mirror of
https://github.com/AleoHQ/leo.git
synced 2024-12-01 18:56:38 +03:00
Merge branch 'master' into fix/prefer-include-str
This commit is contained in:
commit
ac68e8e6a4
@ -77,13 +77,10 @@ impl Function {
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns a vector of [&FunctionInput] removing `self` and `mut self` inputs.
|
||||
/// Returns an iterator of [&FunctionInput] removing `self` and `mut self` inputs.
|
||||
///
|
||||
pub fn filter_self_inputs(&self) -> Vec<&FunctionInput> {
|
||||
self.input
|
||||
.iter()
|
||||
.filter(|input| !input.is_self())
|
||||
.collect::<Vec<&FunctionInput>>()
|
||||
pub fn filter_self_inputs(&self) -> impl Iterator<Item = &FunctionInput> {
|
||||
self.input.iter().filter(|input| !input.is_self())
|
||||
}
|
||||
|
||||
fn format(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
|
@ -16,7 +16,13 @@
|
||||
|
||||
//! Enforces an assert equals statement in a compiled Leo program.
|
||||
|
||||
use crate::{errors::ConsoleError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
|
||||
use crate::{
|
||||
errors::ConsoleError,
|
||||
get_indicator_value,
|
||||
program::ConstrainedProgram,
|
||||
value::ConstrainedValue,
|
||||
GroupType,
|
||||
};
|
||||
use leo_ast::{Expression, Span, Type};
|
||||
|
||||
use snarkos_models::{
|
||||
@ -30,7 +36,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
expression: Expression,
|
||||
span: &Span,
|
||||
) -> Result<(), ConsoleError> {
|
||||
@ -42,12 +48,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
|
||||
// If the indicator bit is false, do not evaluate the assertion
|
||||
// This is okay since we are not enforcing any constraints
|
||||
let false_boolean = Boolean::Constant(false);
|
||||
|
||||
if let Some(indicator_bool) = indicator {
|
||||
if indicator_bool.eq(&false_boolean) {
|
||||
return Ok(()); // continue execution
|
||||
}
|
||||
if !get_indicator_value(indicator) {
|
||||
return Ok(()); // Continue execution.
|
||||
}
|
||||
|
||||
// Unwrap assertion value and handle errors
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
//! Evaluates a macro in a compiled Leo program.
|
||||
|
||||
use crate::{errors::ConsoleError, program::ConstrainedProgram, GroupType};
|
||||
use crate::{errors::ConsoleError, program::ConstrainedProgram, statement::get_indicator_value, GroupType};
|
||||
use leo_ast::{ConsoleFunction, ConsoleFunctionCall};
|
||||
|
||||
use snarkos_models::{
|
||||
@ -30,7 +30,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
console: ConsoleFunctionCall,
|
||||
) -> Result<(), ConsoleError> {
|
||||
match console.function {
|
||||
@ -40,21 +40,21 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
ConsoleFunction::Debug(string) => {
|
||||
let string = self.format(cs, file_scope, function_scope, string)?;
|
||||
|
||||
if unwrap_indicator_value(indicator) {
|
||||
if get_indicator_value(indicator) {
|
||||
tracing::debug!("{}", string);
|
||||
}
|
||||
}
|
||||
ConsoleFunction::Error(string) => {
|
||||
let string = self.format(cs, file_scope, function_scope, string)?;
|
||||
|
||||
if unwrap_indicator_value(indicator) {
|
||||
if get_indicator_value(indicator) {
|
||||
tracing::error!("{}", string);
|
||||
}
|
||||
}
|
||||
ConsoleFunction::Log(string) => {
|
||||
let string = self.format(cs, file_scope, function_scope, string)?;
|
||||
|
||||
if unwrap_indicator_value(indicator) {
|
||||
if get_indicator_value(indicator) {
|
||||
tracing::info!("{}", string);
|
||||
}
|
||||
}
|
||||
@ -63,16 +63,3 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
// Return the indicator boolean gadget value or true if it is None
|
||||
// This is okay since we are not enforcing any constraints
|
||||
fn unwrap_indicator_value(indicator: Option<Boolean>) -> bool {
|
||||
let false_boolean = Boolean::constant(false);
|
||||
|
||||
if let Some(indicator_bool) = indicator {
|
||||
if indicator_bool.eq(&false_boolean) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
@ -135,6 +135,22 @@ impl StatementError {
|
||||
Self::new_from_span(message, span)
|
||||
}
|
||||
|
||||
pub fn multiple_returns(span: Span) -> Self {
|
||||
let message = "This function returns multiple times and produces unreachable circuits with undefined behavior."
