Merge remote-tracking branch 'origin/master' into feature/leo-path-cli

This commit is contained in:
damirka 2021-04-01 23:23:02 +03:00
commit 25551a7c13
26 changed files with 791 additions and 215 deletions

View File

@ -180,6 +180,14 @@ impl AsgConvertError {
Self::new_from_span(format!("tuple index out of bounds: '{}'", index), span)
}
pub fn array_index_out_of_bounds(index: usize, span: &Span) -> Self {
Self::new_from_span(format!("array index out of bounds: '{}'", index), span)
}
pub fn unknown_array_size(span: &Span) -> Self {
Self::new_from_span("array size cannot be inferred, add explicit types".to_string(), span)
}
pub fn unexpected_call_argument_count(expected: usize, got: usize, span: &Span) -> Self {
Self::new_from_span(
format!("function call expected {} arguments, got {}", expected, got),

View File

@ -89,8 +89,8 @@ impl<'a> FromAst<'a, leo_ast::ArrayAccessExpression> for ArrayAccessExpression<'
&*value.array,
Some(PartialType::Array(expected_type.map(Box::new), None)),
)?;
match array.get_type() {
Some(Type::Array(..)) => (),
let array_len = match array.get_type() {
Some(Type::Array(_, len)) => len,
type_ => {
return Err(AsgConvertError::unexpected_type(
"array",
@ -98,7 +98,7 @@ impl<'a> FromAst<'a, leo_ast::ArrayAccessExpression> for ArrayAccessExpression<'
&value.span,
));
}
}
};
let index = <&Expression<'a>>::from_ast(
scope,
@ -106,10 +106,17 @@ impl<'a> FromAst<'a, leo_ast::ArrayAccessExpression> for ArrayAccessExpression<'
Some(PartialType::Integer(None, Some(IntegerType::U32))),
)?;
if !index.is_consty() {
return Err(AsgConvertError::unexpected_nonconst(
&index.span().cloned().unwrap_or_default(),
));
if let Some(index) = index
.const_value()
.map(|x| x.int().map(|x| x.to_usize()).flatten())
.flatten()
{
if index >= array_len {
return Err(AsgConvertError::array_index_out_of_bounds(
index,
&array.span().cloned().unwrap_or_default(),
));
}
}
Ok(ArrayAccessExpression {

View File

@ -26,6 +26,9 @@ pub struct ArrayRangeAccessExpression<'a> {
pub array: Cell<&'a Expression<'a>>,
pub left: Cell<Option<&'a Expression<'a>>>,
pub right: Cell<Option<&'a Expression<'a>>>,
// this is either const(right) - const(left) OR the length inferred by type checking
// special attention must be made to update this if semantic-altering changes are made to left or right.
pub length: usize,
}
impl<'a> Node for ArrayRangeAccessExpression<'a> {
@ -55,25 +58,12 @@ impl<'a> ExpressionNode<'a> for ArrayRangeAccessExpression<'a> {
}
fn get_type(&self) -> Option<Type<'a>> {
let (element, array_len) = match self.array.get().get_type() {
Some(Type::Array(element, len)) => (element, len),
let element = match self.array.get().get_type() {
Some(Type::Array(element, _)) => element,
_ => return None,
};
let const_left = match self.left.get().map(|x| x.const_value()) {
Some(Some(ConstValue::Int(x))) => x.to_usize()?,
None => 0,
_ => return None,
};
let const_right = match self.right.get().map(|x| x.const_value()) {
Some(Some(ConstValue::Int(x))) => x.to_usize()?,
None => array_len,
_ => return None,
};
if const_left > const_right || const_right > array_len {
return None;
}
Some(Type::Array(element, const_right - const_left))
Some(Type::Array(element, self.length))
}
fn is_mut_ref(&self) -> bool {
@ -113,9 +103,9 @@ impl<'a> FromAst<'a, leo_ast::ArrayRangeAccessExpression> for ArrayRangeAccessEx
value: &leo_ast::ArrayRangeAccessExpression,
expected_type: Option<PartialType<'a>>,
) -> Result<ArrayRangeAccessExpression<'a>, AsgConvertError> {
let expected_array = match expected_type {
Some(PartialType::Array(element, _len)) => Some(PartialType::Array(element, None)),
None => None,
let (expected_array, expected_len) = match expected_type.clone() {
Some(PartialType::Array(element, len)) => (Some(PartialType::Array(element, None)), len),
None => (None, None),
Some(x) => {
return Err(AsgConvertError::unexpected_type(
&x.to_string(),
@ -126,8 +116,8 @@ impl<'a> FromAst<'a, leo_ast::ArrayRangeAccessExpression> for ArrayRangeAccessEx
};
let array = <&Expression<'a>>::from_ast(scope, &*value.array, expected_array)?;
let array_type = array.get_type();
match array_type {
Some(Type::Array(_, _)) => (),
let (parent_element, parent_size) = match array_type {
Some(Type::Array(inner, size)) => (inner, size),
type_ => {
return Err(AsgConvertError::unexpected_type(
"array",
@ -135,7 +125,8 @@ impl<'a> FromAst<'a, leo_ast::ArrayRangeAccessExpression> for ArrayRangeAccessEx
&value.span,
));
}
}
};
let left = value
.left
.as_deref()
@ -151,26 +142,72 @@ impl<'a> FromAst<'a, leo_ast::ArrayRangeAccessExpression> for ArrayRangeAccessEx
})
.transpose()?;
if let Some(left) = left.as_ref() {
if !left.is_consty() {
return Err(AsgConvertError::unexpected_nonconst(
&left.span().cloned().unwrap_or_default(),
));
let const_left = match left.map(|x| x.const_value()) {
Some(Some(ConstValue::Int(x))) => x.to_usize(),
None => Some(0),
_ => None,
};
let const_right = match right.map(|x| x.const_value()) {
Some(Some(ConstValue::Int(value))) => {
let value = value.to_usize();
if let Some(value) = value {
if value > parent_size {
return Err(AsgConvertError::array_index_out_of_bounds(
value,
&right.unwrap().span().cloned().unwrap_or_default(),
));
} else if let Some(left) = const_left {
if left > value {
return Err(AsgConvertError::array_index_out_of_bounds(
value,
&right.unwrap().span().cloned().unwrap_or_default(),
));
}
}
}
value
}
}
if let Some(right) = right.as_ref() {
if !right.is_consty() {
return Err(AsgConvertError::unexpected_nonconst(
&right.span().cloned().unwrap_or_default(),
));
None => Some(parent_size),
_ => None,
};
let mut length = if let (Some(left), Some(right)) = (const_left, const_right) {
Some(right - left)
} else {
None
};
if let Some(expected_len) = expected_len {
if let Some(length) = length {
if length != expected_len {
let concrete_type = Type::Array(parent_element, length);
return Err(AsgConvertError::unexpected_type(
&expected_type.as_ref().unwrap().to_string(),
Some(&concrete_type.to_string()),
&value.span,
));
}
}
if let Some(value) = const_left {
if value + expected_len > parent_size {
return Err(AsgConvertError::array_index_out_of_bounds(
value,
&left.unwrap().span().cloned().unwrap_or_default(),
));
}
}
length = Some(expected_len);
}
if length.is_none() {
return Err(AsgConvertError::unknown_array_size(&value.span));
}
Ok(ArrayRangeAccessExpression {
parent: Cell::new(None),
span: Some(value.span.clone()),
array: Cell::new(array),
left: Cell::new(left),
right: Cell::new(right),
length: length.unwrap(),
})
}
}

