(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Nicolas Chataing Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Scope dependencies computations using {{:http://ocamlgraph.lri.fr/} OCamlgraph} *) open Utils (** {1 Scope variables dependency graph} *) (** {2 Graph declaration} *) (** Vertices: scope variables or subscopes. The vertices of the scope dependency graph are either : - the variables of the scope ; - the subscopes of the scope. Indeed, during interpretation, subscopes are executed atomically. *) module Vertex = struct type t = | Var of Ast.ScopeVar.t * Ast.StateName.t option | SubScope of Scopelang.Ast.SubScopeName.t let hash x = match x with | Var (x, None) -> Ast.ScopeVar.hash x | Var (x, Some sx) -> Int.logxor (Ast.ScopeVar.hash x) (Ast.StateName.hash sx) | SubScope x -> Scopelang.Ast.SubScopeName.hash x let compare = compare let equal x y = match (x, y) with | Var (x, None), Var (y, None) -> Ast.ScopeVar.compare x y = 0 | Var (x, Some sx), Var (y, Some sy) -> Ast.ScopeVar.compare x y = 0 && Ast.StateName.compare sx sy = 0 | SubScope x, SubScope y -> Scopelang.Ast.SubScopeName.compare x y = 0 | _ -> false let format_t (fmt : Format.formatter) (x : t) : unit = match x with | Var (v, None) -> Ast.ScopeVar.format_t fmt v | Var (v, Some sv) -> Format.fprintf fmt "%a.%a" Ast.ScopeVar.format_t v Ast.StateName.format_t sv | SubScope v -> Scopelang.Ast.SubScopeName.format_t fmt v end (** On the edges, the label is the position of the expression responsible for the use of the variable. In the graph, [x -> y] if [x] is used in the definition of [y].*) module Edge = struct type t = Pos.t let compare = compare let default = Pos.no_pos end module ScopeDependencies = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (Vertex) (Edge) (** Module of the graph, provided by OCamlGraph *) module TopologicalTraversal = Graph.Topological.Make (ScopeDependencies) (** Module of the topological traversal of the graph, provided by OCamlGraph *) module SCC = Graph.Components.Make (ScopeDependencies) (** Tarjan's stongly connected components algorithm, provided by OCamlGraph *) (** {2 Graph computations} *) (** Returns an ordering of the scope variables and subscope compatible with the dependencies of the computation *) let correct_computation_ordering (g : ScopeDependencies.t) : Vertex.t list = List.rev (TopologicalTraversal.fold (fun sd acc -> sd :: acc) g []) (** Outputs an error in case of cycles. *) let check_for_cycle (scope : Ast.scope) (g : ScopeDependencies.t) : unit = (* if there is a cycle, there will be an strongly connected component of cardinality > 1 *) let sccs = SCC.scc_list g in if List.length sccs < ScopeDependencies.nb_vertex g then let scc = List.find (fun scc -> List.length scc > 1) sccs in let spans = List.flatten (List.map (fun v -> let var_str, var_info = match v with | Vertex.Var (v, None) -> ( Format.asprintf "%a" Ast.ScopeVar.format_t v, Ast.ScopeVar.get_info v ) | Vertex.Var (v, Some sv) -> ( Format.asprintf "%a.%a" Ast.ScopeVar.format_t v Ast.StateName.format_t sv, Ast.StateName.get_info sv ) | Vertex.SubScope v -> ( Format.asprintf "%a" Scopelang.Ast.SubScopeName.format_t v, Scopelang.Ast.SubScopeName.get_info v ) in let succs = ScopeDependencies.succ_e g v in let _, edge_pos, succ = List.find (fun (_, _, succ) -> List.mem succ scc) succs in let succ_str = match succ with | Vertex.Var (v, None) -> Format.asprintf "%a" Ast.ScopeVar.format_t v | Vertex.Var (v, Some sv) -> Format.asprintf "%a.