(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux , Alain Delaƫt-Tixeuil Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) [@@@ocaml.warning "-7-34"] open Utils module ScopeName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructFieldName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructMap : Map.S with type key = StructName.t = Map.Make (StructName) module EnumName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module EnumConstructor : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module EnumMap : Map.S with type key = EnumName.t = Map.Make (EnumName) type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration type struct_name = StructName.t type enum_name = EnumName.t type typ = | TLit of typ_lit | TTuple of typ Pos.marked list * struct_name option | TEnum of typ Pos.marked list * enum_name | TArrow of typ Pos.marked * typ Pos.marked | TArray of typ Pos.marked | TAny type date = Runtime.date type duration = Runtime.duration type integer = Runtime.integer type decimal = Runtime.decimal type money = Runtime.money type lit = | LBool of bool | LEmptyError | LInt of integer | LRat of decimal | LMoney of money | LUnit | LDate of date | LDuration of duration type op_kind = KInt | KRat | KMoney | KDate | KDuration type ternop = Fold type binop = | And | Or | Xor | Add of op_kind | Sub of op_kind | Mult of op_kind | Div of op_kind | Lt of op_kind | Lte of op_kind | Gt of op_kind | Gte of op_kind | Eq | Neq | Map | Concat | Filter type log_entry = VarDef of typ | BeginCall | EndCall | PosRecordIfTrueBool type unop = | Not | Minus of op_kind | Log of log_entry * Utils.Uid.MarkedString.info list | Length | IntToRat | GetDay | GetMonth | GetYear | RoundMoney type operator = Ternop of ternop | Binop of binop | Unop of unop type expr = | EVar of expr Bindlib.var Pos.marked | ETuple of expr Pos.marked list * struct_name option | ETupleAccess of expr Pos.marked * int * struct_name option * typ Pos.marked list | EInj of expr Pos.marked * int * enum_name * typ Pos.marked list | EMatch of expr Pos.marked * expr Pos.marked list * enum_name | EArray of expr Pos.marked list | ELit of lit | EAbs of (expr, expr Pos.marked) Bindlib.mbinder Pos.marked * typ Pos.marked list | EApp of expr Pos.marked * expr Pos.marked list | EAssert of expr Pos.marked | EOp of operator | EDefault of expr Pos.marked list * expr Pos.marked * expr Pos.marked | EIfThenElse of expr Pos.marked * expr Pos.marked * expr Pos.marked | ErrorOnEmpty of expr Pos.marked type struct_ctx = (StructFieldName.t * typ Pos.marked) list StructMap.t type enum_ctx = (EnumConstructor.t * typ Pos.marked) list EnumMap.t type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx } type binder = (expr, expr Pos.marked) Bindlib.binder type scope_let_kind = | DestructuringInputStruct | ScopeVarDefinition | SubScopeVarDefinition | CallingSubScope | DestructuringSubScopeResults | Assertion type 'expr scope_let = { scope_let_kind : scope_let_kind; scope_let_typ : typ Utils.Pos.marked; scope_let_expr : 'expr Utils.Pos.marked; scope_let_next : ('expr, 'expr scope_body_expr) Bindlib.binder; scope_let_pos : Utils.Pos.t; } and 'expr scope_body_expr = | Result of 'expr Utils.Pos.marked | ScopeLet of 'expr scope_let type 'expr scope_body = { scope_body_input_struct : StructName.t; scope_body_output_struct : StructName.t; scope_body_expr : ('expr, 'expr scope_body_expr) Bindlib.binder; } type 'expr scope_def = { scope_name : ScopeName.t; scope_body : 'expr scope_body; scope_next : ('expr, 'expr scopes) Bindlib.binder; } and 'expr scopes = Nil | ScopeDef of 'expr scope_def type program = { decl_ctx : decl_ctx; scopes : expr scopes } let evar (v : expr Bindlib.var) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun v' -> (v', pos)) (Bindlib.box_var