View File

@ -74,6 +74,7 @@ pub trait ReconstructingReducerExpression<'a> {
left: Cell::new(left),
right: Cell::new(right),
span: input.span,
length: input.length,
})
}

View File

@ -67,6 +67,18 @@ impl ExpressionError {
Self::new_from_span(message, span)
}
pub fn array_length_out_of_bounds(span: &Span) -> Self {
let message = "array length cannot be >= 2^32".to_string();
Self::new_from_span(message, span)
}
pub fn array_index_out_of_legal_bounds(span: &Span) -> Self {
let message = "array index cannot be >= 2^32".to_string();
Self::new_from_span(message, span)
}
pub fn conditional_boolean(actual: String, span: &Span) -> Self {
let message = format!("if, else conditional must resolve to a boolean, found `{}`", actual);
@ -85,12 +97,24 @@ impl ExpressionError {
Self::new_from_span(message, span)
}
pub fn index_out_of_bounds(index: usize, span: &Span) -> Self {
pub fn tuple_index_out_of_bounds(index: usize, span: &Span) -> Self {
let message = format!("cannot access index {} of tuple out of bounds", index);
Self::new_from_span(message, span)
}
pub fn array_index_out_of_bounds(index: usize, span: &Span) -> Self {
let message = format!("cannot access index {} of array out of bounds", index);
Self::new_from_span(message, span)
}
pub fn array_invalid_slice_length(span: &Span) -> Self {
let message = "illegal length of slice".to_string();
Self::new_from_span(message, span)
}
pub fn invalid_dimensions(expected: &ArrayDimensions, actual: &ArrayDimensions, span: &Span) -> Self {
let message = format!(
"expected array dimensions {}, found array dimensions {}",

View File

@ -61,6 +61,12 @@ impl StatementError {
Self::new_from_span(message, span)
}
pub fn array_assign_index_const(span: &Span) -> Self {
let message = "Cannot assign to non-const array index".to_string();
Self::new_from_span(message, span)
}
pub fn array_assign_interior_index(span: &Span) -> Self {
let message = "Cannot assign single index to interior of array of values".to_string();
@ -217,4 +223,10 @@ impl StatementError {
Self::new_from_span(message, span)
}
pub fn loop_index_const(span: &Span) -> Self {
let message = "iteration range must be const".to_string();
Self::new_from_span(message, span)
}
}