|
||||
.to_string();
|
||||
|
||||
Self::new_from_span(message, span)
|
||||
}
|
||||
|
||||
pub fn no_returns(expected: Type, span: Span) -> Self {
|
||||
let message = format!(
|
||||
"function expected `{}` return type but no valid branches returned a result",
|
||||
expected
|
||||
);
|
||||
|
||||
Self::new_from_span(message, span)
|
||||
}
|
||||
|
||||
pub fn select_fail(first: String, second: String, span: Span) -> Self {
|
||||
let message = format!(
|
||||
"Conditional select gadget failed to select between `{}` or `{}`",
|
||||
|
@ -23,11 +23,11 @@ use crate::{
|
||||
GroupType,
|
||||
};
|
||||
|
||||
use leo_ast::{Expression, Function, FunctionInput, Type};
|
||||
use leo_ast::{Expression, Function, FunctionInput};
|
||||
|
||||
use snarkos_models::{
|
||||
curves::{Field, PrimeField},
|
||||
gadgets::r1cs::ConstraintSystem,
|
||||
gadgets::{r1cs::ConstraintSystem, utilities::boolean::Boolean},
|
||||
};
|
||||
|
||||
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
@ -46,7 +46,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
let mut_self = function.contains_mut_self();
|
||||
|
||||
// Store input values as new variables in resolved program
|
||||
for (input_model, input_expression) in function.filter_self_inputs().iter().zip(input.into_iter()) {
|
||||
for (input_model, input_expression) in function.filter_self_inputs().zip(input.into_iter()) {
|
||||
let (name, value) = match input_model {
|
||||
FunctionInput::InputKeyword(keyword) => {
|
||||
let value =
|
||||
@ -92,13 +92,14 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
|
||||
// Evaluate every statement in the function and save all potential results
|
||||
let mut results = vec![];
|
||||
let indicator = Boolean::constant(true);
|
||||
|
||||
for statement in function.block.statements.iter() {
|
||||
let mut result = self.enforce_statement(
|
||||
cs,
|
||||
scope,
|
||||
&function_name,
|
||||
None,
|
||||
&indicator,
|
||||
statement.clone(),
|
||||
function.output.clone(),
|
||||
declared_circuit_reference,
|
||||
@ -109,26 +110,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
}
|
||||
|
||||
// Conditionally select a result based on returned indicators
|
||||
let mut return_values = ConstrainedValue::Tuple(vec![]);
|
||||
|
||||
Self::conditionally_select_result(cs, &mut return_values, results, &function.span)?;
|
||||
|
||||
if let ConstrainedValue::Tuple(ref returns) = return_values {
|
||||
let return_types = match function.output {
|
||||
Some(Type::Tuple(types)) => types.len(),
|
||||
Some(_) => 1usize,
|
||||
None => 0usize,
|
||||
};
|
||||
|
||||
if return_types != returns.len() {
|
||||
return Err(FunctionError::return_arguments_length(
|
||||
return_types,
|
||||
returns.len(),
|
||||
function.span.clone(),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(return_values)
|
||||
Self::conditionally_select_result(cs, function.output, results, &function.span)
|
||||
.map_err(FunctionError::StatementError)
|
||||
}
|
||||
}
|
||||
|
@ -16,9 +16,16 @@
|
||||
|
||||
//! Enforces that one return value is produced in a compiled Leo program.
