Autoformat

This commit is contained in:
Denis Merigoux 2020-11-20 10:19:21 +01:00
parent e498e6813b
commit 8005f14ad4

View File

@ -3,26 +3,26 @@ module Catala.DefaultCalculus
(*** Syntax *)
type ty =
| TBool : ty
| TUnit : ty
| TArrow : tin:ty -> tout:ty -> ty
| TBool : ty
| TUnit : ty
| TArrow : tin: ty -> tout: ty -> ty
type var = int
type lit =
| LEmptyError : lit
| LConflictError : lit
| LTrue : lit
| LTrue : lit
| LFalse : lit
| LUnit : lit
type exp =
| EVar : v:var -> exp
| EApp : fn:exp -> arg:exp -> tau_arg: ty -> exp
| EAbs : v:var -> vty:ty -> body:exp -> exp
| ELit : l:lit -> exp
| EIf : test:exp -> btrue:exp -> bfalse:exp -> exp
| EDefault: just:exp -> cons:exp -> subdefaults:list exp -> exp
| EVar : v: var -> exp
| EApp : fn: exp -> arg: exp -> tau_arg: ty -> exp
| EAbs : v: var -> vty: ty -> body: exp -> exp
| ELit : l: lit -> exp
| EIf : test: exp -> btrue: exp -> bfalse: exp -> exp
| EDefault : just: exp -> cons: exp -> subdefaults: list exp -> exp
(*** Operational semantics *)
@ -32,28 +32,25 @@ let c_err = ELit LConflictError
let e_err = ELit LEmptyError
val is_value : exp -> Tot bool
val is_value: exp -> Tot bool
let is_value e =
match e with
| EAbs _ _ _
| ELit _
-> true
| _ -> false
| EAbs _ _ _ | ELit _ -> true
| _ -> false
let rec subst (x: var) (e_x: exp) (e: exp) : Tot exp (decreases %[e;0]) =
let rec subst (x: var) (e_x e: exp) : Tot exp (decreases e) =
match e with
| EVar x' -> if x = x' then e_x else e
| EAbs x' t e1 ->
EAbs x' t (if x = x' then e1 else (subst x e_x e1))
| EAbs x' t e1 -> EAbs x' t (if x = x' then e1 else (subst x e_x e1))
| EApp e1 e2 tau_arg -> EApp (subst x e_x e1) (subst x e_x e2) tau_arg
| ELit l -> ELit l
| EIf e1 e2 e3 -> EIf (subst x e_x e1) (subst x e_x e2) (subst x e_x e3)
| EDefault ejust econd subs ->
EDefault (subst x e_x ejust) (subst x e_x econd) (subst_list x e_x subs)
and subst_list (x: var) (e_x: exp) (subs: list exp) : Tot (list exp) (decreases %[subs]) =
and subst_list (x: var) (e_x: exp) (subs: list exp) : Tot (list exp) (decreases subs) =
match subs with
| [] -> []
| hd::tl -> (subst x e_x hd)::(subst_list x e_x tl)
| hd :: tl -> (subst x e_x hd) :: (subst_list x e_x tl)
type empty_count_result =
| AllEmpty
@ -63,131 +60,122 @@ type empty_count_result =
let rec empty_count (acc: empty_count_result) (l: list exp) : Tot empty_count_result (decreases l) =
match l with
| [] -> acc
| hd::tl -> begin
| hd :: tl ->
match (hd, acc) with
| ELit (LEmptyError), AllEmpty -> empty_count AllEmpty tl
| ELit (LEmptyError), OneNonEmpty e -> empty_count (OneNonEmpty e) tl
| ELit LEmptyError, AllEmpty -> empty_count AllEmpty tl
| ELit LEmptyError, OneNonEmpty e -> empty_count (OneNonEmpty e) tl
| _, Conflict -> Conflict
| _, AllEmpty -> empty_count (OneNonEmpty hd) tl
| _ -> Conflict
end
(**** Stepping judgment *)
let rec step_app
(e: exp)
(e1: exp{e1 << e})
(e2: exp{e2 << e})
(tau_arg: ty{tau_arg << e})
: Tot (option exp) (decreases %[e; 0]) =
if is_value e1 then
let rec step_app (e: exp) (e1: exp{e1 << e}) (e2: exp{e2 << e}) (tau_arg: ty{tau_arg << e})
: Tot (option exp) (decreases %[ e; 0 ]) =
if is_value e1
then
match e1 with
| ELit LConflictError -> Some c_err
| ELit LEmptyError -> Some e_err
| _ -> begin
if is_value e2 then
| _ ->
if is_value e2
then
(match e1 with
| EAbs x t e' -> Some (subst x e2 e')
| _ -> None)
| EAbs x t e' -> Some (subst x e2 e')
| _ -> None)
else