View File

@ -16,10 +16,24 @@
//! Enforces array access in a compiled Leo program.
use crate::{errors::ExpressionError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
use leo_asg::{Expression, Span};
use std::convert::TryInto;
use crate::{
arithmetic::*,
errors::ExpressionError,
program::ConstrainedProgram,
relational::*,
value::{ConstrainedValue, Integer},
GroupType,
};
use leo_asg::{ConstInt, Expression, Span};
use snarkvm_fields::PrimeField;
use snarkvm_gadgets::utilities::{
boolean::Boolean,
eq::{EqGadget, EvaluateEqGadget},
select::CondSelectGadget,
};
use snarkvm_r1cs::ConstraintSystem;
impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
@ -31,13 +45,65 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
index: &'a Expression<'a>,
span: &Span,
) -> Result<ConstrainedValue<'a, F, G>, ExpressionError> {
let array = match self.enforce_expression(cs, array)? {
let mut array = match self.enforce_expression(cs, array)? {
ConstrainedValue::Array(array) => array,
value => return Err(ExpressionError::undefined_array(value.to_string(), span)),
};
let index_resolved = self.enforce_index(cs, index, span)?;
Ok(array[index_resolved].to_owned())
if let Some(resolved) = index_resolved.to_usize() {
if resolved >= array.len() {
return Err(ExpressionError::array_index_out_of_bounds(resolved, span));
}
Ok(array[resolved].to_owned())
} else {
if array.is_empty() {
return Err(ExpressionError::array_index_out_of_bounds(0, span));
}
{
let array_len: u32 = array
.len()
.try_into()
.map_err(|_| ExpressionError::array_length_out_of_bounds(span))?;
let bounds_check = evaluate_lt::<F, G, CS>(
cs,
ConstrainedValue::Integer(index_resolved.clone()),
ConstrainedValue::Integer(Integer::new(&ConstInt::U32(array_len))),
span,
)?;
let bounds_check = match bounds_check {
ConstrainedValue::Boolean(b) => b,
_ => unimplemented!("illegal non-Integer returned from lt"),
};
let namespace_string = format!("evaluate array access bounds {}:{}", span.line_start, span.col_start);
let mut unique_namespace = cs.ns(|| namespace_string);
bounds_check
.enforce_equal(&mut unique_namespace, &Boolean::Constant(true))
.map_err(|e| ExpressionError::cannot_enforce("array bounds check".to_string(), e, span))?;
}
let mut current_value = array.pop().unwrap();
for (i, item) in array.into_iter().enumerate() {
let namespace_string = format!("evaluate array access eq {} {}:{}", i, span.line_start, span.col_start);
let eq_namespace = cs.ns(|| namespace_string);
let index_bounded = i
.try_into()
.map_err(|_| ExpressionError::array_index_out_of_legal_bounds(span))?;
let const_index = ConstInt::U32(index_bounded).cast_to(&index_resolved.get_type());
let index_comparison = index_resolved
.evaluate_equal(eq_namespace, &Integer::new(&const_index))
.map_err(|_| ExpressionError::cannot_evaluate("==".to_string(), span))?;
let unique_namespace =
cs.ns(|| format!("select array access {} {}:{}", i, span.line_start, span.col_start));
let value =
ConstrainedValue::conditionally_select(unique_namespace, &index_comparison, &item, &current_value)
.map_err(|e| ExpressionError::cannot_enforce("conditional select".to_string(), e, span))?;
current_value = value;
}
Ok(current_value)
}
}
#[allow(clippy::too_many_arguments)]
@ -47,6 +113,7 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
array: &'a Expression<'a>,
left: Option<&'a Expression<'a>>,
right: Option<&'a Expression<'a>>,
length: usize,
span: &Span,
) -> Result<ConstrainedValue<'a, F, G>, ExpressionError> {
let array = match self.enforce_expression(cs, array)? {
@ -56,12 +123,103 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
let from_resolved = match left {
Some(from_index) => self.enforce_index(cs, from_index, span)?,
None => 0usize, // Array slice starts at index 0
None => Integer::new(&ConstInt::U32(0)), // Array slice starts at index 0
};
let to_resolved = match right {
Some(to_index) => self.enforce_index(cs, to_index, span)?,
None => array.len(), // Array slice ends at array length
None => {
let index_bounded: u32 = array
.len()
.try_into()
.map_err(|_| ExpressionError::array_length_out_of_bounds(span))?;
Integer::new(&ConstInt::U32(index_bounded))
} // Array slice ends at array length
};
Ok(ConstrainedValue::Array(array[from_resolved..to_resolved].to_owned()))
let const_dimensions = match (from_resolved.to_usize(), to_resolved.to_usize()) {
(Some(from), Some(to)) => Some((from, to)),
(Some(from), None) => Some((from, from + length)),
(None, Some(to)) => Some((to - length, to)),
(None, None) => None,
};
Ok(if let Some((left, right)) = const_dimensions {
if right - left != length {
return Err(ExpressionError::array_invalid_slice_length(span));
}
if right > array.len() {
return Err(ExpressionError::array_index_out_of_bounds(right, span));
}
ConstrainedValue::Array(array[left..right].to_owned())
} else {
{
let calc_len = enforce_sub::<F, G, _>(
cs,
ConstrainedValue::Integer(to_resolved.clone()),
ConstrainedValue::Integer(from_resolved.clone()),
span,
)?;
let calc_len = match calc_len {
ConstrainedValue::Integer(i) => i,
_ => unimplemented!("illegal non-Integer returned from sub"),
};
let namespace_string = format!(
"evaluate array range access length check {}:{}",
span.line_start, span.col_start
);
let mut unique_namespace = cs.ns(|| namespace_string);
calc_len
.enforce_equal(&mut unique_namespace, &Integer::new(&ConstInt::U32(length as u32)))
.map_err(|e| ExpressionError::cannot_enforce("array length check".to_string(), e, span))?;
}
{
let bounds_check = evaluate_le::<F, G, _>(
cs,
ConstrainedValue::Integer(to_resolved),
ConstrainedValue::Integer(Integer::new(&ConstInt::U32(array.len() as u32))),
span,
)?;
let bounds_check = match bounds_check {
ConstrainedValue::Boolean(b) => b,
_ => unimplemented!("illegal non-Integer returned from le"),
};
let namespace_string = format!(
"evaluate array range access bounds {}:{}",
span.line_start, span.col_start
);
let mut unique_namespace = cs.ns(|| namespace_string);
bounds_check
.enforce_equal(&mut unique_namespace, &Boolean::Constant(true))
.map_err(|e| ExpressionError::cannot_enforce("array bounds check".to_string(), e, span))?;
}
let mut windows = array.windows(length);
let mut result = ConstrainedValue::Array(vec![]);
for i in 0..length {
let window = if let Some(window) = windows.next() {
window
} else {
break;
};
let array_value = ConstrainedValue::Array(window.to_vec());
let mut unique_namespace =
cs.ns(|| format!("array index eq-check {} {}:{}", i, span.line_start, span.col_start));
let equality = evaluate_eq::<F, G, _>(
&mut unique_namespace,
ConstrainedValue::Integer(from_resolved.clone()),
ConstrainedValue::Integer(Integer::new(&ConstInt::U32(i as u32))),
span,
)?;
let equality = match equality {
ConstrainedValue::Boolean(b) => b,
_ => unimplemented!("unexpected non-Boolean for evaluate_eq"),
};
let unique_namespace =
unique_namespace.ns(|| format!("array index {} {}:{}", i, span.line_start, span.col_start));
result = ConstrainedValue::conditionally_select(unique_namespace, &equality, &array_value, &result)
.map_err(|e| ExpressionError::cannot_enforce("conditional select".to_string(), e, span))?;
}
result
})
}
}