|
||||
|
||||
use crate::{errors::StatementError, program::ConstrainedProgram, value::ConstrainedValue, GroupType};
|
||||
use crate::{
|
||||
check_return_type,
|
||||
errors::StatementError,
|
||||
get_indicator_value,
|
||||
program::ConstrainedProgram,
|
||||
value::ConstrainedValue,
|
||||
GroupType,
|
||||
};
|
||||
|
||||
use leo_ast::Span;
|
||||
use leo_ast::{Span, Type};
|
||||
|
||||
use snarkos_models::{
|
||||
curves::{Field, PrimeField},
|
||||
@ -29,49 +36,82 @@ use snarkos_models::{
|
||||
};
|
||||
|
||||
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
/// iterates through a vector of results and selects one based off of indicators
|
||||
///
|
||||
/// Returns a conditionally selected result from the given possible function returns and
|
||||
/// given function return type.
|
||||
///
|
||||
pub fn conditionally_select_result<CS: ConstraintSystem<F>>(
|
||||
cs: &mut CS,
|
||||
return_value: &mut ConstrainedValue<F, G>,
|
||||
results: Vec<(Option<Boolean>, ConstrainedValue<F, G>)>,
|
||||
expected_return: Option<Type>,
|
||||
results: Vec<(Boolean, ConstrainedValue<F, G>)>,
|
||||
span: &Span,
|
||||
) -> Result<(), StatementError> {
|
||||
// if there are no results, continue
|
||||
if results.is_empty() {
|
||||
return Ok(());
|
||||
) -> Result<ConstrainedValue<F, G>, StatementError> {
|
||||
// Initialize empty return value.
|
||||
let mut return_value = ConstrainedValue::Tuple(vec![]);
|
||||
|
||||
// If the function does not expect a return type, then make sure there are no returned results.
|
||||
let return_type = match expected_return {
|
||||
Some(return_type) => return_type,
|
||||
None => {
|
||||
if results.is_empty() {
|
||||
// If the function has no returns, then return an empty tuple.
|
||||
return Ok(return_value);
|
||||
} else {
|
||||
return Err(StatementError::invalid_number_of_returns(
|
||||
0,
|
||||
results.len(),
|
||||
span.to_owned(),
|
||||
));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Error if the function or one of its branches does not return.
|
||||
if results
|
||||
.iter()
|
||||
.find(|(indicator, _res)| get_indicator_value(indicator))
|
||||
.is_none()
|
||||
{
|
||||
return Err(StatementError::no_returns(return_type, span.to_owned()));
|
||||
}
|
||||
|
||||
// If all indicators are none, then there are no branch conditions in the function.
|
||||
// We simply return the last result.
|
||||
// Find the return value
|
||||
let mut ignored = vec![];
|
||||
let mut found_return = false;
|
||||
for (indicator, result) in results.into_iter() {
|
||||
// Error if a statement returned a result with an incorrect type
|
||||
let result_type = result.to_type(span)?;
|
||||
check_return_type(&return_type, &result_type, span)?;
|
||||
|
||||
if results.iter().all(|(indicator, _res)| indicator.is_none()) {
|
||||
let result = &results[results.len() - 1].1;
|
||||
|
||||
*return_value = result.clone();
|
||||
|
||||
return Ok(());
|
||||
if get_indicator_value(&indicator) {
|
||||
// Error if we already have a return value.
|
||||
if found_return {
|
||||
return Err(StatementError::multiple_returns(span.to_owned()));
|
||||
} else {
|
||||
// Set the function return value.
|
||||
return_value = result;
|
||||
found_return = true;
|
||||
}
|
||||
} else {
|
||||
// Ignore a possible function return value.
|
||||
ignored.push((indicator, result))
|
||||
}
|
||||
}
|
||||
|
||||
// Conditionally select out the ignored results in the circuit.
|
||||
//
|
||||
// If there are branches in the function we need to use the `ConditionalSelectGadget` to parse through and select the correct one.
|
||||
// This can be thought of as de-multiplexing all previous wires that may have returned results into one.
