catala/compiler/desugared/desugared_to_scope.ml

706 lines
30 KiB
OCaml
Raw Normal View History

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
2020-12-14 19:00:42 +03:00
(** Translation from {!module: Desugared.Ast} to {!module: Scopelang.Ast} *)
2021-01-21 23:33:04 +03:00
open Utils
(** {1 Expression translation}*)
type target_scope_vars =
| WholeVar of Scopelang.Ast.ScopeVar.t
| States of (Ast.StateName.t * Scopelang.Ast.ScopeVar.t) list
type ctx = {
scope_var_mapping : target_scope_vars Ast.ScopeVarMap.t;
var_mapping : Scopelang.Ast.Var.t Ast.VarMap.t;
}
let rec translate_expr (ctx : ctx) (e : Ast.expr Pos.marked) :
Scopelang.Ast.expr Pos.marked Bindlib.box =
match Pos.unmark e with
| Ast.ELocation (SubScopeVar (s_name, ss_name, s_var)) ->
(* When referring to a subscope variable in an expression, we are
referring to the output, hence we take the last state. *)
let new_s_var =
match Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping with
| WholeVar new_s_var -> Pos.same_pos_as new_s_var s_var
| States states ->
Pos.same_pos_as (snd (List.hd (List.rev states))) s_var
in
Bindlib.box
( Scopelang.Ast.ELocation (SubScopeVar (s_name, ss_name, new_s_var)),
Pos.get_position e )
| Ast.ELocation (ScopeVar (s_var, None)) ->
Bindlib.box
( Scopelang.Ast.ELocation
(ScopeVar
(match
Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping
with
| WholeVar new_s_var -> Pos.same_pos_as new_s_var s_var
| States _ -> failwith "should not happen")),
Pos.get_position e )
| Ast.ELocation (ScopeVar (s_var, Some state)) ->
Bindlib.box
( Scopelang.Ast.ELocation
(ScopeVar
(match
Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping
with
| WholeVar _ -> failwith "should not happen"
| States states ->
Pos.same_pos_as (List.assoc state states) s_var)),
Pos.get_position e )
| Ast.EVar v ->
Bindlib.box_apply
(fun v -> Pos.same_pos_as v e)
(Bindlib.box_var (Ast.VarMap.find (Pos.unmark v) ctx.var_mapping))
| EStruct (s_name, fields) ->
Bindlib.box_apply
(fun new_fields ->
(Scopelang.Ast.EStruct (s_name, new_fields), Pos.get_position e))
(Scopelang.Ast.StructFieldMapLift.lift_box
(Scopelang.Ast.StructFieldMap.map (translate_expr ctx) fields))
| EStructAccess (e1, s_name, f_name) ->
Bindlib.box_apply
(fun new_e1 ->
( Scopelang.Ast.EStructAccess (new_e1, s_name, f_name),
Pos.get_position e ))
(translate_expr ctx e1)
| EEnumInj (e1, cons, e_name) ->
Bindlib.box_apply
(fun new_e1 ->
(Scopelang.Ast.EEnumInj (new_e1, cons, e_name), Pos.get_position e))
(translate_expr ctx e1)
| EMatch (e1, e_name, arms) ->
Bindlib.box_apply2
(fun new_e1 new_arms ->
(Scopelang.Ast.EMatch (new_e1, e_name, new_arms), Pos.get_position e))
(translate_expr ctx e1)
(Scopelang.Ast.EnumConstructorMapLift.lift_box
(Scopelang.Ast.EnumConstructorMap.map (translate_expr ctx) arms))
| ELit l -> Bindlib.box (Scopelang.Ast.ELit l, Pos.get_position e)
| EAbs ((binder, binder_pos), typs) ->
let vars, body = Bindlib.unmbind binder in
let new_vars =
Array.map
(fun var -> Scopelang.Ast.Var.make (Bindlib.name_of var, binder_pos))
vars
in
let ctx =
List.fold_left2
(fun ctx var new_var ->
{
ctx with
var_mapping = Ast.VarMap.add var new_var ctx.var_mapping;
})