View File

@ -16,7 +16,7 @@
//! Enforces an array index expression in a compiled Leo program.
use crate::{errors::ExpressionError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
use crate::{errors::ExpressionError, program::ConstrainedProgram, value::ConstrainedValue, GroupType, Integer};
use leo_asg::{Expression, Span};
use snarkvm_fields::PrimeField;
@ -28,9 +28,9 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
cs: &mut CS,
index: &'a Expression<'a>,
span: &Span,
) -> Result<usize, ExpressionError> {
) -> Result<Integer, ExpressionError> {
match self.enforce_expression(cs, index)? {
ConstrainedValue::Integer(number) => Ok(number.to_usize(span)?),
ConstrainedValue::Integer(number) => Ok(number),
value => Err(ExpressionError::invalid_index(value.to_string(), span)),
}
}

View File

@ -32,8 +32,15 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
left: &'a Expression<'a>,
right: &'a Expression<'a>,
) -> Result<ConstrainedValuePair<'a, F, G>, ExpressionError> {
let resolved_left = self.enforce_expression(cs, left)?;
let resolved_right = self.enforce_expression(cs, right)?;
let resolved_left = {
let mut left_namespace = cs.ns(|| "left".to_string());
self.enforce_expression(&mut left_namespace, left)?
};
let resolved_right = {
let mut right_namespace = cs.ns(|| "right".to_string());
self.enforce_expression(&mut right_namespace, right)?
};
Ok((resolved_left, resolved_right))
}

View File

@ -133,9 +133,13 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
Expression::ArrayAccess(ArrayAccessExpression { array, index, .. }) => {
self.enforce_array_access(cs, array.get(), index.get(), span)
}
Expression::ArrayRangeAccess(ArrayRangeAccessExpression { array, left, right, .. }) => {
self.enforce_array_range_access(cs, array.get(), left.get(), right.get(), span)
}
Expression::ArrayRangeAccess(ArrayRangeAccessExpression {
array,
left,
right,
length,
..
}) => self.enforce_array_range_access(cs, array.get(), left.get(), right.get(), *length, span),
// Tuples
Expression::TupleInit(TupleInitExpression { elements, .. }) => self.enforce_tuple(cs, &elements[..]),

