @@ macro_rules! test_int {
let c = a.lt(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -468,8 +468,8 @@ macro_rules! test_int {
let a: $type_ = rand::random();
// test equal
let bytes = include_bytes!("console_assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -487,7 +487,7 @@ macro_rules! test_int {
continue;
}
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -504,8 +504,8 @@ macro_rules! test_int {
let a: $type_ = rand::random();
let b: $type_ = rand::random();
let bytes = include_bytes!("ternary.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary.leo");
let mut program = parse_program(program_string).unwrap();
// true -> field 1
let main_input = generate_main_input(vec![
@ -520,7 +520,7 @@ macro_rules! test_int {
assert_satisfied(program);
// false -> field 2
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("s", Some(InputValue::Boolean(false))),

View File

@ -20,29 +20,29 @@ macro_rules! test_uint {
impl IntegerTester for $name {
fn test_min() {
let bytes = include_bytes!("min.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("min.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
fn test_min_fail() {
let bytes = include_bytes!("min_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("min_fail.leo");
let program = parse_program(program_string).unwrap();
expect_parsing_error(program);
}
fn test_max() {
let bytes = include_bytes!("max.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("max.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
fn test_max_fail() {
let bytes = include_bytes!("max_fail.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("max_fail.leo");
let program = parse_program(program_string).unwrap();
expect_parsing_error(program);
}
@ -57,8 +57,8 @@ macro_rules! test_uint {
None => continue,
};
let bytes = include_bytes!("add.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("add.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -82,8 +82,8 @@ macro_rules! test_uint {
None => continue,
};
let bytes = include_bytes!("sub.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("sub.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -107,8 +107,8 @@ macro_rules! test_uint {
None => continue,
};
let bytes = include_bytes!("mul.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("mul.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -132,8 +132,8 @@ macro_rules! test_uint {
None => continue,
};
let bytes = include_bytes!("div.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("div.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -158,8 +158,8 @@ macro_rules! test_uint {
None => continue,
};
let bytes = include_bytes!("pow.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("pow.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -180,8 +180,8 @@ macro_rules! test_uint {
// test equal
let bytes = include_bytes!("eq.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("eq.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -197,7 +197,7 @@ macro_rules! test_uint {
let c = a.eq(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -218,8 +218,8 @@ macro_rules! test_uint {
// test a != a == false
let bytes = include_bytes!("ne.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ne.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -235,7 +235,7 @@ macro_rules! test_uint {
let c = a.ne(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -256,8 +256,8 @@ macro_rules! test_uint {
// test equal
let bytes = include_bytes!("ge.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ge.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -273,7 +273,7 @@ macro_rules! test_uint {
let c = a.ge(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -294,8 +294,8 @@ macro_rules! test_uint {
// test equal
let bytes = include_bytes!("gt.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("gt.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -311,7 +311,7 @@ macro_rules! test_uint {
let c = a.gt(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -332,8 +332,8 @@ macro_rules! test_uint {
// test equal
let bytes = include_bytes!("le.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("le.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -349,7 +349,7 @@ macro_rules! test_uint {
let c = a.le(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -370,8 +370,8 @@ macro_rules! test_uint {
// test equal
let bytes = include_bytes!("lt.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("lt.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -387,7 +387,7 @@ macro_rules! test_uint {
let c = a.lt(&b);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -406,8 +406,8 @@ macro_rules! test_uint {
let a: $type_ = rand::random();
// test equal
let bytes = include_bytes!("console_assert.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("console_assert.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -425,7 +425,7 @@ macro_rules! test_uint {
continue;
}
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Integer($integer_type, a.to_string()))),
@ -442,8 +442,8 @@ macro_rules! test_uint {
let a: $type_ = rand::random();
let b: $type_ = rand::random();
let bytes = include_bytes!("ternary.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary.leo");
let mut program = parse_program(program_string).unwrap();
// true -> field 1
let main_input = generate_main_input(vec![
@ -458,7 +458,7 @@ macro_rules! test_uint {
assert_satisfied(program);
// false -> field 2
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("s", Some(InputValue::Boolean(false))),