(match step e2 with
| Some (ELit LConflictError) -> Some (ELit LConflictError)
| Some (ELit LEmptyError) -> Some (ELit LEmptyError)
| Some e2' -> Some (EApp e1 e2' tau_arg)
| None -> None)
end
| Some (ELit LConflictError) -> Some (ELit LConflictError)
| Some (ELit LEmptyError) -> Some (ELit LEmptyError)
| Some e2' -> Some (EApp e1 e2' tau_arg)
| None -> None)
else
(match step e1 with
| Some (ELit LConflictError) -> Some c_err
| Some (ELit LEmptyError) -> Some e_err
| Some e1' -> Some (EApp e1' e2 tau_arg)
| None -> None)
| Some (ELit LConflictError) -> Some c_err
| Some (ELit LEmptyError) -> Some e_err
| Some e1' -> Some (EApp e1' e2 tau_arg)
| None -> None)
and step_if
(e: exp)
(e1: exp{e1 << e})
(e2: exp{e2 << e})
(e3: exp{e3 << e})
: Tot (option exp) (decreases %[e; 1]) =
if is_value e1 then
and step_if (e: exp) (e1: exp{e1 << e}) (e2: exp{e2 << e}) (e3: exp{e3 << e})
: Tot (option exp) (decreases %[ e; 1 ]) =
if is_value e1
then
match e1 with
| ELit LConflictError -> Some c_err
| ELit LEmptyError -> Some e_err
| ELit LTrue -> Some e2
| ELit LFalse -> Some e3
| _ -> None
| ELit LTrue -> Some e2
| ELit LFalse -> Some e3
| _ -> None
else
match (step e1) with
| Some (ELit LConflictError) -> Some c_err
| Some (ELit LEmptyError) -> Some e_err
| Some e1' -> Some (EIf e1' e2 e3)
| None -> None
| None -> None
and step_subdefaults_left_to_right
(e: exp)
(just:exp{just << e})
(cons:exp{cons << e})
(subs: list exp{subs << e})
: Tot (option exp) (decreases %[e; 2; subs])
=
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
: Tot (option exp) (decreases %[ e; 2; subs ]) =
match subs with
| [] -> Some (EDefault just cons [])
| hd::tl ->
if is_value hd then
| hd :: tl ->
if is_value hd
then
match step_subdefaults_left_to_right e just cons tl with
| Some (ELit LConflictError) -> Some c_err
| Some (EDefault just cons tl') -> Some (EDefault just cons (hd::tl'))
| Some (EDefault just cons tl') -> Some (EDefault just cons (hd :: tl'))
| _ -> None
else
match step hd with
| Some (ELit LConflictError) -> Some c_err
| Some hd' -> Some (EDefault just cons (hd'::tl))
| Some hd' -> Some (EDefault just cons (hd' :: tl))
| _ -> None
and step_subdefaults_just_false
(e: exp)
(just:exp{just << e})
(cons:exp{cons << e})
(subs: list exp{subs << e}) : Tot (option exp) (decreases %[e; 3]) =
if List.Tot.for_all (fun sub -> is_value sub) subs then
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
: Tot (option exp) (decreases %[ e; 3 ]) =
if List.Tot.for_all (fun sub -> is_value sub) subs
then
match empty_count AllEmpty subs with
| AllEmpty -> Some (ELit LEmptyError) (* D-DefaultFalseNoSub *)
| OneNonEmpty e' -> Some e' (* D-DefaultFalseOneSub *)
| Conflict -> Some (ELit LConflictError) (* D-DefaultFalseSubConflict *)
| Conflict ->
(* D-DefaultFalseSubConflict *)
Some (ELit LConflictError)
else
match step_subdefaults_left_to_right e just cons subs with
| Some e' -> Some e'
| _ -> None
and step_default
(e: exp)
(just:exp{just << e})
(cons:exp{cons << e})
(subs: list exp{subs << e}) : Tot (option exp) (decreases %[e; 4]) =
if is_value just then begin
and step_default (e: exp) (just: exp{just << e}) (cons: exp{cons << e}) (subs: list exp {subs << e})
: Tot (option exp) (decreases %[ e; 4 ]) =
if is_value just
then
match just with
| ELit LConflictError -> Some c_err
| ELit LEmptyError -> Some e_err
| _ -> begin
| _ ->
match just, cons with
| EAbs _ _ _, EAbs _ _ _ ->
