(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux , Emile Rolley Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) type money = Z.t type integer = Z.t type decimal = Q.t type date = CalendarLib.Date.t type duration = CalendarLib.Date.Period.t type source_position = { filename : string; start_line : int; start_column : int; end_line : int; end_column : int; law_headings : string list; } type 'a eoption = ENone of unit | ESome of 'a exception EmptyError exception AssertionFailed exception ConflictError exception UncomparableDurations exception IndivisableDurations exception ImpossibleDate exception NoValueProvided of source_position type runtime_value = | Unit | Bool of bool | Money of money | Integer of integer | Decimal of decimal | Date of date | Duration of duration | Enum of string list * (string * runtime_value) | Struct of string list * (string * runtime_value) list | Array of runtime_value Array.t | Unembeddable let unembeddable _ = Unembeddable let embed_unit () = Unit let embed_bool x = Bool x let embed_money x = Money x let embed_integer x = Integer x let embed_decimal x = Decimal x let embed_date x = Date x let embed_duration x = Duration x let embed_array f x = Array (Array.map f x) type event = | BeginCall of string list | EndCall of string list | VariableDefinition of string list * runtime_value | DecisionTaken of source_position let log_ref : event list ref = ref [] let reset_log () = log_ref := [] let retrieve_log () = List.rev !log_ref let log_begin_call info f x = log_ref := BeginCall info :: !log_ref; f x let log_end_call info x = log_ref := EndCall info :: !log_ref; x let log_variable_definition (info : string list) embed (x : 'a) = log_ref := VariableDefinition (info, embed x) :: !log_ref; x let log_decision_taken pos x = if x then log_ref := DecisionTaken pos :: !log_ref; x let money_of_cents_string (cents : string) : money = Z.of_string cents let money_of_units_int (units : int) : money = Z.(of_int units * of_int 100) let money_of_cents_integer (cents : integer) : money = cents let money_to_float (m : money) : float = Z.to_float m /. 100. let money_to_string (m : money) : string = Format.asprintf "%.2f" Q.(to_float (of_bigint m / of_int 100)) let money_to_cents m = m let money_round (m : money) : money = let units, cents = Z.div_rem m (Z.of_int 100) in (* If [m] is negative, [cents] will also be negative. *) if Z.(abs cents < of_int 50) then Z.(units * of_int 100) else Z.((units + of_int (sign units)) * of_int 100) let decimal_of_string (d : string) : decimal = Q.of_string d let decimal_to_float (d : decimal) : float = Q.to_float d let decimal_of_float (d : float) : decimal = Q.of_float d let decimal_of_integer (d : integer) : decimal = Q.of_bigint d let decimal_to_string ~(max_prec_digits : int) (i : decimal) : string = let sign = Q.sign i in let n = Z.abs (Q.num i) in let d = Z.abs (Q.den i) in let int_part = Z.ediv n d in let n = ref (Z.erem n d) in let digits = ref [] in let leading_zeroes (digits : Z.t list) : int = match List.fold_right (fun digit num_leading_zeroes -> match num_leading_zeroes with | `End _ -> num_leading_zeroes | `Begin i -> if Z.(digit = zero) then `Begin (i + 1) else `End i) digits (`Begin 0) with | `End i -> i | `Begin i -> i in while !n <> Z.zero && List.length !digits - leading_zeroes !digits < max_prec_digits do n := Z.mul !n (Z.of_int 10); digits := Z.ediv !n d :: !digits; n := Z.erem !n d done; Format.asprintf "%s%a.