
Formalization of the Catala language

Denis Merigoux, Nicolas Chataing

November 2020

Contents
1 Introduction 1

2 Default calculus 1
2.1 Syntax . 2
2.2 Typing . 2
2.3 Evaluation . 3

3 Scope language 4
3.1 Syntax . 5
3.2 Running example . 5
3.3 Formalization of the translation . 6

4 From default calculus to lambda calculus 9
4.1 Using exceptions . 9

1 Introduction
Tax law defines how taxes should be computed, depending on various characteristic of a fiscal
household. Government agencies around the world use computer programs to compute the law,
which are derived from the local tax law. Translating tax law into an unambiguous computer
program is tricky because the law is subject to interpretations and ambiguities. The goal of the
Catala domain-specific language is to provide a way to clearly express the interpretation chosen
for the computer program, and display it close to the law it is supposed to model.

To complete this goal, our language needs some kind of locality property that enables cutting
the computer program in bits that match the way the legislative text is structured. This subject
has been extensively studied by Lawsky [4, 3, 2], whose work has greatly inspired our approach.

The structure exhibited by Lawsky follows a kind of non-monotonic logic called default logic
[5]. Indeed, unlike traditional programming, when the law defines a value for a variable, it does
so in a base case that applies only if no exceptions apply. To determine the value of a variable,
one needs to first consider all the exceptions that could modify the base case.

It is this precise behavior which we intend to capture when defining the semantics of Catala.

2 Default calculus
We choose to present the core of Catala as a lambda-calculus augmented by a special “default”
expression. This special expression enables dealing with the logical structure underlying tax
law. Our lambda-calculus has only unit and boolean values, but this base could be enriched

1

with more complex values and traditional lambda-calculus extensions (such as algebraic data
types or Λ-polymorphism).

2.1 Syntax
Type τ ::= bool | unit boolean and unit types

| τ → τ function type

Expression e ::= x | true | false | () variable, literal
| λ (x : τ). e | e e λ-calculus
| d default term

Default d ::= 〈[e∗] | e :- e〉 default term
| ~ conflict error term
| ∅ empty error term

Compared to the regular lambda calculus, we add a construction coming from default logic.
Particularly, we focus on a subset of default logic called categorical, prioritized default logic [1].
In this setting, a default is a logical rule of the form A :- B where A is the justification of the
rule and B is the consequence. The rule can only be applied if A is consistent with the current
knowledge W : from A ∧W , one should not derive ⊥. If multiple rules A :- B1 and A :- B2
can be applied at the same time, then only one of them is applied through an explicit ordering
of the rules.

To incorporate this form of logic inside our programming language, we set A to be an
expression that can be evaluated to true or false, and B the expression that the default
should reduce to if A is true. If A is false, then we look up for other rules of lesser priority
to apply. This priority is encoded trough a syntactic tree data structure1. A node of the tree
contains a base case to consider, but first a list of higher-priority exceptions that don’t have a
particular ordering between them. This structure is sufficient to model the base case/exceptions
structure or the law, and in particular the fact that exceptions are not always prioritized in the
legislative text.

In the term 〈e1,. . .,en | ejust :- econs 〉, ejust is the justification A, econs is the consequence
B and e1,. . .,en are the list of exceptions to be considered first.

Of course, this evaluation scheme can fail if no more rules can be applied, or if two or more
exceptions of the same priority have their justification evaluate to true. The error terms ~ and
∅ encode these failure cases. Note that if a Catala program correctly derived from a legislative
source evaluates to ~ or ∅, this could mean a flaw in the law itself. ∅ means that the law did
not specify what happens in a given situation, while ~ means that two or more rules specified
in the law conflict with each other on a given situation.

2.2 Typing

Our typing strategy is an extension of the simply-typed lambda calculus. The typing judgment
Γ ` e : τ reads as “under context Γ, expression e has type τ”.

Typing context Γ ::= ∅ empty context
(unordered map) | Γ, x : τ typed variable

1Thanks to Pierre-Évariste Dagand for this insight.