ctx (Array.to_list vars) (Array.to_list new_vars)
in
Bindlib.box_apply
(fun new_binder ->
( Scopelang.Ast.EAbs ((new_binder, binder_pos), typs),
Pos.get_position e ))
(Bindlib.bind_mvar new_vars (translate_expr ctx body))
| EApp (e1, args) ->
Bindlib.box_apply2
(fun new_e1 new_args ->
(Scopelang.Ast.EApp (new_e1, new_args), Pos.get_position e))
(translate_expr ctx e1)
(Bindlib.box_list (List.map (translate_expr ctx) args))
| EOp op -> Bindlib.box (Scopelang.Ast.EOp op, Pos.get_position e)
| EDefault (excepts, just, cons) ->
Bindlib.box_apply3
(fun new_excepts new_just new_cons ->
( Scopelang.Ast.EDefault (new_excepts, new_just, new_cons),
Pos.get_position e ))
(Bindlib.box_list (List.map (translate_expr ctx) excepts))
(translate_expr ctx just) (translate_expr ctx cons)
| EIfThenElse (e1, e2, e3) ->
Bindlib.box_apply3
(fun new_e1 new_e2 new_e3 ->
( Scopelang.Ast.EIfThenElse (new_e1, new_e2, new_e3),
Pos.get_position e ))
(translate_expr ctx e1) (translate_expr ctx e2) (translate_expr ctx e3)
| EArray args ->
Bindlib.box_apply
(fun new_args -> (Scopelang.Ast.EArray new_args, Pos.get_position e))
(Bindlib.box_list (List.map (translate_expr ctx) args))
| ErrorOnEmpty e1 ->
Bindlib.box_apply
(fun new_e1 -> (Scopelang.Ast.ErrorOnEmpty new_e1, Pos.get_position e))
(translate_expr ctx e1)
2020-12-14 19:00:42 +03:00
(** {1 Rule tree construction} *)
(** Intermediate representation for the exception tree of rules for a particular
scope definition. *)
type rule_tree =
| Leaf of Ast.rule list
(** Rules defining a base case piecewise. List is non-empty. *)
| Node of rule_tree list * Ast.rule list
(** A list of exceptions to a non-empty list of rules defining a base case
piecewise. *)
(** Transforms a flat list of rules into a tree, taking into account the
priorities declared between rules *)
let def_map_to_tree (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t) :
rule_tree list =
let exc_graph = Dependency.build_exceptions_graph def def_info in
Dependency.check_for_exception_cycle exc_graph;
(* we start by the base cases: they are the vertices which have no
successors *)
let base_cases =
Dependency.ExceptionsDependencies.fold_vertex
(fun v base_cases ->
if Dependency.ExceptionsDependencies.out_degree exc_graph v = 0 then
v :: base_cases
else base_cases)
exc_graph []
in
let rec build_tree (base_cases : Ast.RuleSet.t) : rule_tree =
let exceptions =
Dependency.ExceptionsDependencies.pred exc_graph base_cases
in
let base_case_as_rule_list =
List.map
(fun r -> Ast.RuleMap.find r def)
(List.of_seq (Ast.RuleSet.to_seq base_cases))
in
match exceptions with
| [] -> Leaf base_case_as_rule_list
| _ -> Node (List.map build_tree exceptions, base_case_as_rule_list)
in
List.map build_tree base_cases
(** From the {!type: rule_tree}, builds an {!constructor: Dcalc.Ast.EDefault}
expression in the scope language. The [~toplevel] parameter is used to know
when to place the toplevel binding in the case of functions. *)
let rec rule_tree_to_expr
~(toplevel : bool)
(ctx : ctx)
(def_pos : Pos.t)
(is_func : Ast.Var.t option)
(tree : rule_tree) : Scopelang.Ast.expr Pos.marked Bindlib.box =
let exceptions, base_rules =
