(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Nicolas Chataing Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Scope dependencies computations using {{:http://ocamlgraph.lri.fr/} OCamlgraph} *) open Catala_utils open Shared_ast (** {1 Scope variables dependency graph} *) (** {2 Graph declaration} *) (** Vertices: scope variables or subscopes. The vertices of the scope dependency graph are either : - the variables of the scope ; - the subscopes of the scope. Indeed, during interpretation, subscopes are executed atomically. *) module Vertex = struct type t = | Var of ScopeVar.t * StateName.t option | Assertion of Ast.AssertionName.t let hash x = match x with | Var (x, None) -> ScopeVar.id x | Var (x, Some sx) -> Hashtbl.hash (ScopeVar.id x, StateName.id sx) | Assertion a -> Hashtbl.hash (`Assert (Ast.AssertionName.id a)) let compare x y = match x, y with | Var (x, xst), Var (y, yst) -> ( match ScopeVar.compare x y with | 0 -> Option.compare StateName.compare xst yst | n -> n) | Assertion a, Assertion b -> Ast.AssertionName.compare a b | Var _, _ -> -1 | _, Var _ -> 1 let equal x y = match x, y with | Var (x, sx), Var (y, sy) -> ScopeVar.equal x y && Option.equal StateName.equal sx sy | Assertion a, Assertion b -> Ast.AssertionName.equal a b | (Var _ | Assertion _), _ -> false let format (fmt : Format.formatter) (x : t) : unit = match x with | Var (v, None) -> ScopeVar.format fmt v | Var (v, Some sv) -> Format.fprintf fmt "%a@%a" ScopeVar.format v StateName.format sv | Assertion a -> Ast.AssertionName.format fmt a let info = function | Var (v, None) -> ScopeVar.get_info v | Var (_, Some sv) -> StateName.get_info sv | Assertion a -> Ast.AssertionName.get_info a end (** On the edges, the label is the position of the expression responsible for the use of the variable. In the graph, [x -> y] if [x] is used in the definition of [y].*) module Edge = struct type t = Pos.t let compare = compare let default = Pos.no_pos end module ScopeDependencies = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (Vertex) (Edge) (** Module of the graph, provided by OCamlGraph *) module TopologicalTraversal = Graph.Topological.Make (ScopeDependencies) (** Module of the topological traversal of the graph, provided by OCamlGraph *) module SCC = Graph.Components.Make (ScopeDependencies) (** Tarjan's stongly connected components algorithm, provided by OCamlGraph *) (** {2 Graph computations} *) (** Returns an ordering of the scope variables and subscope compatible with the dependencies of the computation *) let correct_computation_ordering (g : ScopeDependencies.t) : Vertex.t list = List.rev (TopologicalTraversal.fold (fun sd acc -> sd :: acc) g []) (** Outputs an error in case of cycles. *) let check_for_cycle (scope : Ast.scope) (g : ScopeDependencies.t) : unit = (* if there is a cycle, there will be a strongly connected component of cardinality > 1 *) let sccs = SCC.scc_list g in match List.find_opt (function [] | [_] -> false | _ -> true) sccs with | None -> () | Some [] -> assert false | Some (v0 :: _ as scc) -> let module VSet = Set.Make (Vertex) in let scc = VSet.of_list scc in let rec get_cycle cycle cycle_set v = let cycle = v :: cycle in let cycle_set = VSet.add v cycle_set in let succ = ScopeDependencies.succ g v in if List.exists (fun v -> VSet.mem v cycle_set) succ then (* a cycle may be smaller than the scc, in that case we just return the first one found *) let rec cut_after acc = function | [] -> acc | v :: vs -> if List.mem v succ then v :: acc else cut_after (v :: acc) vs in cut_after [] cycle else get_cycle cycle cycle_set (List.find (fun succ -> VSet.mem succ scc) succ) in let cycle = get_cycle [] VSet.empty v0 in let extra_pos = List.map2 (fun v1 v2 -> let msg = Format.asprintf "%a is used here in the definition of %a:" Vertex.format v1 Vertex.format v2 in let _, edge_pos, _ = ScopeDependencies.find_edge g v1 v2 in msg, edge_pos) cycle (List.tl cycle @ [List.hd cycle]) in Message.error ~extra_pos "Cyclic dependency detected between the following variables of scope \ %a:@ @[%a@]" ScopeName.format scope.scope_uid (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf " →@ ") Vertex.format) (cycle @ [List.hd cycle]) (** Builds the dependency graph of a particular scope *) let build_scope_dependencies (scope : Ast.scope) : ScopeDependencies.t = let g = ScopeDependencies.empty in (* Add all the vertices to the graph *) let g = ScopeVar.Map.fold (fun (v : ScopeVar.t) var_or_state g -> match var_or_state with | Ast.WholeVar -> ScopeDependencies.add_vertex g (Vertex.Var (v, None)) | Ast.States states -> List.fold_left (fun g state -> ScopeDependencies.add_vertex g (Vertex.Var (v, Some state))) g states) scope.scope_vars g in let g = ScopeVar.Map.fold (fun (v : ScopeVar.t) _ g -> ScopeDependencies.add_vertex g (Vertex.Var (v, None))) scope.scope_sub_scopes g in let g = Ast.AssertionName.Map.fold (fun a _ g -> ScopeDependencies.add_vertex g (Vertex.Assertion a)) scope.scope_assertions g in (* then add the edges *) let g = let to_vertex (var, kind) = match kind with | Ast.ScopeDef.Var st -> Vertex.Var (Mark.remove var, st) | Ast.ScopeDef.SubScopeInput _ -> Vertex.Var (Mark.remove var, None) in Ast.ScopeDef.Map.fold (fun def_key scope_def g -> let def = scope_def.Ast.scope_def_rules in let v_defined = to_vertex def_key in let fv = Ast.free_variables def in Ast.ScopeDef.Map.fold (fun fv_def fv_def_pos g -> let v_used = to_vertex fv_def in let () = if Vertex.equal v_used v_defined then match def_key with | _, Ast.ScopeDef.Var _ -> Message.error ~pos:fv_def_pos "The variable@ %a@ is@ used@ in@ one@ of@ its@ \ definitions@ (Catala doesn't support recursion)" Ast.ScopeDef.format def_key | v, Ast.ScopeDef.SubScopeInput _ -> Message.error ~pos:fv_def_pos "The subscope@ %a@ is@ used@ in@ the@ definition@ of@ its@ \ own@ input@ %a@ (Catala doesn't support recursion)" ScopeVar.format (Mark.remove v) Ast.ScopeDef.format def_key in ScopeDependencies.add_edge_e g (ScopeDependencies.E.create v_used fv_def_pos v_defined)) fv g) scope.scope_defs g in let g = Ast.AssertionName.Map.fold (fun a_name a g -> let used_vars = Ast.locations_used (Expr.unbox a) in Ast.LocationSet.fold (fun used_var g -> let edge_from = match Mark.remove used_var with | DesugaredScopeVar { name; state } -> Some (Vertex.Var (Mark.remove name, state)) | ToplevelVar _ -> None (* we don't add this dependency because toplevel definitions are outside the scope *) in match edge_from with | None -> g | Some edge_from -> let edge = ScopeDependencies.E.create edge_from (Expr.pos a) (Vertex.Assertion a_name) in ScopeDependencies.add_edge_e g edge) used_vars g) scope.scope_assertions g in g (** {1 Exceptions dependency graph} *) (** {2 Graph declaration} *) module ExceptionVertex = struct type t = { rules : Pos.t RuleName.Map.t; label : LabelName.t } let compare x y = RuleName.Map.compare (fun _ _ -> 0 (* we don't care about positions here*)) x.rules y.rules let hash (x : t) : int = RuleName.Map.fold (fun r _ acc -> Hashtbl.hash (RuleName.id r, acc)) x.rules 0 let equal x y = compare x y = 0 end module EdgeExceptions = struct type t = Pos.t list let compare = compare let default = [Pos.no_pos] end module ExceptionsDependencies = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (ExceptionVertex) (EdgeExceptions) (** Module of the graph, provided by OCamlGraph. [x -> y] if [y] is an exception to [x] *) module ExceptionsSCC = Graph.Components.Make (ExceptionsDependencies) (** Tarjan's stongly connected components algorithm, provided by OCamlGraph *) (** {2 Graph computations} *) type exception_edge = { label_from : LabelName.t; label_to : LabelName.t; edge_positions : Pos.t list; } let build_exceptions_graph (def : Ast.rule RuleName.Map.t) (def_info : Ast.ScopeDef.t) : ExceptionsDependencies.t = (* First we partition the definitions into groups bearing the same label. To handle the rules that were not labeled by the user, we create implicit labels. *) (* All the rules of the form [definition x ...] are base case with no explicit label, so they should share this implicit label. *) let base_case_implicit_label = LabelName.fresh ("base_case", Pos.no_pos) in (* When declaring [exception definition x ...], it means there is a unique rule [R] to which this can be an exception to. So we give a unique label to all the rules that are implicitly exceptions to rule [R]. *) let exception_to_rule_implicit_labels : LabelName.t RuleName.Map.t = RuleName.Map.fold (fun _ rule_from exception_to_rule_implicit_labels -> match rule_from.Ast.rule_exception with | Ast.ExceptionToRule (rule_to, _) -> ( match RuleName.Map.find_opt rule_to exception_to_rule_implicit_labels with | Some _ -> (* we already created the label *) exception_to_rule_implicit_labels | None -> RuleName.Map.add rule_to (LabelName.fresh ( "exception_to_" ^ Mark.remove (RuleName.get_info rule_to), Pos.no_pos )) exception_to_rule_implicit_labels) | _ -> exception_to_rule_implicit_labels) def RuleName.Map.empty in (* When declaring [exception foo_l definition x ...], the rule is exception to all the rules sharing label [foo_l]. So we give a unique label to all the rules that are implicitly exceptions to rule [foo_l]. *) let exception_to_label_implicit_labels : LabelName.t LabelName.Map.t = RuleName.Map.fold (fun _ rule_from (exception_to_label_implicit_labels : LabelName.t LabelName.Map.t) -> match rule_from.Ast.rule_exception with | Ast.ExceptionToLabel (label_to, _) -> ( match LabelName.Map.find_opt label_to exception_to_label_implicit_labels with | Some _ -> (* we already created the label *) exception_to_label_implicit_labels | None -> LabelName.Map.add label_to (LabelName.fresh ( "exception_to_" ^ Mark.remove (LabelName.get_info label_to), Pos.no_pos )) exception_to_label_implicit_labels) | _ -> exception_to_label_implicit_labels) def LabelName.Map.empty in (* Now we have all the labels necessary to partition our rules into sets, each one corresponding to a label relating to the structure of the exception DAG. *) let label_to_rule_sets = RuleName.Map.fold (fun rule_name rule rule_sets -> let label_of_rule = match rule.Ast.rule_label with | Ast.ExplicitlyLabeled (l, _) -> l | Ast.Unlabeled -> ( match rule.Ast.rule_exception with | BaseCase -> base_case_implicit_label | ExceptionToRule (r, _) -> RuleName.Map.find r exception_to_rule_implicit_labels | ExceptionToLabel (l', _) -> LabelName.Map.find l' exception_to_label_implicit_labels) in LabelName.Map.update label_of_rule (fun rule_set -> let pos = (* We have to overwrite the law info on tis position because the pass at the surface AST level that fills the law info on positions only does it for positions inside expressions, the visitor in [surface/fill_positions.ml] does not go into the info of [RuleName.t], etc. Related issue: https://github.com/CatalaLang/catala/issues/194 *) Pos.overwrite_law_info (snd (RuleName.get_info rule.rule_id)) (Pos.get_law_info (Expr.pos rule.rule_just)) in match rule_set with | None -> Some (RuleName.Map.singleton rule_name pos) | Some rule_set -> Some (RuleName.Map.add rule_name pos rule_set)) rule_sets) def LabelName.Map.empty in let