2

We start by the usual rules of simply-typed lambda calculus.
T-UnitLit
Γ ` () : unit

T-TrueLit
Γ ` true : bool

T-FalseLit
Γ ` false : bool

T-Var
Γ, x : τ ` x : τ

T-Abs
Γ, x : τ ` e : τ ′

Γ ` λ (x : τ). e : τ → τ ′

T-App
Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1

Then we move to the special default terms. First, the error terms that stand for any type.
ConflictError
Γ ` ~ : τ

EmptyError
Γ ` ∅ : τ

Now the interesting part for the default terms. As mentioned earlier, the justification ejust is
a boolean, while econs can evaluate to any value. DefaultBase specifies how the tree structure
of the default should be typed.

T-Default
Γ ` e1 : τ · · · Γ ` en : τ Γ ` ejust : bool Γ ` econs : τ

Γ ` 〈e1,. . .,en | ejust :- econs〉 : τ

The situation becomes more complex in the presence of functions. Indeed, want our default
expressions to depend on parameters. By only allowing ejust to be bool, we force the user to
declare the parameters in a λ that wraps the default from the outside. Using this scheme, all
the expressions inside the tree structure of the default will depend on the same bound variable
x.

2.3 Evaluation

We give this default calculus small-step, structured operational semantics. The one-step reduc-
tion judgment is of the form e −→ e′ .

In our simple language, values are just booleans, functions or error terms. We use a evalu-
ation contexts to efficiently describe the evaluation order. Evaluation contexts are expression
with a hole indicating the sub-term currently being reduced.

Values v ::= λ (x : τ). e functions
| true | false booleans
| ~ | ∅ errors

Evaluation Cλ ::= · e | v · function application evaluation
contexts | 〈[v∗] | · :- e〉 default justification evaluation

| 〈[v∗] | true :- ·〉 default consequence evaluation
C ::= Cλ regular contexts

| 〈[v∗],·,[e∗] | e :- e〉 default exceptions evaluation

We choose a call-by-value reduction strategy. First, we present the usual reduction rules for
beta-reduction and evaluation inside a context hole. Note that D-Context does not deal with
error terms, which will have a special treatment for error propagation later.

D-Context
e −→ e′ e′ /∈ {~,∅}

C[e] −→ C[e′]

D-β
(λ (x : τ). e) v −→ e[x 7→ v]

Now we have to describe how the default terms reduce. First, we consider the list of
exceptions to the default, e1,. . .,en, that should be all evaluated (left to right), according to

3

the sub-default evaluation context. Then, we consider all the values yielded by the exception
evaluation and define two functions over these values. Let empty_count(v1,. . .,vn) returns the
number of empty error terms ∅ among the exception values. We then case analyze on this
count:

• if empty_count(v1,. . .,vn) = n, then none of the exceptions apply and we evaluate the
base case;

• if empty_count(v1,. . .,vn) = n − 1, then only only one of the exceptions apply and we
return its corresponding value;

• if empty_count(v1,. . .,vn) < n − 1, then two or more exceptions apply and we raise a
conflict error ~.

D-DefaultFalseNoExceptions
〈∅,. . .,∅ | false :- e〉 −→ ∅

D-DefaultTrueNoExceptions
〈∅,. . .,∅ | true :- v〉 −→ v

D-DefaultOneException
〈∅,. . .,∅,v,∅,. . .,∅ | e1 :- e2〉 −→ v

D-DefaultExceptionsConflict
empty_count(v1,. . .,vn) < n− 1
〈v1,. . .,vn | e1 :- e2〉 −→ ~

When none of the exceptions apply, we can suppose that the justification of the default is
already reduced to a variable v, which should be a boolean by virtue of typing. If v is true,
then this rule applies and we reduce to the consequence. If it is false, then the base case does
not apply either and we throw an empty default error.

Last, we need to define how our error terms propagate. Because the rules for sub-default
evaluation have to count the number of error terms in the list of sub-defaults, we cannot always
immediately propagate the error term∅ in all the evaluation contexts as it usually done. Rather,
we rely on the distinction between the λ-calculus evaluation contexts Cλ and the sub-default
evaluation context. Hence the following rules for error propagation:

D-ContextEmptyError
e −→ ∅

Cλ[e] −→ ∅

D-ContextConflictError
e −→ ~

C[e] −→ ~

3 Scope language
Our core default calculus provides a value language adapted to the drafting style of tax law.
Each article of the law will provide one or more rules encoded as defaults. But how to collect
those defaults into a single expression that will compute the result that we want? How to reuse
existing rules in different contexts?