match tree with Leaf r -> ([], r) | Node (exceptions, r) -> (exceptions, r)
in
(* because each rule has its own variable parameter and we want to convert the
whole rule tree into a function, we need to perform some alpha-renaming of
all the expressions *)
let substitute_parameter
(e : Ast.expr Pos.marked Bindlib.box) (rule : Ast.rule) :
Ast.expr Pos.marked Bindlib.box =
match (is_func, rule.Ast.rule_parameter) with
| Some new_param, Some (old_param, _) ->
2020-11-27 18:27:10 +03:00
let binder = Bindlib.bind_var old_param e in
Bindlib.box_apply2
(fun binder new_param -> Bindlib.subst binder new_param)
binder
(Bindlib.box_var new_param)
| None, None -> e
| _ -> assert false
(* should not happen *)
in
let ctx =
match is_func with
| None -> ctx
| Some new_param -> (
match Ast.VarMap.find_opt new_param ctx.var_mapping with
| None ->
let new_param_scope =
Scopelang.Ast.Var.make (Bindlib.name_of new_param, def_pos)
in
{
ctx with
var_mapping =
Ast.VarMap.add new_param new_param_scope ctx.var_mapping;
}
| Some _ ->
(* We only create a mapping if none exists because
[rule_tree_to_expr] is called recursively on the exceptions of
the tree and we don't want to create a new Scopelang variable for
the parameter at each tree level. *)
ctx)
in
let base_just_list =
List.map
(fun rule -> substitute_parameter rule.Ast.rule_just rule)
base_rules
in
let base_cons_list =
List.map
(fun rule -> substitute_parameter rule.Ast.rule_cons rule)
base_rules
in
let translate_and_unbox_list (list : Ast.expr Pos.marked Bindlib.box list) :
Scopelang.Ast.expr Pos.marked Bindlib.box list =
List.map
(fun e ->
(* There are two levels of boxing here, the outermost is introduced by
the [translate_expr] function for which all of the bindings should
have been closed by now, so we can safely unbox. *)
Bindlib.unbox (Bindlib.box_apply (translate_expr ctx) e))
list
in
let default_containing_base_cases =
Bindlib.box_apply2
(fun base_just_list base_cons_list ->
( Scopelang.Ast.EDefault
( List.map2
(fun base_just base_cons ->
( Scopelang.Ast.EDefault ([], base_just, base_cons),
Pos.get_position base_just ))
base_just_list base_cons_list,
(Scopelang.Ast.ELit (Dcalc.Ast.LBool false), def_pos),
(Scopelang.Ast.ELit Dcalc.Ast.LEmptyError, def_pos) ),
def_pos ))
(Bindlib.box_list (translate_and_unbox_list base_just_list))
(Bindlib.box_list (translate_and_unbox_list base_cons_list))
in
let exceptions =
Bindlib.box_list
(List.map
(rule_tree_to_expr ~toplevel:false ctx def_pos is_func)
exceptions)
in
2020-11-27 18:27:10 +03:00
let default =
Bindlib.box_apply2
(fun exceptions default_containing_base_cases ->
( Scopelang.Ast.EDefault
( exceptions,
(Scopelang.Ast.ELit (Dcalc.Ast.LBool true), def_pos),
default_containing_base_cases ),
def_pos ))
exceptions default_containing_base_cases
2020-11-27 18:27:10 +03:00
in
match (is_func, (List.hd base_rules).Ast.rule_parameter) with
| None, None -> default
| Some new_param, Some (_, typ) ->
2020-11-27 18:27:10 +03:00
if toplevel then
(* When we're creating a function from multiple defaults, we must check
that the result returned by the function is not empty *)
let default =
Bindlib.box_apply
(fun (default : Scopelang.Ast.expr * Pos.t) ->
(Scopelang.Ast.ErrorOnEmpty default, def_pos))