View File

@ -64,94 +64,79 @@ fn new_compiler() -> EdwardsTestCompiler {
EdwardsTestCompiler::new(program_name, path, output_dir)
}
pub(crate) fn parse_program(bytes: &[u8]) -> Result<EdwardsTestCompiler, CompilerError> {
pub(crate) fn parse_program(program_string: &str) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let program_string = String::from_utf8_lossy(bytes);
compiler.parse_program_from_string(&program_string)?;
compiler.parse_program_from_string(program_string)?;
Ok(compiler)
}
pub(crate) fn parse_input(bytes: &[u8]) -> Result<EdwardsTestCompiler, CompilerError> {
pub(crate) fn parse_input(input_string: &str) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let input_string = String::from_utf8_lossy(bytes);
let path = PathBuf::new();
compiler.parse_input(&input_string, &path, EMPTY_FILE, &path)?;
compiler.parse_input(input_string, &path, EMPTY_FILE, &path)?;
Ok(compiler)
}
pub(crate) fn parse_state(bytes: &[u8]) -> Result<EdwardsTestCompiler, CompilerError> {
pub(crate) fn parse_state(state_string: &str) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let state_string = String::from_utf8_lossy(bytes);
let path = PathBuf::new();
compiler.parse_input(EMPTY_FILE, &path, &state_string, &path)?;
compiler.parse_input(EMPTY_FILE, &path, state_string, &path)?;
Ok(compiler)
}
pub(crate) fn parse_input_and_state(
input_bytes: &[u8],
state_bytes: &[u8],
input_string: &str,
state_string: &str,
) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let input_string = String::from_utf8_lossy(input_bytes);
let state_string = String::from_utf8_lossy(state_bytes);
let path = PathBuf::new();
compiler.parse_input(&input_string, &path, &state_string, &path)?;
compiler.parse_input(input_string, &path, state_string, &path)?;
Ok(compiler)
}
pub fn parse_program_with_input(
program_bytes: &[u8],
input_bytes: &[u8],
program_string: &str,
input_string: &str,
) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let program_string = String::from_utf8_lossy(program_bytes);
let input_string = String::from_utf8_lossy(input_bytes);
let path = PathBuf::new();
compiler.parse_input(&input_string, &path, EMPTY_FILE, &path)?;
compiler.parse_program_from_string(&program_string)?;
compiler.parse_input(input_string, &path, EMPTY_FILE, &path)?;
compiler.parse_program_from_string(program_string)?;
Ok(compiler)
}
pub fn parse_program_with_state(
program_bytes: &[u8],
state_bytes: &[u8],
program_string: &str,
state_string: &str,
) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let program_string = String::from_utf8_lossy(program_bytes);
let state_string = String::from_utf8_lossy(state_bytes);
let path = PathBuf::new();
compiler.parse_input(EMPTY_FILE, &path, &state_string, &path)?;
compiler.parse_program_from_string(&program_string)?;
compiler.parse_input(EMPTY_FILE, &path, state_string, &path)?;
compiler.parse_program_from_string(program_string)?;
Ok(compiler)
}
pub fn parse_program_with_input_and_state(
program_bytes: &[u8],
input_bytes: &[u8],
state_bytes: &[u8],
program_string: &str,
input_string: &str,
state_string: &str,
) -> Result<EdwardsTestCompiler, CompilerError> {
let mut compiler = new_compiler();
let program_string = String::from_utf8_lossy(program_bytes);
let input_string = String::from_utf8_lossy(input_bytes);
let state_string = String::from_utf8_lossy(state_bytes);
let path = PathBuf::new();
compiler.parse_input(&input_string, &path, &state_string, &path)?;
compiler.parse_input(input_string, &path, state_string, &path)?;
compiler.parse_program_from_string(&program_string)?;
Ok(compiler)

View File

@ -1,6 +1,6 @@
// Adding the `mut` keyword makes a circuit variable mutable.
circuit Foo {
static function bar() {}
function bar() {}
}
function main() {

View File

@ -1,6 +1,6 @@
// Adding the `mut` keyword makes a circuit variable mutable.
circuit Foo {
mut x: u32
x: u32
}
function main() {

View File

@ -0,0 +1,5 @@
function main () {
let mut x = 2u8;
let mut y = x;
let z = y / 2u8;
}