%a%s" (if sign < 0 then "-" else "") Z.pp_print int_part (Format.pp_print_list ~pp_sep:(fun _fmt () -> ()) (fun fmt digit -> Format.fprintf fmt "%a" Z.pp_print digit)) (List.rev !digits) (if List.length !digits - leading_zeroes !digits = max_prec_digits then "…" else "") let decimal_round (q : decimal) : decimal = (* Implements the workaround by https://gmplib.org/list-archives/gmp-discuss/2009-May/003767.html *) let n = Q.num q in let d = Q.den q in Q.of_bigint Z.(fdiv ((of_int 2 * n) + d) (of_int 2 * d)) let integer_of_string (s : string) : integer = Z.of_string s let integer_to_string (i : integer) : string = Z.to_string i let integer_to_int (i : integer) : int = Z.to_int i let integer_of_int (i : int) : integer = Z.of_int i let integer_exponentiation (i : integer) (e : int) : integer = Z.pow i e let integer_log2 = Z.log2 let year_of_date (d : date) : integer = Z.of_int (CalendarLib.Date.year d) let month_number_of_date (d : date) : integer = Z.of_int (CalendarLib.Date.int_of_month (CalendarLib.Date.month d)) let day_of_month_of_date (d : date) : integer = Z.of_int (CalendarLib.Date.day_of_month d) let date_of_numbers (year : int) (month : int) (day : int) : date = try CalendarLib.Date.make year month day with _ -> raise ImpossibleDate let date_to_string (d : date) : string = CalendarLib.Printer.Date.to_string d let duration_of_numbers (year : int) (month : int) (day : int) : duration = CalendarLib.Date.Period.make year month day let duration_to_string (d : duration) : string = let x, y, z = CalendarLib.Date.Period.ymd d in let to_print = List.filter (fun (a, _) -> a <> 0) [x, "years"; y, "months"; z, "days"] in match to_print with | [] -> "empty duration" | _ -> Format.asprintf "%a" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ",@ ") (fun fmt (d, l) -> Format.fprintf fmt "%d %s" d l)) to_print let duration_to_years_months_days (d : duration) : int * int * int = CalendarLib.Date.Period.ymd d let handle_default : 'a. (unit -> 'a) array -> (unit -> bool) -> (unit -> 'a) -> 'a = fun exceptions just cons -> let except = Array.fold_left (fun acc except -> let new_val = try Some (except ()) with EmptyError -> None in match acc, new_val with | None, _ -> new_val | Some _, None -> acc | Some _, Some _ -> raise ConflictError) None exceptions in match except with | Some x -> x | None -> if just () then cons () else raise EmptyError let handle_default_opt (exceptions : 'a eoption array) (just : bool eoption) (cons : 'a eoption) : 'a eoption = let except = Array.fold_left (fun acc except -> match acc, except with | ENone _, _ -> except | ESome _, ENone _ -> acc | ESome _, ESome _ -> raise ConflictError) (ENone ()) exceptions in match except with | ESome _ -> except | ENone _ -> ( match just with | ESome b -> if b then cons else ENone () | ENone _ -> ENone ()) let no_input : unit -> 'a = fun _ -> raise EmptyError let ( *$ ) (i1 : money) (i2 : decimal) : money = let i1_abs = Z.abs i1 in let i2_abs = Q.abs i2 in let sign_int = Z.sign i1 * Q.sign i2 in let rat_result = Q.mul (Q.of_bigint i1_abs) i2_abs in let res, remainder = Z.div_rem (Q.num rat_result) (Q.den rat_result) in (* we perform nearest rounding when multiplying an amount of money by a decimal !*) if Z.(of_int 2 * remainder >= Q.den rat_result) then Z.(add res (of_int 1) * of_int sign_int) else Z.