These question point out the lack of an abstraction structure adapted to the legislative
drafting style. Indeed, our λ functions are not convenient to compose together the rules scattered
around the legislative text. Moreover, the abstractions defined in the legislative text exhibit a
behavior quite different from λ functions.

First, the blurred limits between abstraction units. In the legislative text, objects and data
are referred in a free variable style. It is up to us to put the necessary bindings for these free
variables, but it is not trivial to do so. For that, one need to define the perimeter of each
abstraction unit, a legislative scope, which might encompass multiple articles.

4

Simple scope program
1 scope X:
2 rule a = < true :- 0 >
3 rule b = < true :- a + 1 >
4

5 scope Y:
6 rule X_1[a] = < true :- 42 >
7 call X_1
8 rule c = < X_1[b] != 43 :- false | X_1[b] == 43 :- true >

Figure 1: Illustrative program written in the scope language

Second, the confusion between local variables and function parameters. The base-case vs.
exception structure of the law also extends between legislative scopes. For instance, a scope
A can define a variable x to have value a, but another legislative scope B can call into A but
specifying that x should be b. In this setting, B defines an exception for x, that should be dealt
with using our default calculus.

Based on these two characteristic, we propose a high-level scope language, semantically
defined by its encoding in the default calculus.

3.1 Syntax

A scope S is a legislative abstraction unit that can encompass multiple articles. S is comprised
of multiple rules that define a scope variable a to a certain expression under a condition that
characterize the base case or the exception.

S can also call into another scope S′, as a function can call into another. These calls are
scattered in the legislative texts and have to be identified by the programmer. Since S can call
S′ multiple times with different “parameters”, we have to distinguish between these sub-call
and give them different names S′1, S′2, etc. A program P is a list of scope declarations σ.

Scope name S
Scope call identifier n
Location ` ::= a scope variable

| Sn[a] sub-scope call variable
Expression e ::= ` location

| · · · default calculus expressions

Rule r ::= rule ` : τ = 〈[e∗] | e :- e〉 Location definition
| call Sn sub-scope call

Scope declaration σ ::= scope S : [r∗]
Program P ::= [σ∗]

3.2 Running example

Let’s illustrate how the scope language plays out with a simple program that calls a sub-scope,
with Fig. 1.

Considered alone, the execution X is simple: a and b are defined by a single default whose
justification is true. Hence, a should evaluate to 0 and b should evaluate to 1.

5

Simple default program
1 let X (a: unit -> int) (b: unit -> int) : (int * int) =
2 let a : int = < a () | < true :- 0 >> in
3 let b : int = < b () | < true :- a + 1 >> in
4 (a, b)
5

6 let Y (c: unit -> bool) : bool =
7 let X_1[a] : unit -> int = fun () -> < true :- 42 > in
8 let X_1[b] : unit -> int = fun () -> EmptyError in
9 let (X_1[a], X_1[b]) : int * int = X(X_1[a], X_1[b]) in

10 let c : bool = < c () | < X_1[b] != 43 :- false | X_1[b] == 43 :- true >> in
11 c

Figure 2: Default calculus program resulting from the compilation of Fig. 1

Now, consider scope Y. It defines a single variable c with two defaults line 8, but the
justifications for these two defaults use the result of the evaluation (line 7) of variable b of the
sub-scope X_1. Line 6 shows an example of providing an “argument” to the subscope call. The
execution goes like this: at line 7 when calling the sub-scope, X_1[a] has two defaults, one
coming from line 2, the other calling from line 6. Because the caller has priority over the callee,
the default from line 6 wins and X_1[a] evaluates to 42. Consequently, X_1[b] evaluates to 43.
This triggers the second default in the list of line 8: the exception evaluates first, but does not
apply. Then, the base case applies, and evaluates c to true.