default
in
Scopelang.Ast.make_abs
(Array.of_list [ Ast.VarMap.find new_param ctx.var_mapping ])
default def_pos [ typ ] def_pos
2020-11-27 18:27:10 +03:00
else default
2020-12-14 19:00:42 +03:00
| _ -> (* should not happen *) assert false
2020-12-14 19:00:42 +03:00
(** {1 AST translation} *)
(** Translates a definition inside a scope, the resulting expression should be
an {!constructor: Dcalc.Ast.EDefault} *)
let translate_def
(ctx : ctx)
(def_info : Ast.ScopeDef.t)
(def : Ast.rule Ast.RuleMap.t)
(typ : Scopelang.Ast.typ Pos.marked)
(io : Scopelang.Ast.io)
~(is_cond : bool)
2022-02-09 17:56:48 +03:00
~(is_subscope_var : bool) : Scopelang.Ast.expr Pos.marked =
(* Here, we have to transform this list of rules into a default tree. *)
let is_def_func =
match Pos.unmark typ with Scopelang.Ast.TArrow (_, _) -> true | _ -> false
in
let is_rule_func _ (r : Ast.rule) : bool =
Option.is_some r.Ast.rule_parameter
in
let all_rules_func = Ast.RuleMap.for_all is_rule_func def in
let all_rules_not_func =
Ast.RuleMap.for_all (fun n r -> not (is_rule_func n r)) def
in
let is_def_func_param_typ : Scopelang.Ast.typ Pos.marked option =
if is_def_func && all_rules_func then
2020-12-09 12:36:09 +03:00
match Pos.unmark typ with
| Scopelang.Ast.TArrow (t_param, _) -> Some t_param
| _ ->
Errors.raise_spanned_error (Pos.get_position typ)
"The definitions of %a are function but its type, %a, is not a \
function type"
Ast.ScopeDef.format_t def_info Scopelang.Print.format_typ typ
else if (not is_def_func) && all_rules_not_func then None
else
let spans =
List.map
(fun (_, r) ->
( Some "This definition is a function:",
Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
(Ast.RuleMap.bindings (Ast.RuleMap.filter is_rule_func def))
@ List.map
2020-11-27 18:27:10 +03:00
(fun (_, r) ->
( Some "This definition is not a function:",
Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
(Ast.RuleMap.bindings
(Ast.RuleMap.filter (fun n r -> not (is_rule_func n r)) def))
in
Errors.raise_multispanned_error spans
"some definitions of the same variable are functions while others \
aren't"
in
let top_list = def_map_to_tree def_info def in
let top_value =
(if is_cond then Ast.always_false_rule else Ast.empty_rule)
Pos.no_pos is_def_func_param_typ
in
if
2022-02-09 17:56:48 +03:00
Ast.RuleMap.cardinal def = 0
&& is_subscope_var
(* Here we have a special case for the empty definitions. Indeed, we could
use the code for the regular case below that would create a convoluted
default always returning empty error, and this would be correct. But it
gets more complicated with functions. Indeed, if we create an empty
definition for a subscope argument whose type is a function, we get
something like [fun () -> (fun real_param -> < ... >)] that is passed as
an argument to the subscope. The sub-scope de-thunks but the de-thunking
does not return empty error, signalling there is not reentrant variable,
because functions are values! So the subscope does not see that there is
not reentrant variable and does not pick its internal definition instead.
See [test/test_scope/subscope_function_arg_not_defined.catala_en] for a
test case exercising that subtlety.