None
| ELit LTrue, ELit LEmptyError ->
Some (EDefault (ELit LFalse) cons subs)
| EAbs _ _ _, EAbs _ _ _ -> None
| ELit LTrue, ELit LEmptyError -> Some (EDefault (ELit LFalse) cons subs)
| ELit LTrue, _ ->
(* D-DefaultTrueError *)
| ELit LTrue, _ (* D-DefaultTrueNoError *) ->
if is_value cons then
Some cons
else begin
match (step cons) with
| Some (ELit LConflictError) -> Some c_err
| Some cons' -> Some (EDefault just cons' subs)
| None -> None
end
| ELit LFalse, _ -> step_subdefaults_just_false e just cons subs
| _ -> None
end
end
(* D-DefaultTrueNoError *)
if is_value cons
then Some cons
else
(match (step cons) with
| Some (ELit LConflictError) -> Some c_err
| Some cons' -> Some (EDefault just cons' subs)
| None -> None)
| ELit LFalse, _ -> step_subdefaults_just_false e just cons subs
| _ -> None
else
match (step just) with
| Some just' -> Some (EDefault just' cons subs)
@ -195,7 +183,7 @@ and step_default
| Some (ELit LEmptyError) -> Some e_err
| None -> None
and step (e: exp) : Tot (option exp) (decreases %[e; 5]) =
and step (e: exp) : Tot (option exp) (decreases %[ e; 5 ]) =
match e with
| EApp e1 e2 tau_arg -> step_app e e1 e2 tau_arg
| EIf e1 e2 e3 -> step_if e e1 e2 e3
@ -207,10 +195,10 @@ let _ =
let e0 = EApp (EAbs 0 TBool (EIf (EVar 0) (ELit LFalse) (ELit LTrue))) (ELit LTrue) TBool in
let e1 = EIf (ELit LTrue) (ELit LFalse) (ELit LTrue) in
let e1' = step e0 in
assert_norm(e1' == Some e1);
assert_norm (e1' == Some e1);
let e2 = ELit LFalse in
let e2' = step e1 in
assert_norm(e2' == Some e2)
assert_norm (e2' == Some e2)
(*** Typing *)
@ -218,10 +206,10 @@ let _ =
type env = var -> Tot (option ty)
val empty : env
val empty:env
let empty = fun _ -> None
val extend : env -> var -> ty -> Tot env
val extend: env -> var -> ty -> Tot env
let extend g x t = fun x' -> if x = x' then Some t else g x'
(**** Typing judgment *)
@ -229,127 +217,110 @@ let extend g x t = fun x' -> if x = x' then Some t else g x'
let rec typing (g: env) (e: exp) (tau: ty) : Tot bool (decreases (e)) =
match e with
| EVar x -> g x = Some tau
| EAbs x t e1 -> begin
match tau with
| TArrow tau_in tau_out ->
t = tau_in && typing (extend g x t) e1 tau_out
| _ -> false
end
| EApp e1 e2 tau_arg ->
typing g e1 (TArrow tau_arg tau) && typing g e2 tau_arg
| ELit LTrue -> tau = TBool
| EAbs x t e1 ->
(match tau with
| TArrow tau_in tau_out -> t = tau_in && typing (extend g x t) e1 tau_out
| _ -> false)
| EApp e1 e2 tau_arg -> typing g e1 (TArrow tau_arg tau) && typing g e2 tau_arg
| ELit LTrue -> tau = TBool
| ELit LFalse -> tau = TBool
| ELit LEmptyError -> true
| ELit LConflictError -> true
| EIf e1 e2 e3 -> typing g e1 TBool && typing g e2 tau && typing g e3 tau
| EDefault ejust econs subs ->
(* T-Default *)
typing g ejust TBool && typing g econs tau &&
typing_list g subs tau
typing g ejust TBool && typing g econs tau && typing_list g subs tau (* T-Default *)
| _ -> false
and typing_list (g: env) (subs: list exp) (tau: ty)
: Tot bool (decreases (subs))
=
and typing_list (g: env) (subs: list exp) (tau: ty) : Tot bool (decreases (subs)) =
match subs with
| [] -> true
| hd::tl -> typing g hd tau && typing_list g tl tau
| hd :: tl -> typing g hd tau && typing_list g tl tau
(*** Progress *)
(**** Progress lemmas *)
let is_bool_value_cannot_be_abs (g: env) (e: exp) : Lemma
(requires (is_value e /\ (typing g e TBool))) (ensures (
match e with
| ELit LUnit -> False