View File

@ -40,7 +40,7 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
// Check for out of bounds access.
if index > tuple.len() - 1 {
// probably safe to be a panic here
return Err(ExpressionError::index_out_of_bounds(index, span));
return Err(ExpressionError::tuple_index_out_of_bounds(index, span));
}
Ok(tuple[index].to_owned())

View File

@ -51,15 +51,31 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
let start_index = left
.get()
.map(|start| self.enforce_index(cs, start, span))
.transpose()?
.map(|x| {
x.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(span))
})
.transpose()?;
let stop_index = right
.get()
.map(|stop| self.enforce_index(cs, stop, span))
.transpose()?
.map(|x| {
x.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(span))
})
.transpose()?;
let stop_index = right.get().map(|stop| self.enforce_index(cs, stop, span)).transpose()?;
output.push(ResolvedAssigneeAccess::ArrayRange(start_index, stop_index));
Ok(inner)
}
Expression::ArrayAccess(ArrayAccessExpression { array, index, .. }) => {
let inner = self.prepare_mut_access(cs, array.get(), span, output)?;
let index = self.enforce_index(cs, index.get(), span)?;
let index = self
.enforce_index(cs, index.get(), span)?
.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(span))?;
output.push(ResolvedAssigneeAccess::ArrayIndex(index));
Ok(inner)

View File

@ -45,19 +45,35 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
let start_index = start
.get()
.map(|start| self.enforce_index(cs, start, &span))
.transpose()?
.map(|x| {
x.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(&span))
})
.transpose()?;
let stop_index = stop
.get()
.map(|stop| self.enforce_index(cs, stop, &span))
.transpose()?
.map(|x| {
x.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(&span))
})
.transpose()?;
let stop_index = stop.get().map(|stop| self.enforce_index(cs, stop, &span)).transpose()?;
Ok(ResolvedAssigneeAccess::ArrayRange(start_index, stop_index))
}
AssignAccess::ArrayIndex(index) => {
let index = self.enforce_index(cs, index.get(), &span)?;
let index = self
.enforce_index(cs, index.get(), &span)?
.to_usize()
.ok_or_else(|| StatementError::array_assign_index_const(&span))?;
Ok(ResolvedAssigneeAccess::ArrayIndex(index))
}
AssignAccess::Tuple(index) => Ok(ResolvedAssigneeAccess::Tuple(*index, span.clone())),
AssignAccess::Member(identifier) => Ok(ResolvedAssigneeAccess::Member(identifier.clone())),
})
.collect::<Result<Vec<_>, crate::errors::ExpressionError>>()?;
.collect::<Result<Vec<_>, StatementError>>()?;
let variable = assignee.target_variable.get().borrow();

View File

@ -17,6 +17,7 @@
//! Enforces an iteration statement in a compiled Leo program.
use crate::{
errors::StatementError,
program::ConstrainedProgram,
value::ConstrainedValue,
GroupType,
@ -42,8 +43,14 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
let span = statement.span.clone().unwrap_or_default();
let from = self.enforce_index(cs, statement.start.get(), &span)?;
let to = self.enforce_index(cs, statement.stop.get(), &span)?;
let from = self
.enforce_index(cs, statement.start.get(), &span)?
.to_usize()
.ok_or_else(|| StatementError::loop_index_const(&span))?;
let to = self
.enforce_index(cs, statement.stop.get(), &span)?
.to_usize()
.ok_or_else(|| StatementError::loop_index_const(&span))?;
for i in from..to {
// Store index in current function scope.

View File

@ -17,7 +17,7 @@
//! Enforces a statement in a compiled Leo program.
use crate::{errors::StatementError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
use leo_asg::Statement;
use leo_asg::{Node, Statement};
use snarkvm_fields::PrimeField;
use snarkvm_gadgets::traits::utilities::boolean::Boolean;
@ -42,6 +42,9 @@ impl<'a, F: PrimeField, G: GroupType<F>> ConstrainedProgram<'a, F, G> {
statement: &'a Statement<'a>,
) -> StatementResult<Vec<IndicatorAndConstrainedValue<'a, F, G>>> {
let mut results = vec![];
let span = statement.span().cloned().unwrap_or_default();
let mut cs = cs.ns(|| format!("statement {}:{}", span.line_start, span.col_start));
let cs = &mut cs;
match statement {
Statement::Return(statement) => {