The goal is to provide an encoding of the scope language into the lambda calculus that is
compatible with this intuitive description of how scopes should evaluate. To get a high-level
picture of the translation, we first show what the previous simple program will translate to,
using ML-like syntax for the target default calculus in Fig. 2.

We start unravelling this translation with the scope X. X has been turned into a function
whose arguments are all the local variables of the scope. However, the arguments have type
unit -> <type>. Indeed, we want the arguments of X (line 1) to be the default expression
supplied by the caller of X, which are considered as exceptions to the base expression defining
the local variables of X (lines 2 and 3). After the merging of scope-local and scope-arguments
defaults, we apply () to the thunk to force evaluation and get back the value. Finally, X returns
the tuple of all its local variables (line 4).

The translation of Y exhibits the pattern for sub-scope calls. Lines 7 translates the assign-
ment of the sub-scope argument X_1[a]. Before calling X_1 (line 8), the other argument X_1[b]
is initialized to the neutral ∅ that will be ignored at execution because X provides more defaults
for b. The sub-scope call is translated to a regular function call (line 9). The results of the call
are then used in the two defaults for c (line 10), which have been turned into a default tree
taking into account the possible input for c.

3.3 Formalization of the translation

The main judgment of reduction from scope language to default calculus is P ` σ eV ∆own ,
which reduces a scope declaration to a function in the default calculus, while providing the list
of its own variables.

6

Translation context ∆ ::= ∅ empty context
(unordered map) | ∆own, ∆sub own and sub-scopes contexts

∆own ::= ∅ | ∆own, a : τ typed scope variable
∆sub ::= ∅ | ∆sub, Sn[a] : τ typed sub-scope variable

The translation context ∆ is similar to the typing context Γ of the default calculus, but it
only takes into account the new scope-related location. At any point, ∆ will contain the scope
locations defined (and usable in expressions) so far. ∆ is divided in ∆own and ∆sub, which
contain respectively the scope’s own variables and the variables of its sub-scopes.

We will describe the translation from top to bottom, in order to keep the big picture in
mind. We will assume the default calculus has been expanded with the usual ML let in con-
struction, as well as tuples. Here is the top-level rule for translating scopes.

T-Scope
P ; ∅ `S r1,. . .,rn eV a1 : τ1, . . . , am : τm, ∆sub

P ` scope S : r1,. . .,rn
let S (a1 : unit → τ1) · · · (am : unit → τm) : (τ1 ∗ · · · ∗ τm) = e[· 7→ (a1,. . .,am)]V

a1 : τ1, . . . , am : τm

This rule has a lot to unpack, but it is just the formal description of the translation scheme
described earlier. To translate scope declaration S with associated rules r1,. . .,rn, we use a
helper judgment P ; ∆ `S r1,. . .,rn e V ∆′ which reads as “given a program P and a
translation context ∆, the rules r1,. . .,rn belonging to scope S translate to the expression e,
producing a new typing context ∆′”. In this T-Scope rule, we isolate in the resulting ∆′ all
the scope variables a1,. . . ,am from the sub-scope variables. Indeed, those variable will be the
arguments and the return values of the function corresponding to the scope S. The expression
e that stands for rules r1,. . .,rn is a series of let bindings, the last one finishing by a hole (·).
We use this hole as a placeholder to be filled with the return value of the function, which is
the tuple (a1,. . .,an). Note that in accordance to the translation scheme and the need for a
delayed evaluation of defaults, the arguments of S have a thunked type.

T-Rules
P ; ∆ `S r1 e1 V ∆′ P ; ∆′ `S r2,. . .,rn e2 V ∆′′

P ; ∆ `S r1,. . .,rn e1[· 7→ e2]V ∆′′

The translation of the sequence of rules consists of chaining the different let in expres-
sions together with the same hole (·) substitution as the previous rule. Now, we can define the
translation for individual rules, starting with the definitions of scope variables.