|
||||
for (i, (indicator, result)) in results.into_iter().enumerate() {
|
||||
// Set the first value as the starting point
|
||||
if i == 0 {
|
||||
*return_value = result.clone();
|
||||
}
|
||||
|
||||
let condition = indicator.unwrap_or(Boolean::Constant(true));
|
||||
let selected_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", result, span.line, span.start)),
|
||||
&condition,
|
||||
for (i, (indicator, result)) in ignored.into_iter().enumerate() {
|
||||
return_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select result {} {}:{}", i, span.line, span.start)),
|
||||
&indicator,
|
||||
&result,
|
||||
return_value,
|
||||
&return_value,
|
||||
)
|
||||
.map_err(|_| StatementError::select_fail(result.to_string(), return_value.to_string(), span.to_owned()))?;
|
||||
|
||||
*return_value = selected_value;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
Ok(return_value)
|
||||
}
|
||||
}
|
||||
|
@ -34,14 +34,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
name: &str,
|
||||
range_or_expression: RangeOrExpression,
|
||||
mut new_value: ConstrainedValue<F, G>,
|
||||
span: &Span,
|
||||
) -> Result<(), StatementError> {
|
||||
let condition = indicator.unwrap_or(Boolean::Constant(true));
|
||||
|
||||
// Resolve index so we know if we are assigning to a single value or a range of values
|
||||
match range_or_expression {
|
||||
RangeOrExpression::Expression(index) => {
|
||||
@ -54,7 +52,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
|
||||
let selected_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
|
||||
&condition,
|
||||
indicator,
|
||||
&new_value,
|
||||
&old[index],
|
||||
)
|
||||
@ -90,7 +88,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
};
|
||||
let selected_array = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", new_array, span.line, span.start)),
|
||||
&condition,
|
||||
indicator,
|
||||
&new_array,
|
||||
old_array,
|
||||
)
|
||||
|
@ -42,8 +42,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
declared_circuit_reference: &str,
|
||||
indicator: &Boolean,
|
||||
mut_self: bool,
|
||||
indicator: Option<Boolean>,
|
||||
assignee: Assignee,
|
||||
expression: Expression,
|
||||
span: &Span,
|
||||
@ -56,14 +56,13 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
|
||||
// Mutate the old value into the new value
|
||||
if assignee.accesses.is_empty() {
|
||||
let condition = indicator.unwrap_or(Boolean::Constant(true));
|
||||
let old_value = self.get_mutable_assignee(&variable_name, span)?;
|
||||
|
||||
new_value.resolve_type(Some(old_value.to_type(&span)?), span)?;
|
||||
|
||||
let selected_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
|
||||
&condition,
|
||||
indicator,
|
||||
&new_value,
|
||||
old_value,
|
||||
)
|
||||
|
@ -31,14 +31,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
pub fn mutate_circuit_variable<CS: ConstraintSystem<F>>(
|
||||
&mut self,
|
||||
cs: &mut CS,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
circuit_name: &str,
|
||||
variable_name: Identifier,
|
||||
mut new_value: ConstrainedValue<F, G>,
|
||||
span: &Span,
|
||||
) -> Result<ConstrainedValue<F, G>, StatementError> {
|
||||
let condition = indicator.unwrap_or(Boolean::Constant(true));
|
||||
|
||||
// Get the mutable circuit by name
|
||||
match self.get_mutable_assignee(circuit_name, span)? {
|
||||
ConstrainedValue::CircuitExpression(_variable, members) => {
|
||||
@ -68,7 +66,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
// Conditionally select the value if this branch is executed.
|
||||
let mut selected_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
|
||||
&condition,
|
||||
indicator,
|
||||
&new_value,
|
||||
&member.1,
|
||||
)
|
||||
|
@ -31,15 +31,12 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
pub fn assign_tuple<CS: ConstraintSystem<F>>(
|
||||
&mut self,
|
||||
cs: &mut CS,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
name: &str,
|
||||
index: PositiveNumber,
|
||||
mut new_value: ConstrainedValue<F, G>,
|
||||
span: &Span,
|
||||
) -> Result<(), StatementError> {
|
||||
// Get the indicator value.
