catala/compiler/scalc/from_lcalc.ml
Louis Gesbert 5d61963a93 Reformat
2024-08-28 18:12:32 +02:00

811 lines
28 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2021 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
module A = Ast
module L = Lcalc.Ast
module D = Dcalc.Ast
type translation_config = {
keep_special_ops : bool;
dead_value_assignment : bool;
no_struct_literals : bool;
renaming_context : Renaming.context;
}
type 'm ctxt = {
func_dict : ('m L.expr, A.FuncName.t) Var.Map.t;
var_dict : ('m L.expr, A.VarName.t) Var.Map.t;
inside_definition_of : A.VarName.t option;
context_name : string;
config : translation_config;
program_ctx : A.ctx;
ren_ctx : Renaming.context;
}
(** Blocks are constructed as reverse ordered lists. This module abstracts this
and avoids confusion in ordering of statements (also opening the opportunity
for more optimisations) *)
module RevBlock : sig
type t = private A.block
val empty : t
val append : t -> A.stmt Mark.pos -> t
val make : A.block -> t
val seq : t -> t -> t
val rebuild : t -> tail:A.block -> A.block
end = struct
type t = A.block
let empty = []
let append t st = st :: t
let make st = List.rev st
let seq t1 t2 = t2 @ t1
let rebuild t ~tail = List.rev_append t tail
end
let ( ++ ) = RevBlock.seq
let unbind ctxt bnd =
let v, body, ren_ctx = Renaming.unbind_in ctxt.ren_ctx bnd in
v, body, { ctxt with ren_ctx }
let unmbind ctxt bnd =
let vs, body, ren_ctx = Renaming.unmbind_in ctxt.ren_ctx bnd in
vs, body, { ctxt with ren_ctx }
let get_name ctxt s =
let name, ren_ctx = Renaming.new_id ctxt.ren_ctx s in
name, { ctxt with ren_ctx }
let fresh_var ~pos ctxt name =
let v, ctxt = get_name ctxt name in
A.VarName.fresh (v, pos), ctxt
let register_fresh_var ~pos ctxt x =
let v = A.VarName.fresh (Bindlib.name_of x, pos) in
let var_dict = Var.Map.add x v ctxt.var_dict in
v, { ctxt with var_dict }
let register_fresh_func ~pos ctxt x =
let f = A.FuncName.fresh (Bindlib.name_of x, pos) in
let func_dict = Var.Map.add x f ctxt.func_dict in
f, { ctxt with func_dict }
let register_fresh_arg ~pos ctxt (x, _) =
let _, ctxt = register_fresh_var ~pos ctxt x in
ctxt
let rec translate_expr_list ctxt args =
let stmts, args, ren_ctx =
List.fold_left
(fun (args_stmts, new_args, ren_ctx) arg ->
let arg_stmts, new_arg, ren_ctx =
translate_expr { ctxt with ren_ctx } arg
in
args_stmts ++ arg_stmts, new_arg :: new_args, ren_ctx)
(RevBlock.empty, [], ctxt.ren_ctx)
args
in
stmts, List.rev args, ren_ctx
and translate_expr (ctxt : 'm ctxt) (expr : 'm L.expr) :
RevBlock.t * A.expr * Renaming.context =
match Mark.remove expr with
| EVar v ->
let local_var =
try A.EVar (Var.Map.find v ctxt.var_dict)
with Var.Map.Not_found _ -> (
try A.EFunc (Var.Map.find v ctxt.func_dict)
with Var.Map.Not_found _ ->
Message.error ~pos:(Expr.pos expr)
"Var not found in lambda→scalc: %a@\nknown: @[<hov>%a@]@\n"
Print.var_debug v
(Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf v ->
Print.var_debug ppf v))
(Var.Map.keys ctxt.var_dict))
in
RevBlock.empty, (local_var, Expr.pos expr), ctxt.ren_ctx
| EStruct { fields; name } ->
if ctxt.config.no_struct_literals then
(* In C89, struct literates have to be initialized at variable
definition... *)
spill_expr ~needs_a_local_decl:false ctxt expr
else
let args_stmts, new_args, ren_ctx =
StructField.Map.fold
(fun field arg (args_stmts, new_args, ren_ctx) ->
let arg_stmts, new_arg, ren_ctx =
translate_expr { ctxt with ren_ctx } arg
in
( args_stmts ++ arg_stmts,
StructField.Map.add field new_arg new_args,
ren_ctx ))
fields
(RevBlock.empty, StructField.Map.empty, ctxt.ren_ctx)