View File

@ -19,96 +19,104 @@ use leo_ast::InputValue;
#[test]
fn test_let() {
let bytes = include_bytes!("let.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("let.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_let_mut() {
let bytes = include_bytes!("let_mut.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("let_mut.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_let_mut_nested() {
let program_string = include_str!("let_mut_nested.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_const_fail() {
let bytes = include_bytes!("const.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("const.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_const_mut_fail() {
let bytes = include_bytes!("const_mut.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("const_mut.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_array() {
let bytes = include_bytes!("array.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("array.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_array_mut() {
let bytes = include_bytes!("array_mut.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("array_mut.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_circuit() {
let bytes = include_bytes!("circuit.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("circuit.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_circuit_mut() {
let bytes = include_bytes!("circuit_mut.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("circuit_mut.leo");
let program = parse_program(program_string).unwrap();
expect_compiler_error(program);
assert_satisfied(program);
}
#[test]
fn test_circuit_variable_mut() {
let bytes = include_bytes!("circuit_variable_mut.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("circuit_variable_mut.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_circuit_function_mut() {
let bytes = include_bytes!("circuit_function_mut.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("circuit_function_mut.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_circuit_static_function_mut() {
let bytes = include_bytes!("circuit_static_function_mut.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("circuit_static_function_mut.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}
#[test]
fn test_function_input() {
let bytes = include_bytes!("function_input.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("function_input.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]);
@ -119,8 +127,8 @@ fn test_function_input() {
#[test]
fn test_function_input_mut() {
let bytes = include_bytes!("function_input_mut.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("function_input_mut.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![("a", Some(InputValue::Boolean(true)))]);

View File

@ -28,8 +28,8 @@ use leo_ast::InputValue;
#[test]
fn test_assert() {
let bytes = include_bytes!("assert.leo");
let mut program_1_pass = parse_program(bytes).unwrap();
let program_string = include_str!("assert.leo");
let mut program_1_pass = parse_program(program_string).unwrap();
let mut program_0_pass = program_1_pass.clone();
let mut program_2_fail = program_1_pass.clone();
@ -60,8 +60,8 @@ fn test_assert() {
#[test]
fn test_mutate() {
let bytes = include_bytes!("mutate.leo");
let mut program_1_pass = parse_program(bytes).unwrap();
let program_string = include_str!("mutate.leo");
let mut program_1_pass = parse_program(program_string).unwrap();
let mut program_0_pass = program_1_pass.clone();
// Check that an input value of 1 satisfies the constraint system
@ -83,8 +83,8 @@ fn test_mutate() {
#[test]
fn test_for_loop() {
let bytes = include_bytes!("for_loop.leo");
let mut program_true_6 = parse_program(bytes).unwrap();
let program_string = include_str!("for_loop.leo");
let mut program_true_6 = parse_program(program_string).unwrap();
let mut program_false_0 = program_true_6.clone();
// Check that an input value of true satisfies the constraint system
@ -106,8 +106,8 @@ fn test_for_loop() {
#[test]
fn test_chain() {
let bytes = include_bytes!("chain.leo");
let mut program_1_1 = parse_program(bytes).unwrap();
let program_string = include_str!("chain.leo");
let mut program_1_1 = parse_program(program_string).unwrap();
let mut program_2_2 = program_1_1.clone();
let mut program_4_3 = program_1_1.clone();
@ -147,8 +147,8 @@ fn test_chain() {
#[test]
fn test_nested() {
let bytes = include_bytes!("nested.leo");
let mut program_true_true_3 = parse_program(bytes).unwrap();
let program_string = include_str!("nested.leo");
let mut program_true_true_3 = parse_program(program_string).unwrap();
let mut program_true_false_1 = program_true_true_3.clone();
let mut program_false_false_0 = program_true_true_3.clone();
@ -205,19 +205,19 @@ fn output_zero(program: EdwardsTestCompiler) {
#[test]
fn test_multiple_returns() {
let program_bytes = include_bytes!("multiple_returns.leo");
let program_string = include_str!("multiple_returns.leo");
// Check that an input value of 1 writes 1 to the output registers
let registers_one_bytes = include_bytes!("input/registers_one.in");
let program = parse_program_with_input(program_bytes, registers_one_bytes).unwrap();
let registers_one_string = include_str!("input/registers_one.in");
let program = parse_program_with_input(program_string, registers_one_string).unwrap();
output_one(program);
// Check that an input value of 0 writes 0 to the output registers
let registers_zero_bytes = include_bytes!("input/registers_zero.in");
let program = parse_program_with_input(program_bytes, registers_zero_bytes).unwrap();
let registers_zero_string = include_str!("input/registers_zero.in");
let program = parse_program_with_input(program_string, registers_zero_string).unwrap();
output_zero(program);
}