v) let etuple (args : expr Pos.marked Bindlib.box list) (s : StructName.t option) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun args -> (ETuple (args, s), pos)) (Bindlib.box_list args) let etupleaccess (e1 : expr Pos.marked Bindlib.box) (i : int) (s : StructName.t option) (typs : typ Pos.marked list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun e1 -> (ETupleAccess (e1, i, s, typs), pos)) e1 let einj (e1 : expr Pos.marked Bindlib.box) (i : int) (e_name : EnumName.t) (typs : typ Pos.marked list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun e1 -> (EInj (e1, i, e_name, typs), pos)) e1 let ematch (arg : expr Pos.marked Bindlib.box) (arms : expr Pos.marked Bindlib.box list) (e_name : EnumName.t) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply2 (fun arg arms -> (EMatch (arg, arms, e_name), pos)) arg (Bindlib.box_list arms) let earray (args : expr Pos.marked Bindlib.box list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun args -> (EArray args, pos)) (Bindlib.box_list args) let elit (l : lit) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box (ELit l, pos) let eabs (binder : (expr, expr Pos.marked) Bindlib.mbinder Bindlib.box) (pos_binder : Pos.t) (typs : typ Pos.marked list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun binder -> (EAbs ((binder, pos_binder), typs), pos)) binder let eapp (e1 : expr Pos.marked Bindlib.box) (args : expr Pos.marked Bindlib.box list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply2 (fun e1 args -> (EApp (e1, args), pos)) e1 (Bindlib.box_list args) let eassert (e1 : expr Pos.marked Bindlib.box) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun e1 -> (EAssert e1, pos)) e1 let eop (op : operator) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box (EOp op, pos) let edefault (excepts : expr Pos.marked Bindlib.box list) (just : expr Pos.marked Bindlib.box) (cons : expr Pos.marked Bindlib.box) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply3 (fun excepts just cons -> (EDefault (excepts, just, cons), pos)) (Bindlib.box_list excepts) just cons let eifthenelse (e1 : expr Pos.marked Bindlib.box) (e2 : expr Pos.marked Bindlib.box) (e3 : expr Pos.marked Bindlib.box) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply3 (fun e1 e2 e3 -> (EIfThenElse (e1, e2, e3), pos)) e1 e2 e3 let eerroronempty (e1 : expr Pos.marked Bindlib.box) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun e1 -> (ErrorOnEmpty e1, pos)) e1 let rec fold_scope_lets ~(f : 'a -> 'expr scope_let -> 'a) ~(init : 'a) (scope_body_expr : 'expr scope_body_expr) : 'a = match scope_body_expr with | Result _ -> init | ScopeLet scope_let -> let _, next = Bindlib.unbind scope_let.scope_let_next in fold_scope_lets ~f ~init:(f init scope_let) next let rec fold_scope_defs ~(f : 'a -> 'expr scope_def -> 'a) ~(init : 'a) (scopes : 'expr scopes) : 'a = match scopes with | Nil -> init | ScopeDef scope_def -> let _, next = Bindlib.unbind scope_def.scope_next in fold_scope_defs ~f ~init:(f init scope_def) next module Var = struct type t = expr Bindlib.var let make (s : string Pos.marked) : t = Bindlib.new_var (fun (x : expr Bindlib.var) : expr -> EVar (x, Pos.get_position s)) (Pos.unmark s) let compare x y = Bindlib.compare_vars x y end let map_expr (ctx : 'a) ~(f : 'a -> expr Pos.marked -> expr Pos.marked Bindlib.box) (e : expr Pos.marked) : expr Pos.marked Bindlib.box = match Pos.unmark e with | EVar (v, _pos) -> evar v (Pos.get_position e) | EApp (e1, args) -> eapp (f ctx e1) (List.map (f ctx) args) (Pos.get_position e) | EAbs ((binder, binder_pos), typs) -> eabs (Bindlib.box_mbinder (f ctx) binder) binder_pos typs (Pos.get_position e) | ETuple (args, s) -> etuple (List.map (f ctx) args) s (Pos.get_position e) | ETupleAccess (e1, n, s_name, typs) -> etupleaccess ((f ctx) e1) n s_name typs (Pos.get_position e) | EInj (e1, i, e_name, typs) -> einj ((f ctx) e1) i e_name typs (Pos.get_position e) | EMatch (arg, arms, e_name) -> ematch ((f ctx) arg) (List.map (f ctx) arms) e_name (Pos.get_position e) | EArray args -> earray (List.map (f ctx) args) (Pos.get_position e) | ELit l -> elit l (Pos.get_position e) | EAssert e1 -> eassert ((f ctx) e1) (Pos.get_position e) | EOp op -> Bindlib.box (EOp op, Pos.get_position e) | EDefault (excepts, just, cons) -> edefault (List.map (f ctx) excepts) ((f ctx) just) ((f ctx) cons) (Pos.get_position e) | EIfThenElse (e1, e2, e3) -> eifthenelse ((f ctx) e1) ((f ctx) e2) ((f ctx) e3) (Pos.get_position e) | ErrorOnEmpty e1 -> eerroronempty ((f ctx) e1) (Pos.get_position e) (** See [Bindlib.box_term] documentation for why we are doing that. *) let box_expr (e : expr Pos.marked) : expr Pos.marked Bindlib.box = let rec id_t () e = map_expr () ~f:id_t e in id_t () e module VarMap = Map.Make (Var) module VarSet = Set.Make (Var) let rec free_vars_expr (e : expr Pos.marked) : VarSet.t = match Pos.unmark e with | EVar (v, _) -> VarSet.singleton v | ETuple (es, _) | EArray es -> es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | ETupleAccess (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 | EInj (e1, _, _, _) -> free_vars_expr e1 | EApp (e1, es) | EMatch (e1, es, _) -> e1 :: es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EDefault (es, ejust, econs) -> ejust :: econs :: es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EOp _ | ELit _ -> VarSet.empty | EIfThenElse (e1, e2, e3) -> [ e1; e2; e3 ] |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EAbs ((binder, _), _) -> let vs, body = Bindlib.unmbind binder in Array.fold_right VarSet.remove vs (free_vars_expr body) let rec free_vars_scope_body_expr (scope_lets : expr scope_body_expr) : VarSet.t = match scope_lets with | Result e -> free_vars_expr e | ScopeLet { scope_let_expr = e; scope_let_next = next; _ } -> let v, body = Bindlib.unbind next in VarSet.union (free_vars_expr e) (VarSet.remove v (free_vars_scope_body_expr body)) let free_vars_scope_body (scope_body : expr scope_body) : VarSet.t = let { scope_body_expr = binder; _ } = scope_body in let v, body = Bindlib.unbind binder in VarSet.remove v (free_vars_scope_body_expr body) let rec free_vars_scopes (scopes : expr scopes) : VarSet.t = match scopes with | Nil -> VarSet.empty | ScopeDef { scope_body = body; scope_next = next; _ } -> let v, next = Bindlib.unbind next in VarSet.union (VarSet.remove v (free_vars_scopes next)) (free_vars_scope_body body) type vars = expr Bindlib.mvar let make_var ((x, pos) : Var.t Pos.marked) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun x -> (x, pos)) (Bindlib.box_var x) let make_abs (xs : vars) (e : expr Pos.marked Bindlib.box) (pos_binder : Pos.t) (taus : typ Pos.marked list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply (fun b -> (EAbs ((b, pos_binder), taus), pos)) (Bindlib.bind_mvar xs e) let make_app (e : expr Pos.marked Bindlib.box) (u : expr Pos.marked Bindlib.box list) (pos : Pos.t) : expr Pos.marked Bindlib.box = Bindlib.box_apply2 (fun e u -> (EApp (e, u), pos)) e (Bindlib.box_list u) let make_let_in (x : Var.t) (tau : typ Pos.marked) (e1 : expr Pos.marked Bindlib.box) (e2 : expr Pos.marked Bindlib.box) (pos : Pos.t) : expr Pos.marked Bindlib.box = make_app (make_abs (Array.of_list [ x ]) e2 pos [ tau ] pos) [ e1 ] pos let empty_thunked_term : expr Pos.marked = let silent = Var.make ("_", Pos.no_pos) in Bindlib.unbox (make_abs (Array.of_list [ silent ]) (Bindlib.box (ELit LEmptyError, Pos.no_pos)) Pos.no_pos [ (TLit TUnit, Pos.no_pos) ] Pos.no_pos) let is_value (e : expr Pos.marked) : bool = match Pos.unmark e with