in
( args_stmts,
(A.EStruct { fields = new_args; name }, Expr.pos expr),
ren_ctx )
| EInj { e = e1; cons; name } ->
if ctxt.config.no_struct_literals then
(* In C89, struct literates have to be initialized at variable
definition... *)
spill_expr ~needs_a_local_decl:false ctxt expr
else
let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
( e1_stmts,
( A.EInj
{
e1 = new_e1;
cons;
name;
expr_typ = Expr.maybe_ty (Mark.get expr);
},
Expr.pos expr ),
ren_ctx )
| ETuple args ->
let args_stmts, new_args, ren_ctx = translate_expr_list ctxt args in
args_stmts, (A.ETuple new_args, Expr.pos expr), ren_ctx
| EStructAccess { e = e1; field; name } ->
let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
( e1_stmts,
(A.EStructFieldAccess { e1 = new_e1; field; name }, Expr.pos expr),
ren_ctx )
| ETupleAccess { e = e1; index; _ } ->
let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
e1_stmts, (A.ETupleAccess { e1 = new_e1; index }, Expr.pos expr), ren_ctx
| EAppOp { op; args; tys = _ } ->
let args_stmts, new_args, ren_ctx = translate_expr_list ctxt args in
(* FIXME: what happens if [arg] is not a tuple but reduces to one ? *)
args_stmts, (A.EAppOp { op; args = new_args }, Expr.pos expr), ren_ctx
| EApp { f = EAbs { binder; tys }, binder_mark; args; tys = _ } ->
(* This defines multiple local variables at the time *)
let binder_pos = Expr.mark_pos binder_mark in
let vars, body, ctxt = unmbind ctxt binder in
let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in
let ctxt =
List.fold_left (register_fresh_arg ~pos:binder_pos) ctxt vars_tau
in
let local_decls =
List.fold_left
(fun acc (x, tau) ->
RevBlock.append acc
( A.SLocalDecl
{ name = Var.Map.find x ctxt.var_dict, binder_pos; typ = tau },
binder_pos ))
RevBlock.empty vars_tau
in
let vars_args =
List.map2
(fun (x, tau) arg ->
(Var.Map.find x ctxt.var_dict, binder_pos), tau, arg)
vars_tau args
in
let def_blocks, ren_ctx =
List.fold_left
(fun (rblock, ren_ctx) (x, _tau, arg) ->
let ctxt =
{
ctxt with
inside_definition_of = Some (Mark.remove x);
context_name = Mark.remove (A.VarName.get_info (Mark.remove x));
ren_ctx;
}
in
let arg_stmts, new_arg, ren_ctx = translate_expr ctxt arg in
( RevBlock.append (rblock ++ arg_stmts)
( A.SLocalDef
{
name = x;
expr = new_arg;
typ = Expr.maybe_ty (Mark.get arg);
},
binder_pos ),
ren_ctx ))
(RevBlock.empty, ctxt.ren_ctx)
vars_args
in
let rest_of_expr_stmts, rest_of_expr, ren_ctx =
translate_expr { ctxt with ren_ctx } body
in
local_decls ++ def_blocks ++ rest_of_expr_stmts, rest_of_expr, ren_ctx
| EApp { f; args; tys = _ } ->
let f_stmts, new_f, ren_ctx = translate_expr ctxt f in
let args_stmts, new_args, ren_ctx =
translate_expr_list { ctxt with ren_ctx } args
in
(* FIXME: what happens if [arg] is not a tuple but reduces to one ? *)
( f_stmts ++ args_stmts,
(A.EApp { f = new_f; args = new_args }, Expr.pos expr),
ren_ctx )
| EArray args ->
let args_stmts, new_args, ren_ctx = translate_expr_list ctxt args in
args_stmts, (A.EArray new_args, Expr.pos expr), ren_ctx
| ELit l -> RevBlock.empty, (A.ELit l, Expr.pos expr), ctxt.ren_ctx
| EExternal { name } ->
let path, name =
match Mark.remove name with
| External_value name -> TopdefName.(path name, get_info name)
| External_scope name -> ScopeName.(path name, get_info name)
in
let modname =
( ModuleName.Map.find (List.hd (List.rev path)) ctxt.program_ctx.modules,
Expr.pos expr )
in
RevBlock.empty, (EExternal { modname; name }, Expr.pos expr), ctxt.ren_ctx
| EAbs _ | EIfThenElse _ | EMatch _ | EAssert _ | EFatalError _ ->
spill_expr ~needs_a_local_decl:true ctxt expr
| _ -> .