View File

@ -111,15 +111,9 @@ impl Integer {
match_integer!(integer => integer.get_value())
}
pub fn to_usize(&self, span: &Span) -> Result<usize, IntegerError> {
pub fn to_usize(&self) -> Option<usize> {
let unsigned_integer = self;
let value_option: Option<String> = match_unsigned_integer!(unsigned_integer => unsigned_integer.get_value());
let value = value_option.ok_or_else(|| IntegerError::invalid_index(span))?;
let value_usize = value
.parse::<usize>()
.map_err(|_| IntegerError::invalid_integer(value, span))?;
Ok(value_usize)
match_unsigned_integer!(unsigned_integer => unsigned_integer.get_index())
}
pub fn get_type(&self) -> IntegerType {
@ -146,148 +140,17 @@ impl Integer {
span: &Span,
) -> Result<Self, IntegerError> {
Ok(match integer_type {
IntegerType::U8 => {
let u8_option = option.map(|s| {
s.parse::<u8>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
IntegerType::U8 => allocate_type!(u8, UInt8, Integer::U8, cs, name, option, span),
IntegerType::U16 => allocate_type!(u16, UInt16, Integer::U16, cs, name, option, span),
IntegerType::U32 => allocate_type!(u32, UInt32, Integer::U32, cs, name, option, span),
IntegerType::U64 => allocate_type!(u64, UInt64, Integer::U64, cs, name, option, span),
IntegerType::U128 => allocate_type!(u128, UInt128, Integer::U128, cs, name, option, span),
let u8_result = UInt8::alloc(
cs.ns(|| format!("`{}: u8` {}:{}", name, span.line_start, span.col_start)),
|| u8_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: u8", name), span))?;
Integer::U8(u8_result)
}
IntegerType::U16 => {
let u16_option = option.map(|s| {
s.parse::<u16>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let u16_result = UInt16::alloc(
cs.ns(|| format!("`{}: u16` {}:{}", name, span.line_start, span.col_start)),
|| u16_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: u16", name), span))?;
Integer::U16(u16_result)
}
IntegerType::U32 => {
let u32_option = option.map(|s| {
s.parse::<u32>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let u32_result = UInt32::alloc(
cs.ns(|| format!("`{}: u32` {}:{}", name, span.line_start, span.col_start)),
|| u32_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: u32", name), span))?;
Integer::U32(u32_result)
}
IntegerType::U64 => {
let u64_option = option.map(|s| {
s.parse::<u64>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let u64_result = UInt64::alloc(
cs.ns(|| format!("`{}: u64` {}:{}", name, span.line_start, span.col_start)),
|| u64_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: u64", name), span))?;
Integer::U64(u64_result)
}
IntegerType::U128 => {
let u128_option = option.map(|s| {
s.parse::<u128>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let u128_result = UInt128::alloc(
cs.ns(|| format!("`{}: u128` {}:{}", name, span.line_start, span.col_start)),
|| u128_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: u128", name), span))?;
Integer::U128(u128_result)
}
IntegerType::I8 => {
let i8_option = option.map(|s| {
s.parse::<i8>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let i8_result = Int8::alloc(
cs.ns(|| format!("`{}: i8` {}:{}", name, span.line_start, span.col_start)),
|| i8_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: i8", name), span))?;
Integer::I8(i8_result)
}
IntegerType::I16 => {
let i16_option = option.map(|s| {
s.parse::<i16>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let i16_result = Int16::alloc(
cs.ns(|| format!("`{}: i16` {}:{}", name, span.line_start, span.col_start)),
|| i16_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: i16", name), span))?;
Integer::I16(i16_result)
}
IntegerType::I32 => {
let i32_option = option.map(|s| {
s.parse::<i32>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let i32_result = Int32::alloc(
cs.ns(|| format!("`{}: i32` {}:{}", name, span.line_start, span.col_start)),
|| i32_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: i32", name), span))?;
Integer::I32(i32_result)
}
IntegerType::I64 => {
let i64_option = option.map(|s| {
s.parse::<i64>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let i64_result = Int64::alloc(
cs.ns(|| format!("`{}: i64` {}:{}", name, span.line_start, span.col_start)),
|| i64_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: i64", name), span))?;
Integer::I64(i64_result)
}
IntegerType::I128 => {
let i128_option = option.map(|s| {
s.parse::<i128>()
.map_err(|_| IntegerError::invalid_integer(s, span))
.unwrap()
});
let i128_result = Int128::alloc(
cs.ns(|| format!("`{}: i128` {}:{}", name, span.line_start, span.col_start)),
|| i128_option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: i128", name), span))?;
Integer::I128(i128_result)
}
IntegerType::I8 => allocate_type!(i8, Int8, Integer::I8, cs, name, option, span),
IntegerType::I16 => allocate_type!(i16, Int16, Integer::I16, cs, name, option, span),
IntegerType::I32 => allocate_type!(i32, Int32, Integer::I32, cs, name, option, span),
IntegerType::I64 => allocate_type!(i64, Int64, Integer::I64, cs, name, option, span),
IntegerType::I128 => allocate_type!(i128, Int128, Integer::I128, cs, name, option, span),
})
}