| ELit _ -> True
| _ -> False
))
= ()
let is_bool_value_cannot_be_abs (g: env) (e: exp)
: Lemma (requires (is_value e /\ (typing g e TBool)))
(ensures
(match e with
| ELit LUnit -> False
| ELit _ -> True
| _ -> False)) = ()
let typing_conserved_by_list_reduction
(g: env)
(subs: list exp)
(tau: ty)
: Lemma
(requires (
(typing_list g subs tau)
))
(ensures (Cons? subs ==> (typing_list g (Cons?.tl subs) tau)))
=
()
let typing_conserved_by_list_reduction (g: env) (subs: list exp) (tau: ty)
: Lemma (requires ((typing_list g subs tau)))
(ensures (Cons? subs ==> (typing_list g (Cons?.tl subs) tau))) = ()
(**** Progress theorem *)
#push-options "--fuel 2 --ifuel 1"
let rec progress (e:exp) (tau: ty) : Lemma
(requires (typing empty e tau))
let rec progress (e: exp) (tau: ty)
: Lemma (requires (typing empty e tau))
(ensures (is_value e \/ (Some? (step e))))
(decreases %[e; 3])
=
(decreases %[ e; 3 ]) =
match e with
| EApp e1 e2 tau_arg ->
progress e1 (TArrow tau_arg tau); progress e2 tau_arg
| EIf e1 e2 e3 -> progress e1 TBool; progress e2 tau; progress e3 tau;
if is_value e1 then is_bool_value_cannot_be_abs empty e1 else ()
| EDefault just cons subs ->
if is_value e then () else progress_defaults e just cons subs tau
progress e1 (TArrow tau_arg tau);
progress e2 tau_arg
| EIf e1 e2 e3 ->
progress e1 TBool;
progress e2 tau;
progress e3 tau;
if is_value e1 then is_bool_value_cannot_be_abs empty e1
| EDefault just cons subs -> if is_value e then () else progress_defaults e just cons subs tau
| _ -> ()
and progress_defaults
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp{subs << e})
(tau: ty) : Lemma
(requires (~ (is_value e) /\ e == EDefault just cons subs /\ (typing empty e tau)))
(ensures (Some? (step_default e just cons subs)))
(decreases %[e; 2])
=
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
(tau: ty)
: Lemma (requires (~(is_value e) /\ e == EDefault just cons subs /\ (typing empty e tau)))
(ensures (Some? (step_default e just cons subs)))
(decreases %[ e; 2 ]) =
progress just TBool;
if is_value just then begin
is_bool_value_cannot_be_abs empty just;
match just, cons with
| ELit LTrue, ELit LEmptyError -> ()
| ELit LTrue, _ -> progress cons tau
| ELit LFalse, _ -> progress_defaults_just_false e just cons subs tau
| ELit LEmptyError, _ | ELit LConflictError, _ -> ()
end else ()
if is_value just
then
(is_bool_value_cannot_be_abs empty just;
match just, cons with
| ELit LTrue, ELit LEmptyError -> ()
| ELit LTrue, _ -> progress cons tau
| ELit LFalse, _ -> progress_defaults_just_false e just cons subs tau
| ELit LEmptyError, _ | ELit LConflictError, _ -> ())
and progress_defaults_just_false
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp{subs << e})
(tau: ty) : Lemma
(requires (
~ (is_value e) /\ just == ELit LFalse /\
e == EDefault (ELit LFalse) cons subs /\ (typing empty e tau)
))
(ensures (Some? (step_subdefaults_just_false e just cons subs)))
(decreases %[e; 1])
=
if List.Tot.for_all (fun sub -> is_value sub) subs then () else
progress_defaults_left_to_right e just cons subs tau
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
(tau: ty)
: Lemma
(requires
(~(is_value e) /\ just == ELit LFalse /\ e == EDefault (ELit LFalse) cons subs /\
(typing empty e tau)))
(ensures (Some? (step_subdefaults_just_false e just cons subs)))
(decreases %[ e; 1 ]) =
if List.Tot.for_all (fun sub -> is_value sub) subs
then ()