and spill_expr ~needs_a_local_decl ctxt expr =
let tmp_var, ctxt =
let name =
match ctxt.inside_definition_of with
| None -> ctxt.context_name
| Some v -> A.VarName.to_string v
in
fresh_var ctxt name ~pos:(Expr.pos expr)
in
let ctxt =
{
ctxt with
inside_definition_of = Some tmp_var;
context_name = Mark.remove (A.VarName.get_info tmp_var);
}
in
let tmp_stmts, ren_ctx = translate_statements ctxt expr in
( (if needs_a_local_decl then
RevBlock.make
(( A.SLocalDecl
{
name = tmp_var, Expr.pos expr;
typ = Expr.maybe_ty (Mark.get expr);
},
Expr.pos expr )
:: tmp_stmts)
else RevBlock.make tmp_stmts),
(A.EVar tmp_var, Expr.pos expr),
ren_ctx )
and translate_statements (ctxt : 'm ctxt) (block_expr : 'm L.expr) :
A.block * Renaming.context =
match Mark.remove block_expr with
| EAssert e ->
(* Assertions are always encapsulated in a unit-typed let binding *)
let e_stmts, new_e, ren_ctx = translate_expr ctxt e in
( RevBlock.rebuild
~tail:[A.SAssert (Mark.remove new_e), Expr.pos block_expr]
e_stmts,
ren_ctx )
| EFatalError err -> [SFatalError err, Expr.pos block_expr], ctxt.ren_ctx
(* | EAppOp
* { op = Op.HandleDefaultOpt, _; tys = _; args = [exceptions; just; cons] }
* when ctxt.config.keep_special_ops ->
* let exceptions =
* match Mark.remove exceptions with
* | EStruct { fields; _ } -> (
* let _, exceptions =
* List.find
* (fun (field, _) ->
* String.equal (Mark.remove (StructField.get_info field)) "content")
* (StructField.Map.bindings fields)
* in
* match Mark.remove exceptions with
* | EArray exceptions -> exceptions
* | _ -> failwith "should not happen")
* | _ -> failwith "should not happen"
* in
* let just = unthunk just in
* let cons = unthunk cons in
* let exceptions_stmts, new_exceptions =
* translate_expr_list ctxt exceptions
* in
* let just_stmts, new_just = translate_expr ctxt just in
* let cons_stmts, new_cons = translate_expr ctxt cons in
* RevBlock.rebuild exceptions_stmts
* ~tail:
* (RevBlock.rebuild just_stmts
* ~tail:
* [
* ( A.SSpecialOp
* (OHandleDefaultOpt
* {
* exceptions = new_exceptions;
* just = new_just;
* cons =
* RevBlock.rebuild cons_stmts
* ~tail:
* [
* ( (match ctxt.inside_definition_of with
* | None -> A.SReturn (Mark.remove new_cons)
* | Some x ->
* A.SLocalDef
* {
* name = Mark.copy new_cons x;
* expr = new_cons;
* typ =
* Expr.maybe_ty (Mark.get block_expr);
* }),
* Expr.pos block_expr );
* ];
* return_typ = Expr.maybe_ty (Mark.get block_expr);
* }),
* Expr.pos block_expr );
* ]) *)
| EApp { f = EAbs { binder; tys }, binder_mark; args; _ } ->
(* This defines multiple local variables at the time *)
let binder_pos = Expr.mark_pos binder_mark in
let vars, body, ctxt = unmbind ctxt binder in
let vars_tau = List.map2 (fun x tau -> x, tau) (Array.to_list vars) tys in
let ctxt =
List.fold_left (register_fresh_arg ~pos:binder_pos) ctxt vars_tau
in
let local_decls =
List.map
(fun (x, tau) ->
( A.SLocalDecl
{ name = Var.Map.find x ctxt.var_dict, binder_pos; typ = tau },
binder_pos ))
vars_tau
in
let vars_args =
List.map2
(fun (x, tau) arg ->
(Var.Map.find x ctxt.var_dict, binder_pos), tau, arg)
vars_tau args
in
let def_blocks, ren_ctx =
List.fold_left
(fun (def_blocks, ren_ctx) (x, _tau, arg) ->