View File

@ -23,8 +23,8 @@ pub mod conditional;
#[test]
fn test_ternary_basic() {
let bytes = include_bytes!("ternary_basic.leo");
let mut program = parse_program(bytes).unwrap();
let program_string = include_str!("ternary_basic.leo");
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Boolean(true))),
@ -35,7 +35,7 @@ fn test_ternary_basic() {
assert_satisfied(program);
let mut program = parse_program(bytes).unwrap();
let mut program = parse_program(program_string).unwrap();
let main_input = generate_main_input(vec![
("a", Some(InputValue::Boolean(false))),
@ -51,16 +51,16 @@ fn test_ternary_basic() {
#[test]
fn test_iteration_basic() {
let bytes = include_bytes!("iteration_basic.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("iteration_basic.leo");
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_num_returns_fail() {
let bytes = include_bytes!("num_returns_fail.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("num_returns_fail.leo");
let error = parse_program(program_string).err().unwrap();
expect_type_inference_error(error);
}

View File

@ -18,80 +18,80 @@ use crate::parse_program;
#[test]
fn test_address_name_fail() {
let bytes = include_bytes!("address_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("address_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_console_name_fail() {
let bytes = include_bytes!("console_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("console_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_field_name_fail() {
let bytes = include_bytes!("field_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("field_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_group_name_fail() {
let bytes = include_bytes!("group_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("group_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_i8_name_fail() {
let bytes = include_bytes!("i8_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("i8_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_input_name_fail() {
let bytes = include_bytes!("input_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("input_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_self_type_name_fail() {
let bytes = include_bytes!("self_type_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("self_type_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_self_keyword_name_fail() {
let bytes = include_bytes!("self_keyword_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("self_keyword_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_true_name_fail() {
let bytes = include_bytes!("true_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("true_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}
#[test]
fn test_u8_name_fail() {
let bytes = include_bytes!("u8_fail.leo");
let syntax_error = parse_program(bytes).is_err();
let program_string = include_str!("u8_fail.leo");
let syntax_error = parse_program(program_string).is_err();
assert!(syntax_error);
}

View File

@ -25,8 +25,8 @@ pub mod identifiers;
#[test]
#[ignore]
fn test_semicolon() {
let bytes = include_bytes!("semicolon.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("semicolon.leo");
let error = parse_program(program_string).err().unwrap();
match error {
CompilerError::ParserError(ParserError::SyntaxError(_)) => {}
@ -36,8 +36,8 @@ fn test_semicolon() {
#[test]
fn test_undefined() {
let bytes = include_bytes!("undefined.leo");
let program = parse_program(bytes).unwrap();
let program_string = include_str!("undefined.leo");
let program = parse_program(program_string).unwrap();
let error = expect_compiler_error(program);
@ -53,7 +53,7 @@ fn test_undefined() {
" 2 | return a",
" | ^",
" |",
" = cannot find value `a` in this scope",
" = Cannot find value `a` in this scope",
]
.join("\n")
);
@ -63,10 +63,9 @@ fn test_undefined() {
}
#[test]
#[ignore]
fn input_syntax_error() {
let bytes = include_bytes!("input_semicolon.leo");
let error = parse_input(bytes).err().unwrap();
let input_string = include_str!("input_semicolon.leo");
let error = parse_input(input_string).err().unwrap();
// Expect an input parser error.
match error {
@ -77,8 +76,8 @@ fn input_syntax_error() {
#[test]
fn test_compare_mismatched_types() {
let bytes = include_bytes!("compare_mismatched_types.leo");
let error = parse_program(bytes).err().unwrap();
let program_string = include_str!("compare_mismatched_types.leo");
let error = parse_program(program_string).err().unwrap();
// Expect a type inference error.
match error {