View File

@ -159,3 +159,29 @@ macro_rules! match_integers_span {
}
};
}
macro_rules! allocate_type {
($rust_ty:ty, $gadget_ty:ty, $leo_ty:path, $cs:expr, $name:expr, $option:expr, $span:expr) => {{
let option = $option.map(|s| {
s.parse::<$rust_ty>()
.map_err(|_| IntegerError::invalid_integer(s, $span))
.unwrap()
});
let result = <$gadget_ty>::alloc(
$cs.ns(|| {
format!(
"`{}: {}` {}:{}",
$name,
stringify!($rust_ty),
$span.line_start,
$span.col_start
)
}),
|| option.ok_or(SynthesisError::AssignmentMissing),
)
.map_err(|_| IntegerError::missing_integer(format!("{}: {}", $name, stringify!($rust_ty)), $span))?;
$leo_ty(result)
}};
}

View File

@ -539,3 +539,178 @@ fn test_variable_slice_fail() {
expect_asg_error(error);
}
#[test]
fn test_array_index() {
let program_string = r#"
function main(i: u32) {
let b = [1u8, 2, 3, 4];
console.assert(2 == b[i]);
console.assert(3 == b[2]);
}
"#;
let input_string = r#"
[main]
i: u32 = 1;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_array_index_bounds_fail() {
let program_string = r#"
function main(i: u32) {
let b = [1u8, 2, 3, 4];
console.assert(2 == b[i]);
}
"#;
let input_string = r#"
[main]
i: u32 = 4;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_const_array_index_bounds_fail() {
let program_string = r#"
function main() {
let b = [1u8, 2, 3, 4];
const i: u32 = 4;
console.assert(2 == b[i]);
}
"#;
let error = parse_program(program_string).err().unwrap();
expect_asg_error(error);
}
#[test]
fn test_array_range_index() {
let program_string = r#"
function main(i: u32) {
let b = [1u8, 2, 3, 4];
console.assert([1u8, 2] == b[0..i]);
console.assert([3u8, 4] == b[i..4]);
}
"#;
let input_string = r#"
[main]
i: u32 = 2;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_array_range_index_dyn() {
let program_string = r#"
function main(i: u32) {
let b = [1u8, 2, 3, 4];
console.assert([1u8, 2] == b[..i]);
console.assert([3u8, 4] == b[i..]);
}
"#;
let input_string = r#"
[main]
i: u32 = 2;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_array_range_index_full_dyn() {
let program_string = r#"
function main(i: u32, y: u32) {
let b = [1u8, 2, 3, 4];
console.assert([3u8, 4] == b[i..y]);
}
"#;
let input_string = r#"
[main]
i: u32 = 2;
y: u32 = 4;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
assert_satisfied(program);
}
#[test]
fn test_array_range_index_out_of_bounds_fail() {
let program_string = r#"
function main() {
let b = [1u8, 2, 3, 4];
console.assert([1, 2] == b[3..5]);
}
"#;
let error = parse_program(program_string).err().unwrap();
expect_asg_error(error);
}
#[test]
fn test_array_range_index_invalid_bounds_fail() {
let program_string = r#"
function main() {
let b = [1u8, 2, 3, 4];
console.assert([1, 2] == b[2..1]);
}
"#;
let error = parse_program(program_string).err().unwrap();
expect_asg_error(error);
}
#[test]
fn test_array_range_index_full_dyn_resized_fail() {
let program_string = r#"
function main(i: u32, y: u32) {
let b = [1u8, 2, 3, 4];
console.assert([3u8, 4] == b[i..y]);
}
"#;
let input_string = r#"
[main]
i: u32 = 1;
y: u32 = 4;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_compiler_error(program);
}
#[test]
fn test_array_range_index_full_dyn_bounds_fail() {
let program_string = r#"
function main(i: u32, y: u32) {
let b = [1u8, 2, 3, 4];
console.assert([3u8, 4] == b[i..y]);
}
"#;
let input_string = r#"
[main]
i: u32 = 3;
y: u32 = 5;
"#;
let program = parse_program_with_input(program_string, input_string).unwrap();
expect_compiler_error(program);
}

View File

@ -5,5 +5,5 @@ function main() {
do_nothing(arr);
do_nothing([...arr]);
do_nothing(arr[1u32..]);
do_nothing(arr[0u32..]);
}

2
examples/silly-sudoku/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
outputs/
/.leo

View File

@ -0,0 +1,8 @@
[project]
name = "silly-sudoku"
version = "0.1.3"
description = "A simple Sudoku puzzle grid"
license = "MIT"
[remote]
author = "howard"

View File

@ -0,0 +1,23 @@
# silly-sudoku
A simple Sudoku puzzle grid in Leo.
## Walkthrough
Start by defining a puzzle grid:
```
[[0, 4, 6],
[3, 0, 9],
[7, 5, 0]]
```
We treat all 0's as empty cells in the grid.
Next, generate an answer and construct it as a puzzle grid solution:
```
[[8, 4, 6],
[3, 1, 9],
[7, 5, 2]]
```
The SillySudoku circuit will proceed to verify that the solution grid matches the starting puzzle grid,
and check that each number between 1 - 9 is used exactly once.

