add python file

This commit is contained in:
BKHMSI 2018-07-21 00:59:47 +02:00
parent 787a5ec7a9
commit 996526acad

314
sketchback.py Normal file
View File

@ -0,0 +1,314 @@
from __future__ import print_function
import numpy as np
import cv2 as cv
import os
import matplotlib.pyplot as plt
from copy import deepcopy
from scipy.misc import imresize
from keras.models import Sequential, Model
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.layers.core import Activation, Dropout, Flatten, Lambda
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD, Adam, Nadam
from keras.utils import np_utils, plot_model
from keras import objectives, layers
from keras.applications import vgg16
from keras.applications.vgg16 import preprocess_input
from keras import backend as K
np.random.seed(1337) # for reproducibility
# CelebA Faces: 72x88 200K Images
# ZuBuD Buildings: 120x160 3K Images
# CUHK Faces: 80x112 88 Images
m = 205
n = 282
sketch_dim = (m,n)
img_dim = (m,n,3)
num_images = 3000
num_epochs = 20
batch_size = 5
file_names = []
CelebA_SKETCH_PATH = '~/Project/CelebA_Sketch'
CelebA_IMAGE_PATH = '~/Project/img_align_celeba'
BUILDING_SKETCH_PATH = '~/Project/ZuBuD_Sketch_Aug'
BUILDING_IMAGE_PATH = '~/Project/ZuBuD_Aug'
CUHK_SKETCH_PATH = '~/Project/CUHK_Sketch'
CUHK_IMAGE_PATH = '~/Project/CUHK'
base_model = vgg16.VGG16(weights='imagenet', include_top=False)
vgg = Model(input=base_model.input, output=base_model.get_layer('block2_conv2').output)
def load_file_names(path):
return os.listdir(path)
def sub_plot(x,y,z):
fig = plt.figure()
a = fig.add_subplot(1,3,1)
imgplot = plt.imshow(x, cmap='gray')
a.set_title('Sketch')
plt.axis("off")
a = fig.add_subplot(1,3,2)
imgplot = plt.imshow(z)
a.set_title('Prediction')
plt.axis("off")
a = fig.add_subplot(1,3,3)
imgplot = plt.imshow(y)
a.set_title('Ground Truth')
plt.axis("off")
plt.show()
def imshow(x, gray=False):
plt.imshow(x, cmap='gray' if gray else None)
plt.show()
def get_batch(idx, X = True, Y = True, W = True, dataset='zubud'):
global file_names
X_train = np.zeros((batch_size, m, n), dtype='float32')
Y_train = np.zeros((batch_size, m, n, 3), dtype='float32')
F_train = None
if dataset == 'zubud':
x_path = BUILDING_SKETCH_PATH
y_path = BUILDING_IMAGE_PATH
elif dataset == 'cuhk':
x_path = CUHK_SKETCH_PATH
y_path = CUHK_IMAGE_PATH
else:
x_path = CelebA_SKETCH_PATH
y_path = CelebA_IMAGE_PATH
if len(file_names) == 0:
file_names = load_file_names(x_path)
if X:
# Load Sketches
for i in range(batch_size):
file = os.path.join(x_path, file_names[i+batch_size*idx])
img = cv.imread(file,0)
img = imresize(img, sketch_dim)
img = img.astype('float32')
X_train[i] = img / 255.
if Y:
# Load Ground-truth Images
for i in range(batch_size):
file = os.path.join(y_path, file_names[i+batch_size*idx])
img = cv.imread(file)
img = imresize(img, img_dim)
if dataset != 'zubud':
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
img = img.astype('float32')
Y_train[i] = img / 255.
if W:
F_train = get_features(Y_train)
X_train = np.reshape(X_train, (batch_size, m, n, 1))
return X_train, Y_train, F_train
def get_features(Y):
Z = deepcopy(Y)
Z = preprocess_vgg(Z)
features = vgg.predict(Z, batch_size = 5, verbose = 0)
return features
def preprocess_vgg(x, data_format=None):
if data_format is None:
data_format = K.image_data_format()
assert data_format in {'channels_last', 'channels_first'}
x = 255. * x
if data_format == 'channels_first':
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
# Zero-center by mean pixel
x[:, 0, :, :] = x[:, 0, :, :] - 103.939
x[:, 1, :, :] = x[:, 1, :, :] - 116.779
x[:, 2, :, :] = x[:, 2, :, :] - 123.68
else:
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
# Zero-center by mean pixel
x[:, :, :, 0] = x[:, :, :, 0] - 103.939
x[:, :, :, 1] = x[:, :, :, 1] - 116.779
x[:, :, :, 2] = x[:, :, :, 2] - 123.68
return x
def preprocess_VGG(x, dim_ordering='default'):
if dim_ordering == 'default':
dim_ordering = K.image_dim_ordering()
assert dim_ordering in {'tf', 'th'}
# x has pixels intensities between 0 and 1
x = 255. * x
norm_vec = K.variable([103.939, 116.779, 123.68])
if dim_ordering == 'th':
norm_vec = K.reshape(norm_vec, (1,3,1,1))
