(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Nicolas Chataing Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Abstract syntax tree of the desugared representation *) open Catala_utils open Shared_ast (** {1 Names, Maps and Keys} *) (** Inside a scope, a definition can refer either to a scope def, or a subscope def *) module ScopeDef = struct module Base = struct type kind = | Var of StateName.t option | SubScope of { name: ScopeName.t; var_within_origin_scope: ScopeVar.t } type t = ScopeVar.t Mark.pos * kind let equal_kind k1 k2 = match k1, k2 with | Var s1, Var s2 -> Option.equal StateName.equal s1 s2 | SubScope { var_within_origin_scope = v1; _ }, SubScope { var_within_origin_scope = v2; _ } -> ScopeVar.equal v1 v2 | (Var _ | SubScope _), _ -> false let equal (v1, k1) (v2, k2) = ScopeVar.equal (Mark.remove v1) (Mark.remove v2) && equal_kind k1 k2 let compare_kind k1 k2 = match k1, k2 with | Var st1, Var st2 -> Option.compare StateName.compare st1 st2 | SubScope { var_within_origin_scope = v1; _ }, SubScope { var_within_origin_scope = v2; _ } -> ScopeVar.compare v1 v2 | Var _, SubScope _ -> -1 | SubScope _, Var _ -> 1 let compare (v1, k1) (v2, k2) = match Mark.compare ScopeVar.compare v1 v2 with | 0 -> compare_kind k1 k2 | n -> n let get_position (v, _) = Mark.get v let format_kind ppf = function | Var None -> () | Var (Some st) -> Format.fprintf ppf "@%a" StateName.format st | SubScope { var_within_origin_scope = v; _ } -> Format.fprintf ppf ".%a" ScopeVar.format v let format ppf (v, k) = ScopeVar.format ppf (Mark.remove v); format_kind ppf k let hash_kind = function | Var (None) -> 0 | Var (Some st) -> StateName.hash st | SubScope { var_within_origin_scope = v; _ } -> ScopeVar.hash v let hash (v, k) = Int.logxor (ScopeVar.hash (Mark.remove v)) (hash_kind k) end include Base module Map = Map.Make (Base) module Set = Set.Make (Base) end module AssertionName = Uid.Gen (struct let style = Ocolor_types.(Fg (C4 hi_blue)) end) () (** {1 AST} *) type location = desugared glocation module LocationSet : Set.S with type elt = location Mark.pos = Set.Make (struct type t = location Mark.pos let compare = Expr.compare_location end) type expr = (desugared, untyped) gexpr module ExprMap = Map.Make (struct type t = expr let compare = Expr.compare let format = Expr.format end) type io = { io_output : bool Mark.pos; io_input : Runtime.io_input Mark.pos } type exception_situation = | BaseCase | ExceptionToLabel of LabelName.t Mark.pos | ExceptionToRule of RuleName.t Mark.pos type label_situation = ExplicitlyLabeled of LabelName.t Mark.pos | Unlabeled type rule = { rule_id : RuleName.t; rule_just : expr boxed; rule_cons : expr boxed; rule_parameter : (expr Var.t Mark.pos * typ) list Mark.pos option; rule_exception : exception_situation; rule_label : label_situation; } module Rule = struct type t = rule (** Structural equality (otherwise, you should just compare the [rule_id] fields) *) let compare r1 r2 = match r1.rule_parameter, r2.rule_parameter with | None, None -> ( let j1, j1m = r1.rule_just in let j2, j2m = r2.rule_just in match Bindlib.unbox (Bindlib.box_apply2 (fun j1 j2 -> Expr.compare (j1, j1m) (j2, j2m)) j1 j2) with | 0 -> let c1, c1m = r1.rule_cons in let c2, c2m = r2.rule_cons in Bindlib.unbox (Bindlib.box_apply2 (fun c1 c2 -> Expr.compare (c1, c1m) (c2, c2m)) c1 c2) | n -> n) | Some (l1, _), Some (l2, _) -> ListLabels.compare l1 l2 ~cmp:(fun ((v1, _), t1) ((v2, _), t2) -> match Type.compare t1 t2 with | 0 -> ( let open Bindlib in let b1 = bind_var v1 (Expr.Box.lift r1.rule_just) in let b2 = bind_var v2 (Expr.Box.lift r2.rule_just) in match Bindlib.unbox (Bindlib.box_apply2 (fun b1 b2 -> let _, j1, j2 = unbind2 b1 b2 in Expr.compare j1 j2) b1 b2) with | 