|
||||
let condition = indicator.unwrap_or(Boolean::Constant(true));
|
||||
|
||||
// Parse the index.
|
||||
let index_usize = parse_index(&index, &span)?;
|
||||
|
||||
@ -50,7 +47,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
|
||||
let selected_value = ConstrainedValue::conditionally_select(
|
||||
cs.ns(|| format!("select {} {}:{}", new_value, span.line, span.start)),
|
||||
&condition,
|
||||
indicator,
|
||||
&new_value,
|
||||
&old[index_usize],
|
||||
)
|
||||
|
@ -33,7 +33,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
block: Block,
|
||||
return_type: Option<Type>,
|
||||
mut_self: bool,
|
||||
|
@ -49,7 +49,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
statement: ConditionalStatement,
|
||||
return_type: Option<Type>,
|
||||
mut_self: bool,
|
||||
@ -57,8 +57,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
) -> StatementResult<Vec<IndicatorAndConstrainedValue<F, G>>> {
|
||||
let statement_string = statement.to_string();
|
||||
|
||||
// Inherit the indicator from a previous conditional statement or assume that we are the outer parent
|
||||
let outer_indicator = indicator.unwrap_or(Boolean::Constant(true));
|
||||
// Inherit an indicator from a previous statement.
|
||||
let outer_indicator = indicator;
|
||||
|
||||
// Evaluate the conditional boolean as the inner indicator
|
||||
let inner_indicator = match self.enforce_expression(
|
||||
@ -73,7 +73,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
};
|
||||
|
||||
// If outer_indicator && inner_indicator, then select branch 1
|
||||
let outer_indicator_string = indicator_to_string(&outer_indicator);
|
||||
let outer_indicator_string = indicator_to_string(outer_indicator);
|
||||
let inner_indicator_string = indicator_to_string(&inner_indicator);
|
||||
let branch_1_name = format!(
|
||||
"branch indicator 1 {} && {}",
|
||||
@ -81,7 +81,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
);
|
||||
let branch_1_indicator = Boolean::and(
|
||||
&mut cs.ns(|| format!("branch 1 {} {}:{}", statement_string, span.line, span.start)),
|
||||
&outer_indicator,
|
||||
outer_indicator,
|
||||
&inner_indicator,
|
||||
)
|
||||
.map_err(|_| StatementError::indicator_calculation(branch_1_name, span.to_owned()))?;
|
||||
@ -93,7 +93,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs,
|
||||
file_scope,
|
||||
function_scope,
|
||||
Some(branch_1_indicator),
|
||||
&branch_1_indicator,
|
||||
statement.block,
|
||||
return_type.clone(),
|
||||
mut_self,
|
||||
@ -122,7 +122,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs,
|
||||
file_scope,
|
||||
function_scope,
|
||||
Some(branch_2_indicator),
|
||||
&branch_2_indicator,
|
||||
*nested,
|
||||
return_type,
|
||||
mut_self,
|
||||
@ -132,7 +132,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs,
|
||||
file_scope,
|
||||
function_scope,
|
||||
Some(branch_2_indicator),
|
||||
&branch_2_indicator,
|
||||
block,
|
||||
return_type,
|
||||
mut_self,
|
||||
|
@ -42,7 +42,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
index: Identifier,
|
||||
start: Expression,
|
||||
stop: Expression,
|
||||
|
@ -24,20 +24,17 @@ use snarkos_models::{
|
||||
gadgets::r1cs::ConstraintSystem,
|
||||
};
|
||||
|
||||
fn check_return_type(expected: Option<Type>, actual: Type, span: &Span) -> Result<(), StatementError> {
|
||||
match expected {
|
||||
Some(expected) => {
|
||||
if expected.ne(&actual) {
|
||||
if (expected.is_self() && actual.is_circuit()) || expected.eq_flat(&actual) {
|
||||
return Ok(());
|
||||
} else {
|
||||
return Err(StatementError::arguments_type(&expected, &actual, span.to_owned()));
|
||||
}
|
||||
}
|
||||
/// Returns `Ok` if the expected type == actual type, returns `Err` otherwise.