View File

@ -18,105 +18,105 @@ use crate::{assert_satisfied, parse_program};
#[test]
fn test_tuple_basic() {
let program_bytes = include_bytes!("basic.leo");
let program_string = include_str!("basic.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_tuple_access() {
let program_bytes = include_bytes!("access.leo");
let program_string = include_str!("access.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_tuple_typed() {
let program_bytes = include_bytes!("typed.leo");
let program_string = include_str!("typed.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_multiple() {
let program_bytes = include_bytes!("multiple.leo");
let program_string = include_str!("multiple.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_multiple_typed() {
let program_bytes = include_bytes!("multiple_typed.leo");
let program_string = include_str!("multiple_typed.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_function() {
let program_bytes = include_bytes!("function.leo");
let program_string = include_str!("function.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_function_typed() {
let program_bytes = include_bytes!("function_typed.leo");
let program_string = include_str!("function_typed.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_function_multiple() {
let progam_bytes = include_bytes!("function_multiple.leo");
let progam_string = include_str!("function_multiple.leo");
let program = parse_program(progam_bytes).unwrap();
let program = parse_program(progam_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_nested() {
let program_bytes = include_bytes!("nested.leo");
let program_string = include_str!("nested.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_nested_access() {
let program_bytes = include_bytes!("nested_access.leo");
let program_string = include_str!("nested_access.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_nested_typed() {
let program_bytes = include_bytes!("nested_typed.leo");
let program_string = include_str!("nested_typed.leo");
let program = parse_program(program_bytes).unwrap();
let program = parse_program(program_string).unwrap();
assert_satisfied(program);
}
// #[test]
// fn test_input() {
// let input_bytes = include_bytes!("inputs/input.in");
// let program_bytes = include_bytes!("")
// let input_string = include_str!("inputs/input.in");
// let program_string = include_str!("")
// }

View File

@ -18,6 +18,7 @@ use crate::{CoreCircuit, CoreCircuitError, Value};
use leo_ast::{
ArrayDimensions,
Block,
Circuit,
CircuitMember,
Expression,
@ -61,9 +62,7 @@ impl CoreCircuit for Blake2sCircuit {
fn ast(circuit_name: Identifier, span: Span) -> Circuit {
Circuit {
circuit_name,
members: vec![CircuitMember::CircuitFunction(
true, // static function
Function {
members: vec![CircuitMember::CircuitFunction(Function {
identifier: Identifier {
name: "hash".to_owned(),
span: span.clone(),
@ -107,6 +106,7 @@ impl CoreCircuit for Blake2sCircuit {
span: span.clone(),
}]),
)),
block: Block {
statements: vec![Statement::Return(
Expression::CoreFunctionCall(
Self::name(),
@ -124,9 +124,9 @@ impl CoreCircuit for Blake2sCircuit {
),
span.clone(),
)],
span,
},
)],
span,
})],
}
}

View File

@ -14,10 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
ast::Rule,
circuits::{CircuitFunction, CircuitVariableDefinition},
};
use crate::{ast::Rule, circuits::CircuitVariableDefinition, functions::Function};
use pest_ast::FromPest;
use serde::Serialize;
@ -26,5 +23,5 @@ use serde::Serialize;
#[pest_ast(rule(Rule::circuit_member))]
pub enum CircuitMember<'ast> {
CircuitVariableDefinition(CircuitVariableDefinition<'ast>),
CircuitFunction(CircuitFunction<'ast>),
CircuitFunction(Function<'ast>),
}

View File

@ -14,12 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{
ast::Rule,
common::{Identifier, Mutable},
types::Type,
SpanDef,
};
use crate::{ast::Rule, common::Identifier, types::Type, SpanDef};
use pest::Span;
use pest_ast::FromPest;
@ -28,7 +23,6 @@ use serde::Serialize;
#[derive(Clone, Debug, FromPest, PartialEq, Serialize)]
#[pest_ast(rule(Rule::circuit_variable_definition))]
pub struct CircuitVariableDefinition<'ast> {
pub mutable: Option<Mutable>,
pub identifier: Identifier<'ast>,
pub type_: Type<'ast>,
#[pest_ast(outer())]

View File

@ -23,8 +23,5 @@ pub use circuit_variable::*;
pub mod circuit_variable_definition;
pub use circuit_variable_definition::*;
pub mod circuit_function;
pub use circuit_function::*;
pub mod circuit_member;
pub use circuit_member::*;

View File

@ -35,6 +35,9 @@ pub use line_end::*;
pub mod mutable;
pub use mutable::*;
pub mod mut_self_keyword;
pub use mut_self_keyword::*;
pub mod range;
pub use range::*;