let ctxt =
{
ctxt with
inside_definition_of = Some (Mark.remove x);
context_name = Mark.remove (A.VarName.get_info (Mark.remove x));
ren_ctx;
}
in
let arg_stmts, new_arg, ren_ctx =
translate_expr { ctxt with ren_ctx } arg
in
( RevBlock.append (def_blocks ++ arg_stmts)
( A.SLocalDef
{
name = x;
expr = new_arg;
typ = Expr.maybe_ty (Mark.get arg);
},
binder_pos ),
ren_ctx ))
(RevBlock.empty, ctxt.ren_ctx)
vars_args
in
let rest_of_block, ren_ctx =
translate_statements { ctxt with ren_ctx } body
in
local_decls @ RevBlock.rebuild def_blocks ~tail:rest_of_block, ren_ctx
| EAbs { binder; tys } ->
let closure_name, ctxt =
match ctxt.inside_definition_of with
| None -> fresh_var ctxt ctxt.context_name ~pos:(Expr.pos block_expr)
| Some x -> x, ctxt
in
let vars, body, ctxt = unmbind ctxt binder in
let binder_pos = Expr.pos block_expr in
let vars_tau = List.combine (Array.to_list vars) tys in
let ctxt =
List.fold_left
(register_fresh_arg ~pos:binder_pos)
{ ctxt with inside_definition_of = None }
vars_tau
in
let new_body, _ren_ctx = translate_statements ctxt body in
( [
( A.SInnerFuncDef
{
name = closure_name, binder_pos;
func =
{
func_params =
List.map
(fun (var, tau) ->
(Var.Map.find var ctxt.var_dict, binder_pos), tau)
vars_tau;
func_body = new_body;
func_return_typ =
(match Expr.maybe_ty (Mark.get block_expr) with
| TArrow (_, t2), _ -> t2
| TAny, pos_any -> TAny, pos_any
| _ -> assert false);
};
},
binder_pos );
],
ctxt.ren_ctx )
| EMatch { e = e1; cases; name } ->
let typ = Expr.maybe_ty (Mark.get e1) in
let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
let ctxt = { ctxt with ren_ctx } in
let e1_stmts, switch_var, ctxt =
match new_e1 with
| A.EVar v, _ -> e1_stmts, v, ctxt
| _ ->
let v, ctxt = fresh_var ctxt ctxt.context_name ~pos:(Expr.pos e1) in
( RevBlock.append e1_stmts
( A.SLocalInit { name = v, Expr.pos e1; expr = new_e1; typ },
Expr.pos e1 ),
v,
ctxt )
in
let new_cases =
EnumConstructor.Map.fold
(fun _ arg new_args ->
match Mark.remove arg with
| EAbs { binder; tys } ->
let vars, body, ctxt = unmbind ctxt binder in
assert (Array.length vars = 1);
let var = vars.(0) in
let scalc_var, ctxt =
register_fresh_var ctxt var ~pos:(Expr.pos arg)
in
let new_arg, _ren_ctx = translate_statements ctxt body in
{
A.case_block = new_arg;
payload_var_name = scalc_var;
payload_var_typ = List.hd tys;
}
:: new_args
| _ -> assert false)
cases []
in
( RevBlock.rebuild e1_stmts
~tail:
[
( A.SSwitch
{
switch_var;
switch_var_typ = typ;
enum_name = name;
switch_cases = List.rev new_cases;
},
Expr.pos block_expr );
],
ctxt.ren_ctx )
| EIfThenElse { cond; etrue; efalse } ->
let cond_stmts, s_cond, ren_ctx = translate_expr ctxt cond in
let s_e_true, _ = translate_statements ctxt etrue in
let s_e_false, _ = translate_statements ctxt efalse in
( RevBlock.rebuild cond_stmts
~tail:
[
( A.SIfThenElse
{
if_expr = s_cond;
then_block = s_e_true;
else_block = s_e_false;
},
Expr.pos block_expr );
],
ren_ctx )
| EInj { e = e1; cons; name } when ctxt.config.no_struct_literals ->
let e1_stmts, new_e1, ren_ctx = translate_expr ctxt e1 in
let tmp_struct_var_name =
match ctxt.inside_definition_of with
| None -> assert false