To avoid this complication we special case here and put an empty error
for all subscope variables that are not defined. It covers the subtlety
with functions described above but also conditions with the false default
value. *)
2022-02-09 17:56:48 +03:00
&& not
(is_cond
&&
match Pos.unmark io.Scopelang.Ast.io_input with
| OnlyInput -> true
| _ -> false)
(* However, this special case suffers from an exception: when a condition is
defined as an OnlyInput to a subscope, since the [false] default value
will not be provided by the calee scope, it has to be placed in the
caller. *)
then (ELit LEmptyError, Pos.no_pos)
else
Bindlib.unbox
(rule_tree_to_expr ~toplevel:true ctx
(Ast.ScopeDef.get_position def_info)
(Option.map
(fun _ ->
Ast.Var.make ("param", Ast.ScopeDef.get_position def_info))
is_def_func_param_typ)
(match top_list with
| [] ->
(* In this case, there are no rules to define the expression *)
Leaf [ top_value ]
| _ -> Node (top_list, [ top_value ])))
2020-12-14 19:00:42 +03:00
(** Translates a scope *)
let translate_scope (ctx : ctx) (scope : Ast.scope) : Scopelang.Ast.scope_decl =
let scope_dependencies = Dependency.build_scope_dependencies scope in
Dependency.check_for_cycle scope scope_dependencies;
let scope_ordering =
Dependency.correct_computation_ordering scope_dependencies
in
let scope_decl_rules =
List.flatten
(List.map
(fun vertex ->
match vertex with
| Dependency.Vertex.Var (var, state) -> (
let scope_def =
Ast.ScopeDefMap.find
(Ast.ScopeDef.Var (var, state))
scope.scope_defs
in
let var_def = scope_def.scope_def_rules in
let var_typ = scope_def.scope_def_typ in
let is_cond = scope_def.scope_def_is_condition in
2022-02-09 17:34:13 +03:00
match Pos.unmark scope_def.Ast.scope_def_io.io_input with
2022-02-09 13:37:52 +03:00
| OnlyInput when not (Ast.RuleMap.is_empty var_def) ->
(* If the variable is tagged as input, then it shall not be
redefined. *)
2022-02-09 13:37:52 +03:00
Errors.raise_multispanned_error
(( Some "Incriminated variable:",
Pos.get_position (Ast.ScopeVar.get_info var) )
2022-02-09 13:37:52 +03:00
:: List.map
(fun (rule, _) ->
( Some "Incriminated variable definition:",
Pos.get_position (Ast.RuleName.get_info rule) ))
(Ast.RuleMap.bindings var_def))
"It is impossible to give a definition to a scope \
variable tagged as input."
| OnlyInput ->
[]
(* we do not provide any definition for an input-only
variable *)
2022-02-09 17:34:13 +03:00
| _ ->
let expr_def =
translate_def ctx
(Ast.ScopeDef.Var (var, state))
var_def var_typ scope_def.Ast.scope_def_io ~is_cond
~is_subscope_var:false
in
let scope_var =
match
(Ast.ScopeVarMap.find var ctx.scope_var_mapping, state)
with
| WholeVar v, None -> v
| States states, Some state -> List.assoc state states
| _ -> failwith "should not happen"
2022-02-09 17:34:13 +03:00
in
[
Scopelang.Ast.Definition
( ( Scopelang.Ast.ScopeVar
( scope_var,
Pos.get_position
(Scopelang.Ast.ScopeVar.get_info scope_var) ),
Pos.get_position
(Scopelang.Ast.ScopeVar.get_info scope_var) ),
2022-02-09 17:34:13 +03:00
var_typ,
2022-02-10 12:09:58 +03:00
scope_def.Ast.scope_def_io,
2022-02-09 17:34:13 +03:00
expr_def );
])
| Dependency.Vertex.SubScope sub_scope_index ->