else progress_defaults_left_to_right e just cons subs tau
and progress_defaults_left_to_right
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp{subs << e})
(tau: ty) : Lemma
(requires (
~ (is_value e) /\ just == ELit LFalse /\
(typing empty (EDefault just cons subs) tau)
))
(ensures (Some? (step_subdefaults_left_to_right e just cons subs)))
(decreases %[e; 0; subs])
=
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
(tau: ty)
: Lemma
(requires
(~(is_value e) /\ just == ELit LFalse /\ (typing empty (EDefault just cons subs) tau)))
(ensures (Some? (step_subdefaults_left_to_right e just cons subs)))
(decreases %[ e; 0; subs ]) =
match subs with
| [] -> ()
| hd::tl ->
| hd :: tl ->
progress hd tau;
if is_value hd then begin
typing_conserved_by_list_reduction empty subs tau;
progress_defaults_left_to_right e just cons tl tau
end else ()
if is_value hd
then
(typing_conserved_by_list_reduction empty subs tau;
progress_defaults_left_to_right e just cons tl tau)
#pop-options
(*** Preservation *)
@ -357,153 +328,134 @@ and progress_defaults_left_to_right
(**** Preservation helpers *)
let rec empty_count_preserves_type (acc: empty_count_result) (subs: list exp) (g: env) (tau: ty)
: Lemma
(requires (typing_list g subs tau /\ (match acc with
| OneNonEmpty e' -> typing g e' tau
| _ -> True
)))
(ensures (match empty_count acc subs with
| OneNonEmpty e' -> typing g e' tau
| _ -> True
))
(decreases subs)
=
: Lemma
(requires
(typing_list g subs tau /\
(match acc with
| OneNonEmpty e' -> typing g e' tau
| _ -> True)))
(ensures
(match empty_count acc subs with
| OneNonEmpty e' -> typing g e' tau
| _ -> True))
(decreases subs) =
match subs with
| [] -> ()
| hd::tl -> begin
| hd :: tl ->
match (hd, acc) with
| ELit (LEmptyError), AllEmpty -> empty_count_preserves_type AllEmpty tl g tau
| ELit (LEmptyError), OneNonEmpty e -> empty_count_preserves_type (OneNonEmpty e) tl g tau
| ELit LEmptyError, AllEmpty -> empty_count_preserves_type AllEmpty tl g tau
| ELit LEmptyError, OneNonEmpty e -> empty_count_preserves_type (OneNonEmpty e) tl g tau
| _, Conflict -> ()
| _, AllEmpty -> empty_count_preserves_type (OneNonEmpty hd) tl g tau
| _ -> ()
end
let rec appears_free_in (x: var) (e: exp) : Tot bool =
match e with
| EVar y -> x = y
| EApp e1 e2 tau_arg -> appears_free_in x e1 || appears_free_in x e2
| EAbs y _ e1 -> x <> y && appears_free_in x e1
| EIf e1 e2 e3 ->
appears_free_in x e1 || appears_free_in x e2 || appears_free_in x e3
| EIf e1 e2 e3 -> appears_free_in x e1 || appears_free_in x e2 || appears_free_in x e3
| EDefault ejust econs subs ->
appears_free_in x ejust || appears_free_in x econs ||
appears_free_in_list x subs
| ELit _ -> false
appears_free_in x ejust || appears_free_in x econs || appears_free_in_list x subs
| ELit _ -> false
and appears_free_in_list (x: var) (subs: list exp) : Tot bool =
match subs with
| [] -> false
| hd::tl -> appears_free_in x hd || appears_free_in_list x tl
| hd :: tl -> appears_free_in x hd || appears_free_in_list x tl
#push-options "--fuel 2 --ifuel 1"
let rec free_in_context (x:var) (e:exp) (g:env) (tau: ty) : Lemma
(requires (typing g e tau))
let rec free_in_context (x: var) (e: exp) (g: env) (tau: ty)
: Lemma (requires (typing g e tau))
(ensures (appears_free_in x e ==> Some? (g x)))
(decreases %[e])
=
(decreases e) =
match e with
| EVar _
| ELit _ -> ()
| EAbs y t e1 -> begin
match tau with