View File

@ -14,18 +14,29 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ast::Rule, common::Static, functions::Function, SpanDef};
use crate::{
ast::Rule,
common::{Mutable, SelfKeyword},
SpanDef,
};
use pest::Span;
use pest_ast::FromPest;
use serde::Serialize;
use std::fmt;
#[derive(Clone, Debug, FromPest, PartialEq, Serialize)]
#[pest_ast(rule(Rule::circuit_function))]
pub struct CircuitFunction<'ast> {
pub _static: Option<Static>,
pub function: Function<'ast>,
#[pest_ast(rule(Rule::mut_self_keyword))]
pub struct MutSelfKeyword<'ast> {
pub mutable: Mutable,
pub self_keyword: SelfKeyword<'ast>,
#[pest_ast(outer())]
#[serde(with = "SpanDef")]
pub span: Span<'ast>,
}
impl<'ast> fmt::Display for MutSelfKeyword<'ast> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "mut {}", self.self_keyword)
}
}

View File

@ -14,7 +14,7 @@
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ast::Rule, common::Identifier, functions::input::Input, statements::Statement, types::Type, SpanDef};
use crate::{ast::Rule, common::Identifier, functions::input::Input, statements::Block, types::Type, SpanDef};
use pest::Span;
use pest_ast::FromPest;
@ -26,7 +26,7 @@ pub struct Function<'ast> {
pub identifier: Identifier<'ast>,
pub parameters: Vec<Input<'ast>>,
pub returns: Option<Type<'ast>>,
pub statements: Vec<Statement<'ast>>,
pub block: Block<'ast>,
#[pest_ast(outer())]
#[serde(with = "SpanDef")]
pub span: Span<'ast>,

View File

@ -16,6 +16,7 @@
use crate::{
ast::Rule,
common::{MutSelfKeyword, SelfKeyword},
functions::{FunctionInput, InputKeyword},
};
@ -26,5 +27,7 @@ use serde::Serialize;
#[pest_ast(rule(Rule::input))]
pub enum Input<'ast> {
InputKeyword(InputKeyword<'ast>),
SelfKeyword(SelfKeyword<'ast>),
MutSelfKeyword(MutSelfKeyword<'ast>),
FunctionInput(FunctionInput<'ast>),
}

View File

@ -47,6 +47,9 @@ protected_name = {
// Declared in common/self_keyword.rs
self_keyword = { "self" }
// Declared in common/mut_self_keyword.rs
mut_self_keyword = { mutable ~ self_keyword }
// Declared in common/self_keyword_or_identifier.rs
self_keyword_or_identifier = {
self_keyword
@ -319,13 +322,10 @@ circuit = { "circuit " ~ identifier ~ "{" ~ NEWLINE* ~ circuit_member* ~ NEWLINE
circuit_variable = { identifier ~ ":" ~ expression }
// Declared in circuits/circuit_variable_definition.rs
circuit_variable_definition = { mutable? ~ identifier ~ ":" ~ type_ ~ ","?}
// Declared in circuits/circuit_function.rs
circuit_function = { static_? ~ function }
circuit_variable_definition = { identifier ~ ":" ~ type_ ~ ","?}
// Declared in circuits/circuit_member.rs
circuit_member = { circuit_function | circuit_variable_definition ~ NEWLINE*}
circuit_member = { function | circuit_variable_definition ~ NEWLINE*}
/// Conditionals
@ -396,9 +396,11 @@ statement = {
// Declared in statements/assign_statement.rs
statement_assign = { assignee ~ operation_assign ~ expression ~ LINE_END }
block = { "{" ~ NEWLINE* ~ statement* ~ NEWLINE* ~ "}" }
// Declared in statements/conditional_statement.rs
statement_conditional = {"if " ~ expression ~ "{" ~ NEWLINE* ~ statement+ ~ "}" ~ ("else " ~ conditional_nested_or_end_statement)?}
conditional_nested_or_end_statement = { statement_conditional | "{" ~ NEWLINE* ~ statement+ ~ "}"}
statement_conditional = {"if " ~ expression ~ block ~ ("else " ~ conditional_nested_or_end_statement)?}
conditional_nested_or_end_statement = { statement_conditional | block }
// Declared in statements/definition_statement.rs
statement_definition = { declare ~ variables ~ "=" ~ expression ~ LINE_END}
@ -407,7 +409,7 @@ statement_definition = { declare ~ variables ~ "=" ~ expression ~ LINE_END}
statement_expression = { expression ~ LINE_END }
// Declared in statements/for_statement.rs
statement_for = { "for " ~ identifier ~ "in " ~ expression ~ ".." ~ expression ~ "{" ~ NEWLINE* ~ statement+ ~ "}"}
statement_for = { "for " ~ identifier ~ "in " ~ expression ~ ".." ~ expression ~ block }
// Declared in statements/return_statement.rs
statement_return = { "return " ~ expression}
@ -418,7 +420,7 @@ statement_return = { "return " ~ expression}
test_function = { "test " ~ function }
// Declared in functions/function.rs
function = { "function " ~ identifier ~ input_tuple ~ ("->" ~ type_)? ~ "{" ~ NEWLINE* ~ statement* ~ NEWLINE* ~ "}" ~ NEWLINE* }
function = { "function " ~ identifier ~ input_tuple ~ ("->" ~ type_)? ~ block ~ NEWLINE* }
// Declared in functions/input/function_input.rs
function_input = { mutable? ~ identifier ~ ":" ~ type_ }
@ -429,6 +431,8 @@ input_keyword = { "input" }
// Declared in functions/input/input.rs
input = {
input_keyword
| self_keyword
| mut_self_keyword
| function_input
}
input_tuple = _{ "(" ~ NEWLINE* ~ (input ~ ("," ~ NEWLINE* ~ input)* ~ ","?)? ~ NEWLINE* ~ ")"}