find_label_of_rule (r : RuleName.t) : LabelName.t = fst (LabelName.Map.choose (LabelName.Map.filter (fun _ rule_set -> RuleName.Map.mem r rule_set) label_to_rule_sets)) in (* Next, we collect the exception edges between those groups of rules referred by their labels. This is also at this step that we check consistency of the edges as they are declared at each rule but should be the same for all the rules of the same group. *) let exception_edges : exception_edge list = RuleName.Map.fold (fun rule_name rule exception_edges -> let label_from = find_label_of_rule rule_name in let label_to_and_pos = match rule.Ast.rule_exception with | Ast.BaseCase -> None | Ast.ExceptionToRule (r', pos) -> Some (find_label_of_rule r', pos) | Ast.ExceptionToLabel (l', pos) -> Some (l', pos) in match label_to_and_pos with | None -> exception_edges | Some (label_to, edge_pos) -> ( let other_edges_originating_from_same_label = List.filter (fun edge -> LabelName.compare edge.label_from label_from = 0) exception_edges in (* We check the consistency*) if LabelName.compare label_from label_to = 0 then Message.error ~pos:edge_pos "Cannot define rule as an exception to itself"; List.iter (fun edge -> if LabelName.compare edge.label_to label_to <> 0 then Message.error ~pos:edge_pos ~pos_msg:(fun ppf -> Format.pp_print_text ppf "This definition contradicts other exception definitions:") ~extra_pos: (List.map (fun pos -> "Other exception definition:", pos) edge.edge_positions) "The definition of exceptions are inconsistent for variable \ %a." Ast.ScopeDef.format def_info) other_edges_originating_from_same_label; (* Now we add the edge to the list*) let existing_edge = List.find_opt (fun edge -> LabelName.compare edge.label_from label_from = 0 && LabelName.compare edge.label_to label_to = 0) exception_edges in match existing_edge with | None -> { label_from; label_to; edge_positions = [edge_pos] } :: exception_edges | Some existing_edge -> { label_from; label_to; edge_positions = edge_pos :: existing_edge.edge_positions; } :: List.filter (fun edge -> edge <> existing_edge) exception_edges)) def [] in (* We've got the vertices and the edges, let's build the graph! *) let g = LabelName.Map.fold (fun label rule_set g -> ExceptionsDependencies.add_vertex g { rules = rule_set; label }) label_to_rule_sets ExceptionsDependencies.empty in (* then we add the edges *) let g = List.fold_left (fun g edge -> let rule_group_from = { ExceptionVertex.rules = LabelName.Map.find edge.label_from label_to_rule_sets; label = edge.label_from; } in let rule_group_to = { ExceptionVertex.rules = LabelName.Map.find edge.label_to label_to_rule_sets; label = edge.label_to; } in let edge = ExceptionsDependencies.E.create rule_group_from edge.edge_positions rule_group_to in ExceptionsDependencies.add_edge_e g edge) g exception_edges in g (** Outputs an error in case of cycles. *) let check_for_exception_cycle (def : Ast.rule RuleName.Map.t) (g : ExceptionsDependencies.t) : unit = (* if there is a cycle, there will be an strongly connected component of cardinality > 1 *) let sccs = ExceptionsSCC.scc_list g in if List.length sccs < ExceptionsDependencies.nb_vertex g then let scc = List.find (fun scc -> List.length scc > 1) sccs in let spans = List.rev_map (fun (vs : ExceptionVertex.t) -> let v, _ = RuleName.Map.choose vs.rules in let rule = RuleName.Map.find v def in let pos = Mark.get (RuleName.get_info rule.Ast.rule_id) in "", pos) scc in let v, _ = RuleName.Map.choose (List.hd scc).rules in Message.error ~extra_pos:spans "Exception cycle detected when defining@ %a:@ each of these %d \ exceptions applies over the previous one,@ and@ the@ first@ applies@ \ over@ the@ last" RuleName.format v (List.length scc)