| TArrow _ tau_out -> free_in_context x e1 (extend g y t) tau_out
end
| EVar _ | ELit _ -> ()
| EAbs y t e1 ->
(match tau with | TArrow _ tau_out -> free_in_context x e1 (extend g y t) tau_out)
| EApp e1 e2 tau_arg ->
free_in_context x e1 g (TArrow tau_arg tau);
free_in_context x e2 g tau_arg
| EIf e1 e2 e3 -> free_in_context x e1 g TBool;
free_in_context x e2 g tau; free_in_context x e3 g tau
| EDefault ejust econs subs -> begin
| EIf e1 e2 e3 ->
free_in_context x e1 g TBool;
free_in_context x e2 g tau;
free_in_context x e3 g tau
| EDefault ejust econs subs ->
free_in_context x ejust g TBool;
free_in_context x econs g tau;
free_in_context_list x subs g tau
end
and free_in_context_list (x:var) (subs:list exp) (g:env) (tau: ty) : Lemma
(requires (typing_list g subs tau))
and free_in_context_list (x: var) (subs: list exp) (g: env) (tau: ty)
: Lemma (requires (typing_list g subs tau))
(ensures (appears_free_in_list x subs ==> Some? (g x)))
(decreases %[subs])
=
(decreases subs) =
match subs with
| [] -> ()
| hd::tl ->
| hd :: tl ->
free_in_context x hd g tau;
free_in_context_list x tl g tau
#pop-options
let typable_empty_closed (x:var) (e:exp) (tau: ty) : Lemma
(requires (typing empty e tau))
(ensures (not(appears_free_in x e)))
[SMTPat (appears_free_in x e); SMTPat (typing empty e tau)]
= free_in_context x e empty tau
let typable_empty_closed (x: var) (e: exp) (tau: ty)
: Lemma (requires (typing empty e tau))
(ensures (not (appears_free_in x e)))
[SMTPat (appears_free_in x e); SMTPat (typing empty e tau)] = free_in_context x e empty tau
(**** Context invariance *)
type equal (g1:env) (g2:env) = forall (x:var). g1 x = g2 x
type equal (g1: env) (g2: env) = forall (x: var). g1 x = g2 x
type equalE (e:exp) (g1:env) (g2:env) =
forall (x:var). appears_free_in x e ==> g1 x = g2 x
type equalE (e: exp) (g1: env) (g2: env) = forall (x: var). appears_free_in x e ==> g1 x = g2 x
type equalE_list (subs:list exp) (g1:env) (g2:env) =
forall (x:var). appears_free_in_list x subs ==> g1 x = g2 x
type equalE_list (subs: list exp) (g1: env) (g2: env) =
forall (x: var). appears_free_in_list x subs ==> g1 x = g2 x
#push-options "--fuel 2 --ifuel 1"
let rec context_invariance (e:exp) (g:env) (g':env) (tau: ty) : Lemma
(requires (equalE e g g'))
(ensures (typing g e tau <==> typing g' e tau))
(decreases %[e])
=
let rec context_invariance (e: exp) (g g': env) (tau: ty)
: Lemma (requires (equalE e g g'))
(ensures (typing g e tau <==> typing g' e tau))
(decreases %[ e ]) =
match e with
| EAbs x t e1 -> begin
match tau with
| TArrow _ tau_out ->
context_invariance e1 (extend g x t) (extend g' x t) tau_out
| _ -> ()
end
| EAbs x t e1 ->
(match tau with
| TArrow _ tau_out -> context_invariance e1 (extend g x t) (extend g' x t) tau_out
| _ -> ())
| EApp e1 e2 tau_arg ->
context_invariance e1 g g' (TArrow tau_arg tau);
context_invariance e2 g g' tau_arg
context_invariance e1 g g' (TArrow tau_arg tau);
context_invariance e2 g g' tau_arg
| EIf e1 e2 e3 ->
context_invariance e1 g g' TBool;
context_invariance e2 g g' tau;
context_invariance e3 g g' tau
| EDefault ejust econs subs -> begin
context_invariance e1 g g' TBool;
context_invariance e2 g g' tau;
context_invariance e3 g g' tau
| EDefault ejust econs subs ->
context_invariance ejust g g' TBool;
context_invariance econs g g' tau;
context_invariance_list subs g g' tau
end
| _ -> ()
and context_invariance_list (subs:list exp) (g:env) (g':env) (tau: ty) : Lemma