View File

@ -0,0 +1,45 @@
// Copyright (C) 2019-2020 Aleo Systems Inc.
// This file is part of the Leo library.
// The Leo library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The Leo library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the Leo library. If not, see <https://www.gnu.org/licenses/>.
use crate::{ast::Rule, statements::Statement, SpanDef};
use pest::Span;
use pest_ast::FromPest;
use serde::Serialize;
use std::fmt;
#[derive(Clone, Debug, FromPest, PartialEq, Serialize)]
#[pest_ast(rule(Rule::block))]
pub struct Block<'ast> {
pub statements: Vec<Statement<'ast>>,
#[pest_ast(outer())]
#[serde(with = "SpanDef")]
pub span: Span<'ast>,
}
impl<'ast> fmt::Display for Block<'ast> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "{{")?;
if self.statements.is_empty() {
writeln!(f, "\t")?;
} else {
self.statements
.iter()
.try_for_each(|statement| writeln!(f, "\t{}", statement))?;
}
write!(f, "}}")
}
}

View File

@ -16,7 +16,7 @@
use crate::{
ast::Rule,
statements::{ConditionalStatement, Statement},
statements::{Block, ConditionalStatement},
};
use pest_ast::FromPest;
@ -27,14 +27,14 @@ use std::fmt;
#[pest_ast(rule(Rule::conditional_nested_or_end_statement))]
pub enum ConditionalNestedOrEndStatement<'ast> {
Nested(Box<ConditionalStatement<'ast>>),
End(Vec<Statement<'ast>>),
End(Block<'ast>),
}
impl<'ast> fmt::Display for ConditionalNestedOrEndStatement<'ast> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ConditionalNestedOrEndStatement::Nested(ref nested) => write!(f, "else {}", nested),
ConditionalNestedOrEndStatement::End(ref statements) => write!(f, "else {{\n \t{:#?}\n }}", statements),
ConditionalNestedOrEndStatement::End(ref block) => write!(f, "else {}", block),
}
}
}

View File

@ -17,7 +17,7 @@
use crate::{
ast::Rule,
expressions::Expression,
statements::{ConditionalNestedOrEndStatement, Statement},
statements::{Block, ConditionalNestedOrEndStatement},
SpanDef,
};
@ -30,7 +30,7 @@ use std::fmt;
#[pest_ast(rule(Rule::statement_conditional))]
pub struct ConditionalStatement<'ast> {
pub condition: Expression<'ast>,
pub statements: Vec<Statement<'ast>>,
pub block: Block<'ast>,
pub next: Option<ConditionalNestedOrEndStatement<'ast>>,
#[pest_ast(outer())]
#[serde(with = "SpanDef")]
@ -39,11 +39,10 @@ pub struct ConditionalStatement<'ast> {
impl<'ast> fmt::Display for ConditionalStatement<'ast> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "if ({}) {{", self.condition)?;
writeln!(f, "\t{:#?}", self.statements)?;
write!(f, "if ({}) {}", self.condition, self.block)?;
self.next
.as_ref()
.map(|n_or_e| write!(f, "}} {}", n_or_e))
.unwrap_or_else(|| write!(f, "}}"))
.map(|n_or_e| write!(f, " {}", n_or_e))
.unwrap_or_else(|| write!(f, ""))
}
}

Some files were not shown because too many files have changed in this diff Show More