T-DefScopeVar
a /∈ ∆ ∆ ` 〈e1,. . .,en | ejust :- econs〉 : τ

P ; ∆ `S rule a : τ = 〈e1,. . .,en | ejust :- econs〉
let a : τ = 〈a () | 〈e1,. . .,en | ejust :- econs〉〉 in · V a : τ , ∆

The premise of T-DefScopeVar, a /∈ ∆, indicates that our scope language allows each scope
variable to be defined only once, with one default tree. This single default tree can incorporate
multiple prioritized definitions of the same variable scattered around various legislative articles,
but we assume in our scope language that these scattered definitions have been already collected.
Therefore, the ordering of rules is very important in our scope language, because it should be
compatible with the dependency graph of the scope locations. As the underlying default calculus
is decidable and does not allow fixpoint definitions, the dependency graph of the scope locations
should not be cyclic and therefore the topological ordering of its nodes should correspond to

7

the order of the rules inside the scope declaration. This dependency ordering is enforced by the
premise ∆ ` 〈ejust :- econs | e1,. . .,en〉 : τ , which seeds the typing judgment of §2.2 with ∆
(the scope locations defined so far).

Since scope variables are also arguments of the scope, T-DefScopeVar redefines a by merg-
ing the new default tree with the default expression a of type unit → τ passed as an argument
to S. This merging is done by defining the incoming argument as an exception to the scope-local
expression. This translation scheme ensures that the caller always has priority over the callee.
The evaluation of the incoming arguments is forced by applying (), yielding a value of type τ
for a.

ow that we have presented the translation scheme for rules defining scope variables, we can
switch to the translation of sub-scope variables definitions and calls. We will start by the rules
that define sub-scope variables, prior to calling the associated sub-scope.

T-DefSubScopeVar
S 6= S′ S′n[a] /∈ ∆ ∆ ` 〈e1,. . .,en | ejust :- econs〉 : τ
P ; ∆ `S rule S′n[a] : τ = 〈e1,. . .,en | ejust :- econs〉

let S′n[a] : unit → τ = λ (() : unit). 〈e1,. . .,en | ejust :- econs〉 in · V
S′n[a] : unit → τ , ∆

This rule is very similar to T-DefScopeVar, and actually simpler. The premise S 6= S′

means that a scope S cannot have a recursive definition; it cannot call into itself and define
sub-scope variables of its own scope. Note that S′n[a] : unit → τ is added to ∆ in the final
part of the judgment; S′n[a] has been defined as a sub-scope argument but not as a value that
can be used by the scope yet, its type is unit → τ and not τ .

When all the arguments of sub-scope S′ have been defined using, T-DefSubScopeVar, the
sub-scope itself can be called.

T-SubScopeCall
S 6= S′ P (S′) = σ′

P ` σ′ e′ V a′1 : τ ′1, . . . , a′n : τ ′n, ∆′sub init_subvars(∆; S′n[a′1], . . . , S′n[a′n]) = einit

P ; ∆ `S call S′n einit[· 7→ let (S′n[a′1],. . .,S′n[a′n]) : (τ ′1 ∗ · · · ∗ τ ′n) =
e′ (S′n[a′1]) · · · (S′n[a′n]) in ·]V S′n[a′1] : τ ′1, . . . , S′n[a′n] : τ ′n, ∆

Again, this rule has a lot to unpack, but is meant as a generalization of the translation
scheme illustrated in §3.2. Let us start with the premises. As earlier, S 6= S′ means that scope
declarations cannot be recursive. Next, we fetch the declaration σ′ of S′ inside the program P .
σ′ is reduced into the function expression e′, whose arguments correspond to the scope variables
of S′: a′1,. . .,a′n. Then, we need to define all the arguments necessary to call e′. Some of these
arguments have been defined earlier in the translation, and they were added to ∆. But some
arguments may not have been defined yet, and is its precisely the job of the init_subvars helper
to produce the einit expression to define those missing arguments with the ∅ value.

The conclusion of T-SubScopeCall defines the reduction of call S′n. After einit, we trans-
late the sub-scope call to the default calculus call of the corresponding expression e′, which
takes as arguments the defaults and returns the corresponding values after evaluation. Finally,
the new translation context produced is ∆ augmented with all the variables of sub-scope S′,
who are available for use in later definitions of the scope.

The last item we need to define in order to complete the translation is init_subvars. Its
definition is quite simple, since it produces an expression defining to ∅ all the variables from a

8

list not present in ∆.