View File

@ -0,0 +1,12 @@
// The program input for tmp-test/src/main.leo
[main]
puzzle: [u8; (3, 3)] = [[0, 2, 0],
[0, 0, 6],
[0, 8, 9]];
answer: [u8; (3, 3)] = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]];
[registers]
r: bool = false;

View File

@ -0,0 +1,26 @@
// The program state for tmp-test/src/main.leo
[[public]]
[state]
leaf_index: u32 = 0;
root: [u8; 32] = [0; 32];
[[private]]
[record]
serial_number: [u8; 64] = [0; 64];
commitment: [u8; 32] = [0; 32];
owner: address = aleo1daxej63vwrmn2zhl4dymygagh89k5d2vaw6rjauueme7le6k2q8sjn0ng9;
is_dummy: bool = false;
value: u64 = 0;
payload: [u8; 32] = [0; 32];
birth_program_id: [u8; 48] = [0; 48];
death_program_id: [u8; 48] = [0; 48];
serial_number_nonce: [u8; 32] = [0; 32];
commitment_randomness: [u8; 32] = [0; 32];
[state_leaf]
path: [u8; 128] = [0; 128];
memo: [u8; 32] = [0; 32];
network_id: u8 = 0;
leaf_randomness: [u8; 32] = [0; 32];

View File

@ -0,0 +1,70 @@
/**
* The SillySudoku circuit
*
* This circuit generates a silly Sudoku puzzle,
* by constructing a 3x3 puzzle grid with some preset numbers 1-9,
* and requiring an answer where each number is used exactly once.
*
* -----------
* | 5 | 8 | 3 |
* |-----------|
* | 2 | 7 | 4 |
* |-----------|
* | 1 | 9 | 6 |
* -----------
*/
circuit SillySudoku {
// The starting grid values for the Sudoku puzzle.
// Unset cells on the puzzle grid are set to 0.
puzzle_grid: [u8; (3, 3)],
/**
* Returns true if a given Sudoku answer is correct.
*
* Verifies a given answer by iterating through the Sudoku puzzle,
* and checking that each number is set exactly once.
*/
function solve(self, answer: [u8; (3, 3)]) -> bool {
// The result boolean is set to true, if the answer is correct.
let result = true;
// An array that tracks the numbers used on the Sudoku grid.
let seen = [false; 9];
// Iterate through the Sudoku grid and check each cell.
for i in 0..3 {
for j in 0..3 {
// Fetch the current cell value for the Sudoku grid.
let grid_value = self.puzzle_grid[i][j];
// Fetch the current cell value for the given answer.
let answer_value = answer[i][j];
// Set the index by subtracting 1 from the answer value.
let index = answer_value - 1;
// Check if this number has already been used on the grid.
let already_seen: bool = seen[index];
// If this number is already used, the answer is incorrect.
// Sets the result to false.
if already_seen {
result = false;
}
// If the cell is not empty, and the grid value doesn't match
// the answer value, the answer is incorrect.
// Sets the result to false.
if (grid_value != 0 && grid_value != answer_value) {
result = false;
}
// Sets the answer value as seen.
seen[index] = true;
}
}
// Returns true if all numbers 1-9 have been seen exactly once.
return result
}
}

View File

@ -0,0 +1,71 @@
import lib.SillySudoku;
// The `silly-sudoku` main function
function main(puzzle: [u8; (3, 3)], answer: [u8; (3, 3)]) -> bool {
console.log("Starting Sudoku solver...");
console.log("{}", puzzle);
// Instantiate the Sudoku puzzle.
let sudoku = SillySudoku { puzzle_grid: puzzle };
console.log("Checking Sudoku answer...");
console.log("{}", answer);
// Evaluate the Sudoku puzzle with the given answer.
let result = sudoku.solve(answer);
console.log("The answer is {}.", result);
return result
}
// Tests that the `silly-sudoku` circuit outputs true on a correct answer.
@test
function test_solve_pass() {
let puzzle: [u8; (3, 3)] = [[0, 2, 0],
[0, 0, 6],
[0, 8, 9]];
let answer: [u8; (3, 3)] = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]];
// Runs the Sudoku checker.
let result = main(puzzle, answer);
// Expects the result to be true.
console.assert(true == result);
}
// Tests that the `silly-sudoku` circuit outputs false on an incorrect answer.
@test
function test_solve_fail() {
let puzzle: [u8; (3, 3)] = [[0, 2, 0],
[0, 0, 6],
[0, 8, 0]];
let answer: [u8; (3, 3)] = [[1, 2, 3],
[4, 5, 6],
[7, 8, 8]]; // We have an extra `8` in this column!
// Runs the Sudoku checker.
let result = main(puzzle, answer);
// Expects the result to be false.
console.assert(false == result);
}
// Test that the `silly-sudoku` circuit outputs the expected value on a custom test input.
@test(test_input)
function test_solve_with_input(
puzzle: [u8; (3, 3)],
answer: [u8; (3, 3)],
expected: bool
) {
// Runs the Sudoku checker.
let result = main(puzzle, answer);
console.log("expected {}, got {}", expected, result);
console.assert(expected == result);
}