0 -> let b1 = bind_var v1 (Expr.Box.lift r1.rule_cons) in let b2 = bind_var v2 (Expr.Box.lift r2.rule_cons) in Bindlib.unbox (Bindlib.box_apply2 (fun b1 b2 -> let _, c1, c2 = unbind2 b1 b2 in Expr.compare c1 c2) b1 b2) | n -> n) | n -> n) | None, Some _ -> -1 | Some _, None -> 1 end let empty_rule (pos : Pos.t) (parameters : (Uid.MarkedString.info * typ) list Mark.pos option) : rule = { rule_just = Expr.box (ELit (LBool false), Untyped { pos }); rule_cons = Expr.box (EEmptyError, Untyped { pos }); rule_parameter = Option.map (Mark.map (List.map (fun (lbl, typ) -> Mark.map Var.make lbl, typ))) parameters; rule_exception = BaseCase; rule_id = RuleName.fresh ("empty", pos); rule_label = Unlabeled; } let always_false_rule (pos : Pos.t) (parameters : (Uid.MarkedString.info * typ) list Mark.pos option) : rule = { rule_just = Expr.box (ELit (LBool true), Untyped { pos }); rule_cons = Expr.box (ELit (LBool false), Untyped { pos }); rule_parameter = Option.map (Mark.map (List.map (fun (lbl, typ) -> Mark.map Var.make lbl, typ))) parameters; rule_exception = BaseCase; rule_id = RuleName.fresh ("always_false", pos); rule_label = Unlabeled; } type assertion = expr boxed type variation_typ = Increasing | Decreasing type reference_typ = Decree | Law type catala_option = DateRounding of variation_typ type meta_assertion = | FixedBy of reference_typ Mark.pos | VariesWith of unit * variation_typ Mark.pos option type scope_def = { scope_def_rules : rule RuleName.Map.t; scope_def_typ : typ; scope_def_parameters : (Uid.MarkedString.info * typ) list Mark.pos option; scope_def_is_condition : bool; scope_def_io : io; } type var_or_states = WholeVar | States of StateName.t list type scope = { scope_vars : var_or_states ScopeVar.Map.t; scope_sub_scopes : ScopeName.t ScopeVar.Map.t; scope_uid : ScopeName.t; scope_defs : scope_def ScopeDef.Map.t; scope_assertions : assertion AssertionName.Map.t; scope_options : catala_option Mark.pos list; scope_meta_assertions : meta_assertion list; } type modul = { module_scopes : scope ScopeName.Map.t; module_topdefs : (expr option * typ) TopdefName.Map.t; } type program = { program_module_name : Ident.t Mark.pos option; program_ctx : decl_ctx; program_modules : modul ModuleName.Map.t; program_root : modul; program_lang : Global.backend_lang; } let rec locations_used e : LocationSet.t = match e with | ELocation l, m -> LocationSet.singleton (l, Expr.mark_pos m) | e -> Expr.shallow_fold (fun e -> LocationSet.union (locations_used e)) e LocationSet.empty let free_variables (def : rule RuleName.Map.t) : Pos.t ScopeDef.Map.t = let add_locs (acc : Pos.t ScopeDef.Map.t) (locs : LocationSet.t) : Pos.t ScopeDef.Map.t = LocationSet.fold (fun (loc, loc_pos) acc -> let usage = match loc with | DesugaredScopeVar { name; state } -> Some (name, ScopeDef.Var state) | ToplevelVar _ -> None in match usage with | Some u -> ScopeDef.Map.add u loc_pos acc | None -> acc) locs acc in RuleName.Map.fold (fun _ rule acc -> let locs = LocationSet.union (locations_used (Expr.unbox rule.rule_just)) (locations_used (Expr.unbox rule.rule_cons)) in add_locs acc locs) def ScopeDef.Map.empty let fold_exprs ~(f : 'a -> expr -> 'a) ~(init : 'a) (p : program) : 'a = let acc = ScopeName.Map.fold (fun _ scope acc -> let acc = ScopeDef.Map.fold (fun _ scope_def acc -> RuleName.Map.fold (fun _ rule acc -> f (f acc (Expr.unbox rule.rule_just)) (Expr.unbox rule.rule_cons)) scope_def.scope_def_rules acc) scope.scope_defs acc in let acc = AssertionName.Map.fold (fun _ assertion acc -> f acc (Expr.unbox assertion)) scope.scope_assertions acc in acc) p.program_root.module_scopes init in TopdefName.Map.fold (fun _ (e, _) acc -> Option.fold ~none:acc ~some:(f acc) e) p.program_root.module_topdefs acc