T-InitSubVarsInDelta
S′n[a1] : τ1 ∈ ∆ init_subvars(∆; S′n[a2], . . . , S′n[an]) = e

init_subvars(∆; S′n[a1], . . . , S′n[an]) = e

T-InitSubVarsNotInDelta
S′n[a1] : τ1 /∈ ∆ init_subvars(∆; S′n[a2], . . . , S′n[an]) = e′

init_subvars(∆; S′n[a1], . . . , S′n[an]) =
let S′n[a1] : unit → τ1 = λ (() : unit). ∅ in e

T-InitSubVarsEmpty
init_subvars(∆) = ·

4 From default calculus to lambda calculus

4.1 Using exceptions

The default calculus is a solid semantic foundation for the Catala language, but it is not a
good compilation target since default logic cannot be shallowly embedded easily in mainstream
programming languages. Hence, we propose a compilation scheme whose goal is to eliminate
default terms and empty error terms (∅) from the default calculus, leaving us with a the
semantics of a regular lambda calculus. The conflict error term (~) is less problematic since its
semantics correspond to an early exit from the program.

In order to lower the default term to a lambda calculus term, we need to extend the tradi-
tional lambda calculus with several classic extensions: algebraic data types and recursive data
types (lists). Indeed, we need an optional accumulator to emulate the exception count that
triggers rules like D-DefaultExceptionsConflict and D-DefaultOneException.

The empty error term has a complex propagation rule (D-ContextEmptyError) that nat-
urally maps to a catchable exception. Hence, in this translation scheme, assume that the target
lambda calculus has support for exceptions. Combining these features, we propose a translation
of the default term. This translation relies on a small runtime function process_exceptions,
whose body implements the semantics of the default calculus.

process_exceptions : (unit → τ) list → τ option

process_exceptions , fold_left (λ (a : τ option) (e′ : unit → τ).

let e′ : τ option =

try Some (e′()) with EmptyError → None

in

match (a, e′) with

| (None, e′) → e′

| (Some a, None) → Some a

| (Some a, Some e′) → raise ConflictError) None

Note that the EmptyError exception is caught within process_exceptions; making it the
only place in the output code where this exception can be caught. This is consistent with the
evaluation context of the default exceptions, which is the only evaluation context that belongs
to C but not to Cλ.

We can now proceed to the formal translation rules defining the compilation judgment
e ⇒ e′ where e is an expression of the default calculus and e′ is an expression of the target
lambda calculus enriched with algebraic data types and exceptions.

9

C-Default
e1 ⇒ e′1 · · · en ⇒ e′n ejust ⇒ e′just econs ⇒ e′cons

〈e1,. . .,en | ejust :- econs〉 ⇒
let rexceptions = process_exceptions [λ _ → e′1;. . .;λ _ → e′n] in

match rexceptions with Some e′ → e′ | None → if e′just then e′cons else raise EmptyError

C-EmptyError
∅ ⇒ raise EmptyError

C-ConflictError
~ ⇒ raise ConflictError

C-Var
x ⇒ x

C-Literal
e ∈ {(), true, false}

e ⇒ e

C-Abs
e ⇒ e′

λ (x : τ). e ⇒ λ (x : τ). e′

C-App
e1 ⇒ e′1 e2 ⇒ e′2

e1 e2 ⇒ e′1 e
′
2

We overload the −→ notation as the stepping judgment both in the default calculus and
the target lambda calculus. Similarly, we overload the typing judgment ` . We prove this
theorem by induction on the default calculus expression e and start by applying an inversion
lemma on the judgment e ⇒ e′.

Theorem (type preservation) If e ⇒ e′ and ∅ ` e : τ , then ∅ ` e′ : τ
The proof can be carried out by induction on e without any trouble. The most difficult part

is to check the correct typing of process_exceptions in the lambda calculus �

Theorem (translation correctness) If e ⇒ e′ and e −→∗ v, then either v = ∅, v = ~ or
there exists a lambda calculus value v′ such that v ⇒ v′ and e′ −→∗ v′.

• Rules C-EmptyError, C-ConflictError, C-Var and C-Literal yield an immediate con-
clusion.

