- Clearly distinguish Exceptions from Errors. The only catchable exception
available in our AST is `EmptyError`, so the corresponding nodes are made less
generic, and a node `FatalError` is added
- Runtime errors are defined as a specific type in the OCaml runtime, with a
carrier exception and printing functions. These are used throughout, and
consistently by the interpreter. They always carry a position, that can be
converted to be printed with the fancy compiler location printer, or in a
simpler way from the backends.
- All operators that might be subject to an error take a position as argument,
in order to print an informative message without relying on backtraces from
the backend
As part of making tuples first-class citizens, expliciting the arity upon
function application was needed (so that a function of two args can
transparently -- in the surface language -- be applied to either two arguments
or a pair).
It was decided to actually explicit the whole type of arguments because the cost
is the same, and this is consistent with lambda definitions.
A related change done here is the replacement of the `EOp` node for operators by
an "operator application" `EAppOp` node, enforcing a pervasive invariant that
operators are always directly applied. This makes matches terser, and highlights
the fact that the treatment of operator application is almost always different
from function application in practice.
This changes the `decl_ctx` to be toplevel only, with flattened references to
uids for most elements. The module hierarchy, which is still useful in a few
places, is kept separately.
Module names are also changed to UIDs early on, and support for module aliases
has been added (needs testing).
This resolves some issues with lookup, and should be much more robust, as well
as more convenient for most lookups.
The `decl_ctx` was also extended for string ident lookups, which avoids having
to keep the desugared resolution structure available throughout the compilation
chain.
This patch functorises the generic expression printer, in order to be able to
re-use it for end-user printing.
It makes it possible to have an end-user, localised printer that shares the code
for e.g. priority and automatic parens handling.
A generic AST rewriting that disambiguates variables (very simple to write with
bindlib) is also added and used in the OCaml backend for something safer than
just appending `_user` (-- this also handles clashing variables that could be
introduced during compilation which would have generated wrong code before this)
Finally, the `explain` plugin is adapted to use the new printer.
Ah, and `String.format_t` was tweaked to correctly print strings that might
contain unicode without breaking alignment, and should be used instead of
`format_string` or `%s` whenever unicode can be expected.
Two interdependent changes here:
1. Enforce all instances of Shared_ast.gexpr to use the generic type for marks.
This makes the interfaces a tad simpler to manipulate: you now write
`('a, 'm) gexpr` rather than `('a, 'm mark) gexpr`.
2. Define a polymorphic `Custom` mark case for use by pass-specific annotations.
And leverage this in the typing module
- Fix the printer for scopes
- Improve the printer for struct types
- Remove `Print.expr'`. Use `Expr.format` as the function with simplified arguments instead.
- `Print.expr` no longer needs the context
- This removes the need for `expr ~debug` + `expr_debug` ;
use `Print.expr` for normal (non-debug) output,
and `Print.expr' ?debug ()` for possibly debug output.
- This improves consistency of debug expr output in many places
- Prints simplified operators (without type suffix) in non-verbose mode
(this patch also fixes some cases of `Expr.skip_wrappers` and leverages the
binder equality provided by Bindlib)
The phantom polymorphic variant qualifying AST nodes is reversed:
- previously, we were explicitely restricting each AST node to the passes where it belonged using a closed type (e.g. `[< dcalc | lcalc]`)
- now, each node instead declares the "feature" it provides using an open type (e.g. `[> 'Exceptions ]`)
- then the AST for a specific pass limits the features it allows with a closed type
The result is that you can mix and match all features if you wish,
even if the result is not a valid AST for any given pass. More
interestingly, it's now easier to write a function that works on
different ASTs at once (it's the inferred default if you don't write a
type restriction).
The opportunity was also taken to simplify the encoding of the
operators, which don't need a second type parameter anymore.
This uses the same disambiguation mechanism put in place for
structures, calling the typer on individual rules on the desugared AST
to propagate types, in order to resolve ambiguous operators like `+`
to their strongly typed counterparts (`+!`, `+.`, `+$`, `+@`, `+$`) in
the translation to scopelang.
The patch includes some normalisation of the definition of all the
operators, and classifies them based on their typing policy instead of
their arity. It also adds a little more flexibility:
- a couple new operators, like `-` on date and duration
- optional type annotation on some aggregation constructions
The `Shared_ast` lib is also lightly restructured, with the `Expr`
module split into `Type`, `Operator` and `Expr`.
Many changes got bundled in here and would be too tedious to separate.
Closes#330
See changes in `shared_ast/definitions.ml` to check the main point.
- the biggest change is a modification of the struct and enum types in
expressions: they are now stored as `Map`s throughout passes, and no longer
converted to indexed lists after scopelang. Their accessors are also changed,
and tuples only exist in Lcalc (they're used for closure conversion).
This implied adding some more information in the contexts, to keep the mapping
between struct fields and scope output variables. It should also be much more
robust (no longer relying on assumptions upon different orderings).
- another very pervasive change is more cosmetic: the rewrite of the main AST to
use inline records, labelling individual subfields.
- moved the checks for correct definitions and accesses of structures from
`Scope_to_dcalc` to `Typing`
- defining some new shallow iterators in module `Shared_ast.Expr`, and
factorising a few same-pass rewriting functions accordingly (closure
conversion, optimisations, etc.)
- some smaller style improvements (ensuring we use the proper compare/equal
functions instead of `=` in a few `when` closes, for example)
Note that there were significant differences between the two printers (see the test diff!). Overall the `dcalc` one seemed newer so that's what I took, with only the required additions from `lcalc` (exceptions, raise and catch)