(* Before calling the sub_scope, we need to include all the
re-definitions of subscope parameters*)
let sub_scope =
Scopelang.Ast.SubScopeMap.find sub_scope_index
scope.scope_sub_scopes
in
let sub_scope_vars_redefs_candidates =
Ast.ScopeDefMap.filter
(fun def_key scope_def ->
match def_key with
| Ast.ScopeDef.Var _ -> false
| Ast.ScopeDef.SubScopeVar (sub_scope_index', _) ->
sub_scope_index = sub_scope_index'
(* We exclude subscope variables that have 0
re-definitions and are not visible in the input of
the subscope *)
&& not
((match
Pos.unmark scope_def.Ast.scope_def_io.io_input
with
| Scopelang.Ast.NoInput -> true
| _ -> false)
&& Ast.RuleMap.is_empty scope_def.scope_def_rules
))
scope.scope_defs
in
let sub_scope_vars_redefs =
Ast.ScopeDefMap.mapi
(fun def_key scope_def ->
let def = scope_def.Ast.scope_def_rules in
let def_typ = scope_def.scope_def_typ in
let is_cond = scope_def.scope_def_is_condition in
match def_key with
| Ast.ScopeDef.Var _ ->
assert false (* should not happen *)
| Ast.ScopeDef.SubScopeVar (_, sub_scope_var) ->
(* This definition redefines a variable of the correct
subscope. But we have to check that this
redefinition is allowed with respect to the io
parameters of that subscope variable. *)
(match
Pos.unmark scope_def.Ast.scope_def_io.io_input
with
| Scopelang.Ast.NoInput ->
Errors.raise_multispanned_error
(( Some "Incriminated subscope:",
Ast.ScopeDef.get_position def_key )
2022-02-09 19:22:04 +03:00
:: ( Some "Incriminated variable:",
Pos.get_position
(Ast.ScopeVar.get_info sub_scope_var) )
:: List.map
(fun (rule, _) ->
( Some
"Incriminated subscope variable \
definition:",
Pos.get_position
(Ast.RuleName.get_info rule) ))
(Ast.RuleMap.bindings def))
"It is impossible to give a definition to a \
subscope variable not tagged as input or \
context."
| OnlyInput
when Ast.RuleMap.is_empty def && not is_cond ->
(* If the subscope variable is tagged as input,
then it shall be defined. *)
2022-02-09 19:22:04 +03:00
Errors.raise_multispanned_error
[
( Some "Incriminated subscope:",
Ast.ScopeDef.get_position def_key );
2022-02-09 19:22:04 +03:00
( Some "Incriminated variable:",
Pos.get_position
(Ast.ScopeVar.get_info sub_scope_var) );
2022-02-09 19:22:04 +03:00
]
"This subscope variable is a mandatory input \
but no definition was provided."
| _ -> ());
(* Now that all is good, we can proceed with
translating this redefinition to a proper Scopelang
term. *)
let expr_def =
translate_def ctx def_key def def_typ
scope_def.Ast.scope_def_io ~is_cond
2022-02-09 17:56:48 +03:00
~is_subscope_var:true
in
let subscop_real_name =
Scopelang.Ast.SubScopeMap.find sub_scope_index
scope.scope_sub_scopes
in
let var_pos =
Pos.get_position
(Ast.ScopeVar.get_info sub_scope_var)
in
Scopelang.Ast.Definition
2020-11-26 12:38:13 +03:00
( ( Scopelang.Ast.SubScopeVar
( subscop_real_name,
(sub_scope_index, var_pos),
match
Ast.ScopeVarMap.find sub_scope_var
ctx.scope_var_mapping
with
| WholeVar v -> (v, var_pos)
| States states ->
(* When defining a sub-scope variable, we
always define its first state in the
sub-scope. *)
(snd (List.hd states), var_pos) ),
2020-11-26 12:38:13 +03:00
var_pos ),
def_typ,
2022-02-10 12:09:58 +03:00
scope_def.Ast.scope_def_io,
