leo/compiler/src/compiler.rs

182 lines
6.2 KiB
Rust

//! Compiles a Leo program from a file path.
use crate::{
constraints::{generate_constraints, generate_test_constraints},
errors::CompilerError,
value::ConstrainedValue,
GroupType,
ImportParser,
};
use leo_ast::LeoParser;
use leo_inputs::LeoInputsParser;
use leo_types::{Inputs, MainInputs, Program};
use snarkos_errors::gadgets::SynthesisError;
use snarkos_models::{
curves::{Field, PrimeField},
gadgets::r1cs::{ConstraintSynthesizer, ConstraintSystem, TestConstraintSystem},
};
use sha2::{Digest, Sha256};
use std::{fs, marker::PhantomData, path::PathBuf};
#[derive(Clone)]
pub struct Compiler<F: Field + PrimeField, G: GroupType<F>> {
package_name: String,
main_file_path: PathBuf,
program: Program,
program_inputs: Inputs,
imported_programs: ImportParser,
output: Option<ConstrainedValue<F, G>>,
_engine: PhantomData<F>,
}
impl<F: Field + PrimeField, G: GroupType<F>> Compiler<F, G> {
pub fn new(package_name: String, main_file_path: PathBuf) -> Self {
Self {
package_name: package_name.clone(),
main_file_path,
program: Program::new(package_name),
program_inputs: Inputs::new(),
imported_programs: ImportParser::new(),
output: None,
_engine: PhantomData,
}
}
/// Parses program files.
/// Returns a compiler struct that stores the typed program abstract syntax trees (ast).
pub fn parse_program_without_inputs(package_name: String, main_file_path: PathBuf) -> Result<Self, CompilerError> {
let mut compiler = Self::new(package_name, main_file_path);
let program_string = compiler.load_program()?;
compiler.parse_program(&program_string)?;
Ok(compiler)
}
/// Parses input, state, and program files.
/// Returns a compiler struct that stores the typed inputs and typed program abstract syntax trees (ast).
pub fn parse_program_with_inputs(
package_name: String,
main_file_path: PathBuf,
inputs_string: &str,
state_string: &str,
) -> Result<Self, CompilerError> {
let mut compiler = Self::new(package_name, main_file_path);
compiler.parse_inputs(inputs_string, state_string)?;
let program_string = compiler.load_program()?;
compiler.parse_program(&program_string)?;
Ok(compiler)
}
/// Parse the input and state files.
/// Stores a typed ast of all inputs to the program.
pub fn parse_inputs(&mut self, inputs_string: &str, state_string: &str) -> Result<(), CompilerError> {
let inputs_syntax_tree = LeoInputsParser::parse_file(&inputs_string)?;
let state_syntax_tree = LeoInputsParser::parse_file(&state_string)?;
self.program_inputs.parse_inputs(inputs_syntax_tree)?;
self.program_inputs.parse_state(state_syntax_tree)?;
Ok(())
}
/// Parse the program file and all associated import files.
pub fn parse_program(&mut self, program_string: &str) -> Result<(), CompilerError> {
// Parse the program syntax tree
let syntax_tree = LeoParser::parse_file(&self.main_file_path, program_string)?;
// Build program from syntax tree
let package_name = self.package_name.clone();
self.program = Program::from(syntax_tree, package_name);
self.imported_programs = ImportParser::parse(&self.program)?;
log::debug!("Program parsing complete\n{:#?}", self.program);
Ok(())
}
/// Loads the program file at `main_file_path`.
fn load_program(&mut self) -> Result<String, CompilerError> {
Ok(LeoParser::load_file(&self.main_file_path)?)
}
/// Manually set the inputs to the `main` program function.
pub fn set_main_inputs(&mut self, program_inputs: MainInputs) {
self.program_inputs.set_main_inputs(program_inputs);
}
pub fn checksum(&self) -> Result<String, CompilerError> {
// Read in the main file as string
let unparsed_file = fs::read_to_string(&self.main_file_path)
.map_err(|_| CompilerError::FileReadError(self.main_file_path.clone()))?;
// Hash the file contents
let mut hasher = Sha256::new();
hasher.update(unparsed_file.as_bytes());
let hash = hasher.finalize();
Ok(hex::encode(hash))
}
/// Synthesizes the circuit without program inputs to verify correctness.
pub fn compile_constraints<CS: ConstraintSystem<F>>(
self,
cs: &mut CS,
) -> Result<ConstrainedValue<F, G>, CompilerError> {
let path = self.main_file_path;
let inputs = self.program_inputs.empty();
generate_constraints(cs, self.program, inputs, &self.imported_programs).map_err(|mut error| {
error.set_path(path);
error
})
}
/// Synthesizes the circuit for test functions with program inputs.
pub fn compile_test_constraints(self, cs: &mut TestConstraintSystem<F>) -> Result<(), CompilerError> {
generate_test_constraints::<F, G>(cs, self.program, self.program_inputs, &self.imported_programs)
}
pub fn to_bytes(&self) -> Result<Vec<u8>, CompilerError> {
Ok(bincode::serialize(&self.program)?)
}
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CompilerError> {
let program: Program = bincode::deserialize(bytes)?;
let program_inputs = Inputs::new();
Ok(Self {
package_name: program.name.clone(),
main_file_path: PathBuf::new(),
program,
program_inputs,
imported_programs: ImportParser::new(),
output: None,
_engine: PhantomData,
})
}
}
impl<F: Field + PrimeField, G: GroupType<F>> ConstraintSynthesizer<F> for Compiler<F, G> {
/// Synthesizes the circuit with program inputs.
fn generate_constraints<CS: ConstraintSystem<F>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
let result = generate_constraints::<_, G, _>(cs, self.program, self.program_inputs, &self.imported_programs)
.map_err(|e| {
log::error!("{}", e);
SynthesisError::Unsatisfiable
})?;
// Write results to file or something
log::info!("{}", result);
Ok(())
}
}