(requires (equalE_list subs g g'))
(ensures (typing_list g subs tau <==> typing_list g' subs tau))
(decreases %[subs])
=
and context_invariance_list (subs: list exp) (g g': env) (tau: ty)
: Lemma (requires (equalE_list subs g g'))
(ensures (typing_list g subs tau <==> typing_list g' subs tau))
(decreases %[ subs ]) =
match subs with
| [] -> ()
| hd::tl ->
| hd :: tl ->
context_invariance hd g g' tau;
context_invariance_list tl g g' tau
#pop-options
let typing_extensional (g:env) (g':env) (e:exp) (tau: ty) : Lemma
(requires (equal g g'))
(ensures (typing g e tau <==> typing g' e tau))
= context_invariance e g g' tau
let typing_extensional (g g': env) (e: exp) (tau: ty)
: Lemma (requires (equal g g')) (ensures (typing g e tau <==> typing g' e tau)) =
context_invariance e g g' tau
(**** Substitution preservation *)
#push-options "--fuel 1 --ifuel 1 --z3rlimit 10"
let rec substitution_preserves_typing (x:var) (tau_x: ty) (e:exp) (v:exp) (g:env) (tau: ty)
: Lemma
(requires (typing empty v tau_x /\ typing (extend g x tau_x) e tau))
let rec substitution_preserves_typing (x: var) (tau_x: ty) (e v: exp) (g: env) (tau: ty)
: Lemma (requires (typing empty v tau_x /\ typing (extend g x tau_x) e tau))
(ensures (typing g (subst x v e) tau))
(decreases %[e])
=
(decreases %[ e ]) =
let gx = extend g x tau_x in
match e with
| ELit _ -> ()
| EVar y ->
if x=y then context_invariance v empty g tau
else context_invariance e gx g tau
| EVar y -> if x = y then context_invariance v empty g tau else context_invariance e gx g tau
| EApp e1 e2 tau_arg ->
substitution_preserves_typing x tau_x e1 v g (TArrow tau_arg tau);
substitution_preserves_typing x tau_x e2 v g tau_arg
@ -511,36 +463,37 @@ let rec substitution_preserves_typing (x:var) (tau_x: ty) (e:exp) (v:exp) (g:env
substitution_preserves_typing x tau_x e1 v g TBool;
substitution_preserves_typing x tau_x e2 v g tau;
substitution_preserves_typing x tau_x e3 v g tau
| EAbs y t_y e1 -> begin
match tau with
| TArrow tau_in tau_out ->
if tau_in = t_y then begin
let gxy = extend gx y t_y in
let gy = extend g y t_y in
if x = y then
typing_extensional gxy gy e1 tau_out
else begin
let gyx = extend gy x tau_x in
typing_extensional gxy gyx e1 tau_out;
substitution_preserves_typing x tau_x e1 v gy tau_out
end
end else ()
| _ -> ()
end
| EAbs y t_y e1 ->
(match tau with
| TArrow tau_in tau_out ->
if tau_in = t_y
then
let gxy = extend gx y t_y in
let gy = extend g y t_y in
if x = y
then typing_extensional gxy gy e1 tau_out
else
let gyx = extend gy x tau_x in
typing_extensional gxy gyx e1 tau_out;
substitution_preserves_typing x tau_x e1 v gy tau_out
| _ -> ())
| EDefault ejust econs subs ->
substitution_preserves_typing x tau_x ejust v g TBool;
substitution_preserves_typing x tau_x econs v g tau;
substitution_preserves_typing_list x tau_x subs v g tau
and substitution_preserves_typing_list
(x:var) (tau_x: ty) (subs:list exp) (v:exp) (g:env) (tau: ty)
: Lemma
(requires (typing empty v tau_x /\ typing_list (extend g x tau_x) subs tau))
(x: var)
(tau_x: ty)
(subs: list exp)
(v: exp)
(g: env)
(tau: ty)
: Lemma (requires (typing empty v tau_x /\ typing_list (extend g x tau_x) subs tau))
(ensures (typing_list g (subst_list x v subs) tau))
(decreases (%[subs]))
=
(decreases (%[ subs ])) =
match subs with
| [] -> ()
| hd::tl ->
| hd :: tl ->
substitution_preserves_typing x tau_x hd v g tau;