|
||||
pub fn check_return_type(expected: &Type, actual: &Type, span: &Span) -> Result<(), StatementError> {
|
||||
if expected.ne(&actual) {
|
||||
// If the return type is `SelfType` returning the circuit type is okay.
|
||||
return if (expected.is_self() && actual.is_circuit()) || expected.eq_flat(&actual) {
|
||||
Ok(())
|
||||
}
|
||||
None => Ok(()),
|
||||
} else {
|
||||
Err(StatementError::arguments_type(&expected, &actual, span.to_owned()))
|
||||
};
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
@ -53,7 +50,9 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
let result = self.enforce_operand(cs, file_scope, function_scope, return_type.clone(), expression, span)?;
|
||||
|
||||
// Make sure we return the correct type.
|
||||
check_return_type(return_type, result.to_type(&span)?, span)?;
|
||||
if let Some(expected) = return_type {
|
||||
check_return_type(&expected, &result.to_type(span)?, span)?;
|
||||
}
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
|
@ -25,7 +25,7 @@ use snarkos_models::{
|
||||
};
|
||||
|
||||
pub type StatementResult<T> = Result<T, StatementError>;
|
||||
pub type IndicatorAndConstrainedValue<T, U> = (Option<Boolean>, ConstrainedValue<T, U>);
|
||||
pub type IndicatorAndConstrainedValue<T, U> = (Boolean, ConstrainedValue<T, U>);
|
||||
|
||||
impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
///
|
||||
@ -41,7 +41,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
cs: &mut CS,
|
||||
file_scope: &str,
|
||||
function_scope: &str,
|
||||
indicator: Option<Boolean>,
|
||||
indicator: &Boolean,
|
||||
statement: Statement,
|
||||
return_type: Option<Type>,
|
||||
declared_circuit_reference: &str,
|
||||
@ -52,7 +52,7 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
match statement {
|
||||
Statement::Return(expression, span) => {
|
||||
let return_value = (
|
||||
indicator,
|
||||
indicator.to_owned(),
|
||||
self.enforce_return_statement(cs, file_scope, function_scope, expression, return_type, &span)?,
|
||||
);
|
||||
|
||||
@ -75,8 +75,8 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
file_scope,
|
||||
function_scope,
|
||||
declared_circuit_reference,
|
||||
mut_self,
|
||||
indicator,
|
||||
mut_self,
|
||||
variable,
|
||||
expression,
|
||||
&span,
|
||||
@ -120,22 +120,25 @@ impl<F: Field + PrimeField, G: GroupType<F>> ConstrainedProgram<F, G> {
|
||||
let expression_string = expression.to_string();
|
||||
let value = self.enforce_expression(cs, file_scope, function_scope, None, expression)?;
|
||||
|
||||
// handle empty return value cases
|
||||
// Handle empty return value cases.
|
||||
match &value {
|
||||
ConstrainedValue::Tuple(values) => {
|
||||
if !values.is_empty() {
|
||||
return Err(StatementError::unassigned(expression_string, span));
|
||||
results.push((*indicator, value));
|
||||
}
|
||||
}
|
||||
_ => return Err(StatementError::unassigned(expression_string, span)),
|
||||
}
|
||||
|
||||
let result = (indicator, value);
|
||||
|
||||
results.push(result);
|
||||
}
|
||||
};
|
||||
|
||||
Ok(results)
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the indicator boolean gadget value.