x = x - norm_vec
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
else:
norm_vec = K.reshape(norm_vec, (1,1,1,3))
x = x - norm_vec
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
return x
def feature_loss(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_true - y_pred)))
def pixel_loss(y_true, y_pred):
return K.sqrt(K.mean(K.square(y_true - y_pred))) + 0.00001*total_variation_loss(y_pred)
def total_variation_loss(y_pred):
if K.image_data_format() == 'channels_first':
a = K.square(y_pred[:, :, :m - 1, :n - 1] - y_pred[:, :, 1:, :n - 1])
b = K.square(y_pred[:, :, :m - 1, :n - 1] - y_pred[:, :, :m - 1, 1:])
else:
a = K.square(y_pred[:, :m - 1, :n - 1, :] - y_pred[:, 1:, :n - 1, :])
b = K.square(y_pred[:, :m - 1, :n - 1, :] - y_pred[:, :m - 1, 1:, :])
return K.sum(K.pow(a + b, 1.25))
def generator_model(input_img):
# Encoder
x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = Conv2D(32, (2, 2), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
x = Conv2D(64, (2, 2), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
encoded = layers.add([x, res])
# Decoder
res = Conv2D(256, (3, 3), activation='relu', padding='same', name='block5_conv1')(encoded)
x = layers.add([encoded, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(256, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(128, (2, 2), activation='relu', padding='same', name='block6_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block7_conv1')(x)
res = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(128, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(64, (2, 2), activation='relu', padding='same', name='block8_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block9_conv1')(x)
res = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
res = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
x = Conv2D(32, (2, 2), activation='relu', padding='same', name='block10_conv1')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same', name='block11_conv1')(x)
res = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.add([x, res])
decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x)
return decoded
def feat_model(img_input):
# extract vgg feature
vgg_16 = vgg16.VGG16(include_top=False, weights='imagenet', input_tensor=None)
# freeze VGG_16 when training
for layer in vgg_16.layers:
layer.trainable = False
vgg_first2 = Model(input=vgg_16.input, output=vgg_16.get_layer('block2_conv2').output)
Norm_layer = Lambda(preprocess_VGG)
x_VGG = Norm_layer(img_input)
feat = vgg_first2(x_VGG)
return feat
def full_model(summary = True):
input_img = Input(shape=(m, n, 1))
generator = generator_model(input_img)
feat = feat_model(generator)
model = Model(input=input_img, output=[generator, feat], name='architect')
model.summary()
return model
def train_faces(weights=None):
model = full_model()
optim = Adam(lr=1e-4,beta_1=0.9, beta_2=0.999, epsilon=1e-8)
model.compile(loss=[pixel_loss, feature_loss], loss_weights=[1, 0.01], optimizer=optim)
if weights is not None:
model.load_weights(weights)
for epoch in range(num_epochs):
num_batches = num_images // batch_size
for batch in range(num_batches):
X,Y,W = get_batch(batch, dataset='zubud')
loss = model.train_on_batch(X, [Y, W])
print("Loss in Epoch # ",epoch,"| Batch #", batch, ":", loss)
model.save_weights("weights_%d" % epoch)
def predict(batch, i, weights):
model = full_model()
model.load_weights(weights)
X, T, _ = get_batch(batch, Y = True, W = False, dataset='zubud')
Y, W = model.predict(X[:i])
x = X[i].reshape(m,n)
y = Y[i]
sub_plot(x, T[i], y)
def sketchback(image, weights):
model = full_model()
model.load_weights(weights)
sketch = cv.imread(image, 0)
sketch = imresize(sketch, sketch_dim)
sketch = sketch / 255.
sketch = sketch.reshape(1,m,n,1)
result, _ = model.predict(sketch)
imshow(result[0])
fig = plt.figure()
a = fig.add_subplot(1,2,1)
imgplot = plt.imshow(sketch[0].reshape(m,n), cmap='gray')
a.set_title('Sketch')
plt.axis("off")
a = fig.add_subplot(1,2,2)
imgplot = plt.imshow(result[0])
a.set_title('Prediction')
plt.axis("off")
plt.show()
if __name__ == "__main__":
sketchback("face7.jpg", "weights_faces")