substitution_preserves_typing_list x tau_x tl v g tau
#pop-options
@ -548,74 +501,67 @@ and substitution_preserves_typing_list
(**** Preservation theorem *)
#push-options "--fuel 3 --ifuel 1 --z3rlimit 20"
let rec preservation (e:exp) (tau: ty) : Lemma
(requires (typing empty e tau /\ Some? (step e)))
(ensures (typing empty (Some?.v (step e)) tau))
(decreases %[e])
=
let rec preservation (e: exp) (tau: ty)
: Lemma (requires (typing empty e tau /\ Some? (step e)))
(ensures (typing empty (Some?.v (step e)) tau))
(decreases %[ e ]) =
match e with
| ELit _ -> ()
| EVar _ -> ()
| EIf e1 e2 e3 ->
if not (is_value e1) then preservation e1 TBool
| EIf e1 e2 e3 -> if not (is_value e1) then preservation e1 TBool
| EApp e1 e2 tau_arg ->
if is_value e1 then
if is_value e1
then
match e1 with
| ELit LConflictError | ELit LEmptyError -> ()
| _ ->
if is_value e2 then
if is_value e2
then
match e1 with
| EAbs x _ ebody ->
substitution_preserves_typing x tau_arg ebody e2 empty tau
| EAbs x _ ebody -> substitution_preserves_typing x tau_arg ebody e2 empty tau
| _ -> ()
else
preservation e2 tau_arg
else
preservation e1 (TArrow tau_arg tau)
else preservation e2 tau_arg
else preservation e1 (TArrow tau_arg tau)
| EDefault just cons subs ->
if not (is_value just) then
preservation just TBool
else begin match just, cons with
| ELit LTrue, _ ->
if not (is_value cons) then
preservation cons tau
else ()
| ELit LFalse , _->
if List.Tot.for_all (fun sub -> is_value sub) subs then
match empty_count AllEmpty subs with
| AllEmpty -> ()
| OneNonEmpty e' -> empty_count_preserves_type AllEmpty subs empty tau
| Conflict -> ()
else preservation_subdefaults_left_to_right e just cons subs tau
| _ -> ()
end
if not (is_value just)
then preservation just TBool
else
(match just, cons with
| ELit LTrue, _ -> if not (is_value cons) then preservation cons tau
| ELit LFalse, _ ->
if List.Tot.for_all (fun sub -> is_value sub) subs
then
match empty_count AllEmpty subs with
| AllEmpty -> ()
| OneNonEmpty e' -> empty_count_preserves_type AllEmpty subs empty tau
| Conflict -> ()
else preservation_subdefaults_left_to_right e just cons subs tau
| _ -> ())
| _ -> ()
and preservation_subdefaults_left_to_right
(e: exp)
(just:exp{just << e})
(cons:exp{cons << e})
(subs: list exp{subs << e})
(tau: ty)
(e: exp)
(just: exp{just << e})
(cons: exp{cons << e})
(subs: list exp {subs << e})
(tau: ty)
: Lemma
(requires (
typing empty (EDefault just cons subs) tau /\
Some? (step_subdefaults_left_to_right e just cons subs)
))
(ensures (
Nil? subs \/ typing empty (Some?.v (step_subdefaults_left_to_right e just cons subs)) tau
))
(decreases %[subs])
=
(requires
(typing empty (EDefault just cons subs) tau /\
Some? (step_subdefaults_left_to_right e just cons subs)))
(ensures
(Nil? subs \/ typing empty (Some?.v (step_subdefaults_left_to_right e just cons subs)) tau))
(decreases %[ subs ]) =
match subs with
| [] -> ()
| hd::tl ->
if is_value hd then begin
typing_conserved_by_list_reduction empty subs tau;
preservation_subdefaults_left_to_right e just cons tl tau
end else begin
preservation hd tau;
match step hd with
| Some (ELit LConflictError) -> ()
| Some hd' -> ()
end
| hd :: tl ->
if is_value hd
then
(typing_conserved_by_list_reduction empty subs tau;
preservation_subdefaults_left_to_right e just cons tl tau)
else
(preservation hd tau;
match step hd with
| Some (ELit LConflictError) -> ()
| Some hd' -> ())
#pop-options