|
||||
/// We can directly compare a boolean constant to the indicator since we are not enforcing any
|
||||
/// constraints
|
||||
pub fn get_indicator_value(indicator: &Boolean) -> bool {
|
||||
indicator.eq(&Boolean::constant(true))
|
||||
}
|
||||
|
@ -69,6 +69,22 @@ fn test_multiple_returns() {
|
||||
assert_satisfied(program);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_returns_fail() {
|
||||
let bytes = include_bytes!("multiple_returns_fail.leo");
|
||||
let program = parse_program(bytes).unwrap();
|
||||
|
||||
expect_compiler_error(program);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_returns_fail_conditional() {
|
||||
let bytes = include_bytes!("multiple_returns_fail_conditional.leo");
|
||||
let program = parse_program(bytes).unwrap();
|
||||
|
||||
expect_compiler_error(program);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multiple_returns_main() {
|
||||
let program_string = include_str!("multiple_main.leo");
|
||||
|
7
compiler/tests/function/multiple_returns_fail.leo
Normal file
7
compiler/tests/function/multiple_returns_fail.leo
Normal file
@ -0,0 +1,7 @@
|
||||
function main () -> i8 {
|
||||
if true {
|
||||
return 1i8 //ignored
|
||||
}
|
||||
return 2i8 //ignored
|
||||
return 3i8 //returns
|
||||
}
|
@ -0,0 +1,9 @@
|
||||
function main () -> u16 {
|
||||
if false {
|
||||
let a = 1u16;
|
||||
let b = a + 1u16;
|
||||
return b
|
||||
} else if false {
|
||||
return 0u16
|
||||
}
|
||||
}
|
@ -120,16 +120,6 @@ impl FunctionType {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns the number of input variables to the function.
|
||||
/// The `self` and `mut self` keywords are not counted as input variables.
|
||||
///
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.inputs
|
||||
.iter()
|
||||
.fold(0, |acc, function_input| acc + function_input.count())
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns `true` if the input `self` or `mut self` is present.
|
||||
/// Returns `false` otherwise.
|
||||
@ -139,13 +129,18 @@ impl FunctionType {
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns a vector of [&FunctionInputType] removing `self` and `mut self` inputs.
|
||||
/// Returns an iterator of [&FunctionInputType] removing `self` and `mut self` inputs.
|
||||
///
|
||||
pub fn filter_self_inputs(&self) -> Vec<&FunctionInputType> {
|
||||
self.inputs
|
||||
.iter()
|
||||
.filter(|input| !input.is_self())
|
||||
.collect::<Vec<&FunctionInputType>>()
|
||||
pub fn filter_self_inputs(&self) -> impl Iterator<Item = &FunctionInputType> {
|
||||
self.inputs.iter().filter(|input| !input.is_self())
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns the number of input variables to the function.
|
||||
/// The `self` and `mut self` keywords are not counted as input variables.
|
||||
///
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.filter_self_inputs().count()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -77,15 +77,6 @@ impl FunctionInputType {
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Returns `0` if the function input is a `self` or `mut self` keyword which does not have to
|
||||
/// provided in a call to the function.
|
||||
/// Returns `1` if a variable must be provided in a call to the function.
|
||||
///
|
||||
pub fn count(&self) -> usize {
|
||||
if self.is_self() { 0 } else { 1 }
|
||||
}
|
||||
|
||||
///
|
||||
/// Return a new `FunctionInputType` from a given `FunctionInput`.
|
||||
///
|
||||
|
@ -1093,8 +1093,6 @@ impl Frame {
|
||||
return Err(FrameError::static_call_invalid(&identifier));
|
||||
}
|
||||
|
||||
if is_static && function_type.contains_self() {}
|
||||
|
||||
// Return the function type.
|
||||
Ok(function_type.to_owned())
|
||||
}
|
||||
@ -1121,10 +1119,8 @@ impl Frame {
|
||||
}
|
||||
|
||||
// Filter out `self` and `mut self` keywords.
|
||||
let expected_inputs = function_type.filter_self_inputs();
|
||||
|
||||
// Assert function inputs are correct types.
|
||||
for (expected_input, actual_input) in expected_inputs.iter().zip(inputs) {
|
||||
for (expected_input, actual_input) in function_type.filter_self_inputs().zip(inputs) {
|
||||
// Parse expected input type.
|
||||
let expected_type = expected_input.type_();
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user