%a" Ast.ScopeVar.format_t v Ast.StateName.format_t sv | Vertex.SubScope v -> Format.asprintf "%a" Scopelang.Ast.SubScopeName.format_t v in [ ( Some ("Cycle variable " ^ var_str ^ ", declared:"), Pos.get_position var_info ); ( Some ("Used here in the definition of another cycle variable " ^ succ_str ^ ":"), edge_pos ); ]) scc) in Errors.raise_multispanned_error spans "Cyclic dependency detected between variables of scope %a!" Scopelang.Ast.ScopeName.format_t scope.scope_uid (** Builds the dependency graph of a particular scope *) let build_scope_dependencies (scope : Ast.scope) : ScopeDependencies.t = let g = ScopeDependencies.empty in (* Add all the vertices to the graph *) let g = Ast.ScopeVarMap.fold (fun (v : Ast.ScopeVar.t) var_or_state g -> match var_or_state with | Ast.WholeVar -> ScopeDependencies.add_vertex g (Vertex.Var (v, None)) | Ast.States states -> List.fold_left (fun g state -> ScopeDependencies.add_vertex g (Vertex.Var (v, Some state))) g states) scope.scope_vars g in let g = Scopelang.Ast.SubScopeMap.fold (fun (v : Scopelang.Ast.SubScopeName.t) _ g -> ScopeDependencies.add_vertex g (Vertex.SubScope v)) scope.scope_sub_scopes g in let g = Ast.ScopeDefMap.fold (fun def_key scope_def g -> let def = scope_def.Ast.scope_def_rules in let fv = Ast.free_variables def in Ast.ScopeDefMap.fold (fun fv_def fv_def_pos g -> match (def_key, fv_def) with | ( Ast.ScopeDef.Var (v_defined, s_defined), Ast.ScopeDef.Var (v_used, s_used) ) -> (* simple case *) if v_used = v_defined && s_used = s_defined then (* variable definitions cannot be recursive *) Errors.raise_spanned_error fv_def_pos "The variable %a is used in one of its definitions, but \ recursion is forbidden in Catala" Ast.ScopeDef.format_t def_key else let edge = ScopeDependencies.E.create (Vertex.Var (v_used, s_used)) fv_def_pos (Vertex.Var (v_defined, s_defined)) in ScopeDependencies.add_edge_e g edge | ( Ast.ScopeDef.SubScopeVar (defined, _), Ast.ScopeDef.Var (v_used, s_used) ) -> (* here we are defining the input of a subscope using a var of the scope *) let edge = ScopeDependencies.E.create (Vertex.Var (v_used, s_used)) fv_def_pos (Vertex.SubScope defined) in ScopeDependencies.add_edge_e g edge | ( Ast.ScopeDef.SubScopeVar (defined, _), Ast.ScopeDef.SubScopeVar (used, _) ) -> (* here we are defining the input of a scope with the output of another subscope *) if used = defined then (* subscopes are not recursive functions *) Errors.raise_spanned_error fv_def_pos "The subscope %a is used when defining one of its inputs, \ but recursion is forbidden in Catala" Scopelang.Ast.SubScopeName.format_t defined else let edge = ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos (Vertex.SubScope defined) in ScopeDependencies.add_edge_e g edge | ( Ast.ScopeDef.Var (v_defined, s_defined), Ast.ScopeDef.SubScopeVar (used, _) ) -> (* finally we define a scope var with the output of a subscope *) let edge = ScopeDependencies.E.create (Vertex.SubScope used) fv_def_pos (Vertex.Var (v_defined, s_defined)) in ScopeDependencies.add_edge_e g edge) fv g) scope.scope_defs g in g (** {1 Exceptions dependency graph} *) (** {2 Graph declaration} *) module ExceptionVertex = struct include Ast.RuleSet let hash (x : t) : int = Ast.RuleSet.fold (fun r acc -> Int.logxor (Ast.RuleName.hash r) acc) x 0 let equal x y = compare x y = 0 end module ExceptionsDependencies = Graph.Persistent.Digraph.ConcreteBidirectionalLabeled (ExceptionVertex) (Edge) (** Module of the graph, provided by OCamlGraph. [x -> y] if [y] is an exception to [x] *) module ExceptionsSCC = Graph.Components.Make (ExceptionsDependencies) (** Tarjan's stongly connected components algorithm, provided by OCamlGraph *) (** {2 Graph computations} *) let build_exceptions_graph (def : Ast.rule Ast.RuleMap.t) (def_info : Ast.ScopeDef.t) : ExceptionsDependencies.t = (* first we collect all the rule sets referred by exceptions *) let all_rule_sets_pointed_to_by_exceptions : Ast.RuleSet.t list = Ast.RuleMap.fold (fun _rule_name rule acc -> if Ast.RuleSet.is_empty (Pos.unmark rule.Ast.rule_exception_to_rules) then acc else Pos.unmark rule.Ast.rule_exception_to_rules :: acc) def [] in (* we make sure these sets are either disjoint or equal ; should be a syntactic invariant since you currently can't assign two labels to a single rule but an extra check is valuable since this is a required invariant for the graph to be sound *) List.iter (fun rule_set1 -> List.iter (fun rule_set2 -> if Ast.RuleSet.equal rule_set1 rule_set2 then () else if Ast.RuleSet.disjoint rule_set1 rule_set2 then () else let spans = List.of_seq (Seq.map (fun rule -> ( Some "Rule or definition from the first group:", Pos.get_position (Ast.RuleName.get_info rule) )) (Ast.RuleSet.to_seq rule_set1)) @ List.of_seq (Seq.map (fun rule -> ( Some "Rule or definition from the second group:", Pos.get_position (Ast.RuleName.get_info rule) )) (Ast.RuleSet.to_seq rule_set2)) in Errors.raise_multispanned_error spans "Definitions or rules grouped by different labels overlap, \ whereas these groups shoule be disjoint") all_rule_sets_pointed_to_by_exceptions) all_rule_sets_pointed_to_by_exceptions; (* Then we add the exception graph vertices by taking all those sets of rules pointed to by exceptions, and adding the remaining rules not pointed as separate singleton set vertices *) let g = List.fold_left (fun g rule_set -> ExceptionsDependencies.add_vertex g rule_set) ExceptionsDependencies.empty all_rule_sets_pointed_to_by_exceptions in let g = Ast.RuleMap.fold (fun (rule_name : Ast.RuleName.t) _ g -> if List.exists (fun rule_set_pointed_to_by_exceptions -> Ast.RuleSet.mem rule_name rule_set_pointed_to_by_exceptions) all_rule_sets_pointed_to_by_exceptions then g else ExceptionsDependencies.add_vertex g (Ast.RuleSet.singleton rule_name)) def g in (* then we add the edges *) let g = Ast.RuleMap.fold (fun rule_name rule g -> (* Right now, exceptions can only consist of one rule, we may want to relax that constraint later in the development of Catala. *) let exception_to_ruleset, pos = rule.Ast.rule_exception_to_rules in if Ast.RuleSet.is_empty exception_to_ruleset then g (* we don't add an edge*) else if ExceptionsDependencies.mem_vertex g exception_to_ruleset then if exception_to_ruleset = Ast.RuleSet.singleton rule_name then Errors.raise_spanned_error pos "Cannot define rule as an exception to itself" else let edge = ExceptionsDependencies.E.create (Ast.RuleSet.singleton rule_name) pos exception_to_ruleset in ExceptionsDependencies.add_edge_e g edge else Errors.raise_spanned_error pos "This rule has been declared as an exception to an incorrect \ label: this label is not attached to a definition of \"%a\"" Ast.ScopeDef.format_t def_info) def g in g (** Outputs an error in case of cycles. *) let check_for_exception_cycle (g : ExceptionsDependencies.t) : unit = (* if there is a cycle, there will be an strongly connected component of cardinality > 1 *) let sccs = ExceptionsSCC.scc_list g in if List.length sccs < ExceptionsDependencies.nb_vertex g then let scc = List.find (fun scc -> List.length scc > 1) sccs in let spans = List.flatten (List.map (fun (vs : Ast.RuleSet.t) -> let v = Ast.RuleSet.choose vs in let var_str, var_info = ( Format.asprintf "%a" Ast.RuleName.format_t v, Ast.RuleName.get_info v ) in let succs = ExceptionsDependencies.succ_e g vs in let _, edge_pos, _ = List.find (fun (_, _, succ) -> List.mem succ scc) succs in [ ( Some ("Cyclic exception for definition of variable \"" ^ var_str ^ "\", declared here:"), Pos.get_position var_info ); ( Some ("Used here in the definition of another cyclic exception \ for defining \"" ^ var_str ^ "\":"), edge_pos ); ]) scc) in Errors.raise_multispanned_error spans "Cyclic dependency detected between exceptions!"