(res * of_int sign_int) let ( /$ ) (m1 : money) (m2 : money) : decimal = if Z.zero = m2 then raise Division_by_zero else Q.div (Q.of_bigint m1) (Q.of_bigint m2) let ( +$ ) (m1 : money) (m2 : money) : money = Z.add m1 m2 let ( -$ ) (m1 : money) (m2 : money) : money = Z.sub m1 m2 let ( ~-$ ) (m1 : money) : money = Z.sub Z.zero m1 let ( +! ) (i1 : integer) (i2 : integer) : integer = Z.add i1 i2 let ( -! ) (i1 : integer) (i2 : integer) : integer = Z.sub i1 i2 let ( ~-! ) (i1 : integer) : integer = Z.sub Z.zero i1 let ( *! ) (i1 : integer) (i2 : integer) : integer = Z.mul i1 i2 let ( /! ) (i1 : integer) (i2 : integer) : integer = if Z.zero = i2 then raise Division_by_zero else Z.div i1 i2 let ( +& ) (i1 : decimal) (i2 : decimal) : decimal = Q.add i1 i2 let ( -& ) (i1 : decimal) (i2 : decimal) : decimal = Q.sub i1 i2 let ( ~-& ) (i1 : decimal) : decimal = Q.sub Q.zero i1 let ( *& ) (i1 : decimal) (i2 : decimal) : decimal = Q.mul i1 i2 let ( /& ) (i1 : decimal) (i2 : decimal) : decimal = if Q.zero = i2 then raise Division_by_zero else Q.div i1 i2 let ( +@ ) (d1 : date) (d2 : duration) : date = CalendarLib.Date.add d1 d2 let ( -@ ) (d1 : date) (d2 : date) : duration = CalendarLib.Date.sub d1 d2 let ( +^ ) (d1 : duration) (d2 : duration) : duration = CalendarLib.Date.Period.add d1 d2 let ( -^ ) (d1 : duration) (d2 : duration) : duration = CalendarLib.Date.Period.sub d1 d2 (* (EmileRolley) NOTE: {!CalendarLib.Date.Period.nb_days} is deprecated, {!CalendarLib.Date.Period.safe_nb_days} should be used. But the current {!duration} is greater that the supported polymorphic variants.*) let ( /^ ) (d1 : duration) (d2 : duration) : decimal = try let nb_day1 = CalendarLib.Date.Period.nb_days d1 in let nb_day2 = CalendarLib.Date.Period.nb_days d2 in if 0 = nb_day2 then raise Division_by_zero else Q.(nb_day1 // nb_day2) with CalendarLib.Date.Period.Not_computable -> raise IndivisableDurations let ( <=$ ) (m1 : money) (m2 : money) : bool = Z.compare m1 m2 <= 0 let ( >=$ ) (m1 : money) (m2 : money) : bool = Z.compare m1 m2 >= 0 let ( <$ ) (m1 : money) (m2 : money) : bool = Z.compare m1 m2 < 0 let ( >$ ) (m1 : money) (m2 : money) : bool = Z.compare m1 m2 > 0 let ( =$ ) (m1 : money) (m2 : money) : bool = Z.compare m1 m2 = 0 let ( >=! ) (i1 : integer) (i2 : integer) : bool = Z.compare i1 i2 >= 0 let ( <=! ) (i1 : integer) (i2 : integer) : bool = Z.compare i1 i2 <= 0 let ( >! ) (i1 : integer) (i2 : integer) : bool = Z.compare i1 i2 > 0 let ( =& ) (i1 : decimal) (i2 : decimal) : bool = Q.compare i1 i2 >= 0 let ( <=& ) (i1 : decimal) (i2 : decimal) : bool = Q.compare i1 i2 <= 0 let ( >& ) (i1 : decimal) (i2 : decimal) : bool = Q.compare i1 i2 > 0 let ( <& ) (i1 : decimal) (i2 : decimal) : bool = Q.compare i1 i2 < 0 let ( =& ) (i1 : decimal) (i2 : decimal) : bool = Q.compare i1 i2 = 0 let ( >=@ ) (d1 : date) (d2 : date) : bool = CalendarLib.Date.compare d1 d2 >= 0 let ( <=@ ) (d1 : date) (d2 : date) : bool = CalendarLib.Date.compare d1 d2 <= 0 let ( >@ ) (d1 : date) (d2 : date) : bool = CalendarLib.Date.compare d1 d2 > 0 let ( <@ ) (d1 : date) (d2 : date) : bool = CalendarLib.Date.compare d1 d2 < 0 let ( =@ ) (d1 : date) (d2 : date) : bool = CalendarLib.Date.compare d1 d2 = 0 let compare_periods (p1 : CalendarLib.Date.Period.t) (p2 : CalendarLib.Date.Period.t) : int = try let p1_days = CalendarLib.Date.Period.nb_days p1 in let p2_days = CalendarLib.Date.Period.nb_days p2 in compare p1_days p2_days with CalendarLib.Date.Period.Not_computable -> raise UncomparableDurations let ( >=^ ) (d1 : duration) (d2 : duration) : bool = compare_periods d1 d2 >= 0 let ( <=^ ) (d1 : duration) (d2 : duration) : bool = compare_periods d1 d2 <= 0 let ( >^ ) (d1 : duration) (d2 : duration) : bool = compare_periods d1 d2 > 0 let ( <^ ) (d1 : duration) (d2 : duration) : bool = compare_periods d1 d2 < 0 let ( =^ ) (d1 : duration) (d2 : duration) : bool = compare_periods d1 d2 = 0 let ( ~-^ ) (d1 : duration) : duration = CalendarLib.Date.Period.opp d1 let array_filter (f : 'a -> bool) (a : 'a array) : 'a array = Array.of_list (List.filter f (Array.to_list a)) let array_length (a : 'a array) : integer = Z.of_int (Array.length a)