expr_def ))
sub_scope_vars_redefs_candidates
in
let sub_scope_vars_redefs =
List.map snd (Ast.ScopeDefMap.bindings sub_scope_vars_redefs)
in
sub_scope_vars_redefs
@ [ Scopelang.Ast.Call (sub_scope, sub_scope_index) ])
scope_ordering)
in
(* Then, after having computed all the scopes variables, we add the
assertions. TODO: the assertions should be interleaved with the
definitions! *)
let scope_decl_rules =
scope_decl_rules
@ List.map
(fun e ->
let scope_e = translate_expr ctx e in
Bindlib.unbox
(Bindlib.box_apply
(fun scope_e -> Scopelang.Ast.Assertion scope_e)
scope_e))
(Bindlib.unbox (Bindlib.box_list scope.Ast.scope_assertions))
in
2020-11-27 13:37:21 +03:00
let scope_sig =
Ast.ScopeVarMap.fold
(fun var (states : Ast.var_or_states) acc ->
match states with
| WholeVar ->
let scope_def =
Ast.ScopeDefMap.find
(Ast.ScopeDef.Var (var, None))
scope.scope_defs
in
let typ = scope_def.scope_def_typ in
Scopelang.Ast.ScopeVarMap.add
(match Ast.ScopeVarMap.find var ctx.scope_var_mapping with
| WholeVar v -> v
| States _ -> failwith "should not happen")
(typ, scope_def.scope_def_io)
acc
| States states ->
(* What happens in the case of variables with multiple states is
interesting. We need to create as many Scopelang.Var entries in
the scope signature as there are states. *)
List.fold_left
(fun acc (state : Ast.StateName.t) ->
let scope_def =
Ast.ScopeDefMap.find
(Ast.ScopeDef.Var (var, Some state))
scope.scope_defs
in
Scopelang.Ast.ScopeVarMap.add
(match Ast.ScopeVarMap.find var ctx.scope_var_mapping with
| WholeVar _ -> failwith "should not happen"
| States states' -> List.assoc state states')
(scope_def.scope_def_typ, scope_def.scope_def_io)
acc)
acc states)
2020-11-27 13:37:21 +03:00
scope.scope_vars Scopelang.Ast.ScopeVarMap.empty
in
{
Scopelang.Ast.scope_decl_name = scope.scope_uid;
Scopelang.Ast.scope_decl_rules;
Scopelang.Ast.scope_sig;
}
2020-12-14 19:00:42 +03:00
(** {1 API} *)
let translate_program (pgrm : Ast.program) : Scopelang.Ast.program =
(* First we give mappings to all the locations between Desugared and
Scopelang. This involves creating a new Scopelang scope variable for every
state of a Desugared variable. *)
let ctx =
Scopelang.Ast.ScopeMap.fold
(fun _scope scope_decl ctx ->
Ast.ScopeVarMap.fold
(fun scope_var (states : Ast.var_or_states) ctx ->
match states with
| Ast.WholeVar ->
{
ctx with
scope_var_mapping =
Ast.ScopeVarMap.add scope_var
(WholeVar
(Scopelang.Ast.ScopeVar.fresh
(Ast.ScopeVar.get_info scope_var)))
ctx.scope_var_mapping;
}
| States states ->
{
ctx with
scope_var_mapping =
Ast.ScopeVarMap.add scope_var
(States
(List.map
(fun state ->
( state,
Scopelang.Ast.ScopeVar.fresh
(let state_name, state_pos =
Ast.StateName.get_info state
in
( Pos.unmark (Ast.ScopeVar.get_info scope_var)
^ "_" ^ state_name,
state_pos )) ))
states))
ctx.scope_var_mapping;
})
scope_decl.Ast.scope_vars ctx)
pgrm.Ast.program_scopes
{
scope_var_mapping = Ast.ScopeVarMap.empty;
var_mapping = Ast.VarMap.empty;
}
in
{
Scopelang.Ast.program_scopes =
Scopelang.Ast.ScopeMap.map (translate_scope ctx) pgrm.program_scopes;
Scopelang.Ast.program_structs = pgrm.program_structs;
Scopelang.Ast.program_enums = pgrm.program_enums;
}