• For rule C-Abs with e = λ (x : τ). e1, we apply the induction hypothesis on e1 and
conclude since functions are values (v′ = λ (x : τ). e′1).

• For rule C-App with e = e1 e2, we apply the induction hypothesis on e1 and e2. If either
e1 or e2 evaluate to ∅, we can apply D-ContextEmptyError and conclude. Similarly, if
either e1 or e2 evaluate to ~, we can apply D-ContextConflictError and conclude. Let
us now suppose that we are not in one of those cases, and that e1 −→∗ v1 and e2 −→∗ v2.
v1 and v2 are not error terms, so we can apply C-Literal or C-Abs to get v′1 and v′2 such
that v1 ⇒ v′1 and v2 ⇒ v′2. By the induction hypothesis applied on e1 and e2, we know
that e′1 −→∗ v′1 and e′2 −→∗ v′2.
To recap, we have e1 e2 −→∗ v1 v2, e′1 e′2 −→∗ v′1 v′2 and by C-App, v1 v2 ⇒ v′1 v

′
2. We

also know that v1 v2 −→∗ v beginning by a β-reduction. We can then apply the induction
hypothesis a third time on v1 v2 to get the v′ on which we conclude.

• Let us consider now C-Default with e = 〈e1,. . .,en | ejust :- econs〉. If any of the
sub-terms evaluates to ~, then e evaluates to ~ (D-ContextConflictError) and we
conclude. Now, we case analyse on the number of exceptions that don’t evaluate to ∅.

– If more than one exception does not evaluate to ∅, then e evaluates to ~ by
D-DefaultExceptionsConflict and we conclude.

10

– If one and only one exception ei does not evaluates to ∅, then we apply the induction
hypothesis and get a couple (vi, v′i) such that ei −→∗ vi, e′i −→∗ v′i and vi⇒ vi. Then,
we claim that the rexceptions result of process_exceptions will evaluate to Some v′i in
the lambda calculus translation of e. Indeed, along the fold_left the accumulator
a will remain None as it encounters all the e′j that raise the EmptyError caught inside
the fold function. The accumulator will then encounter e′i, that yields v′i and pick up
its value. By following the rest of the translated code, e′ will evaluate to v′i and we
can conclude.

– If all exceptions evaluate to ∅, then we claim that the rexceptions result will eval-
uate to None. Indeed, the accumulator will stay at its original None value during
the whole fold process of the exceptions. We now look at the evaluation of ejust.
If it evaluates to ∅ or ~, then the whole expression evaluates to the error term
(D-ContextConflictError and D-ContextEmptyError) and we conclude. By
type safety of the default calculus, ejust evaluates to either vjust = true or false. By
type preservation of the translation e′just evaluates to either vjust′ = true or false.
By application of the induction hypothesis on e′just, we know that vjust ⇒ v′just and by
inversion on the ⇒ judgment, we conclude vjust = v′just. From there, if vjust′ = true,
then we conclude by applying the induction hypothesis on econs. If vjust′ = false,
then the default evaluates to ∅ and we conclude �

References
[1] Gerhard Brewka and Thomas Eiter. “Prioritizing Default Logic”. In: Intellectics and Com-

putational Logic: Papers in Honor of Wolfgang Bibel. Ed. by Steffen Hölldobler. Dordrecht:
Springer Netherlands, 2000, pp. 27–45. isbn: 978-94-015-9383-0. doi: 10.1007/978-94-
015-9383-0_3. url: https://doi.org/10.1007/978-94-015-9383-0_3.

[2] Sarah B Lawsky. “Form as Formalization”. In: Ohio State Technology Law Journal (2020).
[3] Sarah B. Lawsky. “A Logic for Statutes”. In: Florida Tax Review (2018).
[4] Sarah B. Lawsky. “Formalizing the Code”. In: Tax Law Review 70.377 (2017).
[5] R. Reiter. “Readings in Nonmonotonic Reasoning”. In: ed. by Matthew L. Ginsberg. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1987. Chap. A Logic for Default
Reasoning, pp. 68–93. url: http://dl.acm.org/citation.cfm?id=42641.42646.

11