ELit _ | EAbs _ | EOp _ -> true | _ -> false let rec equal_typs (ty1 : typ Pos.marked) (ty2 : typ Pos.marked) : bool = match (Pos.unmark ty1, Pos.unmark ty2) with | TLit l1, TLit l2 -> l1 = l2 | TTuple (tys1, n1), TTuple (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2 | TEnum (tys1, n1), TEnum (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2 | TArrow (t1, t1'), TArrow (t2, t2') -> equal_typs t1 t2 && equal_typs t1' t2' | TArray t1, TArray t2 -> equal_typs t1 t2 | TAny, TAny -> true | _, _ -> false and equal_typs_list (tys1 : typ Pos.marked list) (tys2 : typ Pos.marked list) : bool = List.length tys1 = List.length tys2 && (* OCaml && operator short-circuits when a clause is false, we can safely assume here that both lists have equal length *) List.for_all (fun (x, y) -> equal_typs x y) (List.combine tys1 tys2) let equal_log_entries (l1 : log_entry) (l2 : log_entry) : bool = match (l1, l2) with | VarDef t1, VarDef t2 -> equal_typs (t1, Pos.no_pos) (t2, Pos.no_pos) | x, y -> x = y let equal_unops (op1 : unop) (op2 : unop) : bool = match (op1, op2) with (* Log entries contain a typ which contain position information, we thus need to descend into them *) | Log (l1, info1), Log (l2, info2) -> equal_log_entries l1 l2 && info1 = info2 (* All the other cases can be discharged through equality *) | _ -> op1 = op2 let equal_ops (op1 : operator) (op2 : operator) : bool = match (op1, op2) with | Ternop op1, Ternop op2 -> op1 = op2 | Binop op1, Binop op2 -> op1 = op2 | Unop op1, Unop op2 -> equal_unops op1 op2 | _, _ -> false let rec equal_exprs (e1 : expr Pos.marked) (e2 : expr Pos.marked) : bool = match (Pos.unmark e1, Pos.unmark e2) with | EVar v1, EVar v2 -> Pos.unmark v1 = Pos.unmark v2 | ETuple (es1, n1), ETuple (es2, n2) -> n1 = n2 && equal_exprs_list es1 es2 | ETupleAccess (e1, id1, n1, tys1), ETupleAccess (e2, id2, n2, tys2) -> equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2 | EInj (e1, id1, n1, tys1), EInj (e2, id2, n2, tys2) -> equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2 | EMatch (e1, cases1, n1), EMatch (e2, cases2, n2) -> n1 = n2 && equal_exprs e1 e2 && equal_exprs_list cases1 cases2 | EArray es1, EArray es2 -> equal_exprs_list es1 es2 | ELit l1, ELit l2 -> l1 = l2 | EAbs (b1, tys1), EAbs (b2, tys2) -> equal_typs_list tys1 tys2 && let vars1, body1 = Bindlib.unmbind (Pos.unmark b1) in let body2 = Bindlib.msubst (Pos.unmark b2) (Array.map (fun x -> EVar (x, Pos.no_pos)) vars1) in equal_exprs body1 body2 | EAssert e1, EAssert e2 -> equal_exprs e1 e2 | EOp op1, EOp op2 -> equal_ops op1 op2 | EDefault (exc1, def1, cons1), EDefault (exc2, def2, cons2) -> equal_exprs def1 def2 && equal_exprs cons1 cons2 && equal_exprs_list exc1 exc2 | EIfThenElse (if1, then1, else1), EIfThenElse (if2, then2, else2) -> equal_exprs if1 if2 && equal_exprs then1 then2 && equal_exprs else1 else2 | ErrorOnEmpty e1, ErrorOnEmpty e2 -> equal_exprs e1 e2 | _, _ -> false and equal_exprs_list (es1 : expr Pos.marked list) (es2 : expr Pos.marked list) : bool = List.length es1 = List.length es2 && (* OCaml && operator short-circuits when a clause is false, we can safely assume here that both lists have equal length *) List.for_all (fun (x, y) -> equal_exprs x y) (List.combine es1 es2) type 'expr make_let_in_sig = 'expr Bindlib.var -> typ Pos.marked -> 'expr Pos.marked Bindlib.box -> 'expr Pos.marked Bindlib.box -> Pos.t -> 'expr Pos.marked Bindlib.box type 'expr make_abs_sig = 'expr Bindlib.mvar -> 'expr Pos.marked Bindlib.box -> Pos.t -> typ Pos.marked list -> Pos.t -> 'expr Pos.marked Bindlib.box type 'expr box_expr_sig = 'expr Pos.marked -> 'expr Pos.marked Bindlib.box let rec unfold_scope_body_expr ~(box_expr : 'expr box_expr_sig) ~(make_let_in : 'expr make_let_in_sig) (ctx : decl_ctx) (scope_let : 'expr scope_body_expr) : 'expr Pos.marked Bindlib.box = match scope_let with | Result e -> box_expr e | ScopeLet { scope_let_kind = _; scope_let_typ; scope_let_expr; scope_let_next; scope_let_pos; } -> let var, next = Bindlib.unbind scope_let_next in make_let_in var scope_let_typ (box_expr scope_let_expr) (unfold_scope_body_expr ~box_expr ~make_let_in ctx next) scope_let_pos let build_whole_scope_expr ~(box_expr : 'expr box_expr_sig) ~(make_abs : 'expr make_abs_sig) ~(make_let_in : 'expr make_let_in_sig) (ctx : decl_ctx) (body : 'expr scope_body) (pos_scope : Pos.t) : 'expr Pos.marked Bindlib.box = let var, body_expr = Bindlib.unbind body.scope_body_expr in let body_expr = unfold_scope_body_expr ~box_expr ~make_let_in ctx body_expr in make_abs (Array.of_list [ var ]) body_expr pos_scope [ ( TTuple ( List.map snd (StructMap.find body.scope_body_input_struct ctx.ctx_structs), Some body.scope_body_input_struct ), pos_scope ); ] pos_scope let build_scope_typ_from_sig (ctx : decl_ctx) (scope_input_struct_name : StructName.t) (scope_return_struct_name : StructName.t) (pos : Pos.t) : typ Pos.marked = let scope_sig = StructMap.find scope_input_struct_name ctx.ctx_structs in let scope_return_typ = StructMap.find scope_return_struct_name ctx.ctx_structs in let result_typ = (TTuple (List.map snd scope_return_typ, Some scope_return_struct_name), pos) in let input_typ = (TTuple (List.map snd scope_sig, Some scope_input_struct_name), pos) in (TArrow (input_typ, result_typ), pos) type 'expr scope_name_or_var = | ScopeName of ScopeName.t | ScopeVar of 'expr Bindlib.var let rec unfold_scopes ~(box_expr : 'expr box_expr_sig) ~(make_abs : 'expr make_abs_sig) ~(make_let_in : 'expr make_let_in_sig) (ctx : decl_ctx) (s : 'expr scopes) (main_scope : 'expr scope_name_or_var) : 'expr Pos.marked Bindlib.box = match s with | Nil -> ( match main_scope with | ScopeVar v -> Bindlib.box_apply (fun v -> (v, Pos.no_pos)) (Bindlib.box_var v) | ScopeName _ -> failwith "should not happen") | ScopeDef { scope_name; scope_body; scope_next } -> let scope_var, scope_next = Bindlib.unbind scope_next in let scope_pos = Pos.get_position (ScopeName.get_info scope_name) in let main_scope = match main_scope with | ScopeVar v -> ScopeVar v | ScopeName n -> if ScopeName.compare n scope_name = 0 then ScopeVar scope_var else ScopeName n in make_let_in scope_var (build_scope_typ_from_sig ctx scope_body.scope_body_input_struct scope_body.scope_body_output_struct scope_pos) (build_whole_scope_expr ~box_expr ~make_abs ~make_let_in ctx scope_body scope_pos) (unfold_scopes ~box_expr ~make_abs ~make_let_in ctx scope_next main_scope) scope_pos let build_whole_program_expr (p : program) (main_scope : ScopeName.t) = unfold_scopes ~box_expr ~make_abs ~make_let_in p.decl_ctx p.scopes (ScopeName main_scope) let rec expr_size (e : expr Pos.marked) : int = match Pos.unmark e with | EVar _ | ELit _ | EOp _ -> 1 | ETuple (args, _) | EArray args -> List.fold_left (fun acc arg -> acc + expr_size arg) 1 args | ETupleAccess (e1, _, _, _) | EInj (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 -> expr_size e1 + 1 | EMatch (arg, args, _) | EApp (arg, args) -> List.fold_left (fun acc arg -> acc + expr_size arg) (1 + expr_size arg) args | EAbs ((binder, _), _) -> let _, body = Bindlib.unmbind binder in 1 + expr_size body | EIfThenElse (e1, e2, e3) -> 1 + expr_size e1 + expr_size e2 + expr_size e3 | EDefault (exceptions, just, cons) -> List.fold_left (fun acc except -> acc + expr_size except) (1 + expr_size just + expr_size cons) exceptions let remove_logging_calls (e : expr Pos.marked) : expr Pos.marked Bindlib.box = let rec f () e = match Pos.unmark e with | EApp ((EOp (Unop (Log _)), _), [ arg ]) -> map_expr () ~f arg | _ -> map_expr () ~f e in f () e