(* [translate_expr] should create this [inside_definition_of]*)
| Some x -> x, Expr.pos block_expr
in
let inj_expr =
( A.EInj
{
e1 = new_e1;
cons;
name;
expr_typ = Expr.maybe_ty (Mark.get block_expr);
},
Expr.pos block_expr )
in
( RevBlock.rebuild e1_stmts
~tail:
[
( A.SLocalInit
{
name = tmp_struct_var_name;
expr = inj_expr;
typ =
( Mark.remove (Expr.maybe_ty (Mark.get block_expr)),
Expr.pos block_expr );
},
Expr.pos block_expr );
],
ren_ctx )
| EStruct { fields; name } when ctxt.config.no_struct_literals ->
let args_stmts, new_args, ren_ctx =
StructField.Map.fold
(fun field arg (args_stmts, new_args, ren_ctx) ->
let arg_stmts, new_arg, ren_ctx =
translate_expr { ctxt with ren_ctx } arg
in
( args_stmts ++ arg_stmts,
StructField.Map.add field new_arg new_args,
ren_ctx ))
fields
(RevBlock.empty, StructField.Map.empty, ctxt.ren_ctx)
in
let struct_expr =
A.EStruct { fields = new_args; name }, Expr.pos block_expr
in
let tmp_struct_var_name =
match ctxt.inside_definition_of with
| None ->
failwith "should not happen"
(* [translate_expr] should create this [inside_definition_of]*)
| Some x -> x, Expr.pos block_expr
in
( RevBlock.rebuild args_stmts
~tail:
[
( A.SLocalInit
{
name = tmp_struct_var_name;
expr = struct_expr;
typ = TStruct name, Expr.pos block_expr;
},
Expr.pos block_expr );
],
ren_ctx )
| ELit _ | EAppOp _ | EArray _ | EVar _ | EStruct _ | EInj _ | ETuple _
| ETupleAccess _ | EStructAccess _ | EExternal _ | EApp _ ->
let e_stmts, new_e, ren_ctx = translate_expr ctxt block_expr in
let tail =
match (e_stmts :> (A.stmt * Pos.t) list) with
| (A.SRaiseEmpty, _) :: _ ->
(* if the last statement raises an exception, then we don't need to
return or to define the current variable since this code will be
unreachable *)
[]
| _ ->
[
( (match ctxt.inside_definition_of with
| None -> A.SReturn (Mark.remove new_e)
| Some x ->
A.SLocalDef
{
name = Mark.copy new_e x;
expr = new_e;
typ = Expr.maybe_ty (Mark.get block_expr);
}),
Expr.pos block_expr );
]
in
RevBlock.rebuild e_stmts ~tail, ren_ctx
| _ -> .
let rec translate_scope_body_expr ctx (scope_expr : 'm L.expr scope_body_expr) :
A.block =
let ctx = { ctx with inside_definition_of = None } in
match scope_expr with
| Last e ->
let block, new_e, _ren_ctx = translate_expr ctx e in
RevBlock.rebuild block ~tail:[A.SReturn (Mark.remove new_e), Mark.get new_e]
| Cons (scope_let, next_bnd) ->
let let_var, scope_let_next, ctx = unbind ctx next_bnd in
let let_var_id, ctx =
register_fresh_var ctx let_var ~pos:scope_let.scope_let_pos
in
let statements, ren_ctx =
match scope_let.scope_let_kind with
| Assertion ->
let stmts, ren_ctx =
translate_statements
{ ctx with inside_definition_of = Some let_var_id }
scope_let.scope_let_expr
in
RevBlock.make stmts, ren_ctx
| _ ->
let let_expr_stmts, new_let_expr, ren_ctx =
translate_expr
{ ctx with inside_definition_of = Some let_var_id }
scope_let.scope_let_expr
in
let ( +> ) = RevBlock.append in
( let_expr_stmts
+> ( A.SLocalDecl
{
name = let_var_id, scope_let.scope_let_pos;
typ = scope_let.scope_let_typ;
},
scope_let.scope_let_pos )
+> ( A.SLocalDef
{
name = let_var_id, scope_let.scope_let_pos;
expr = new_let_expr;
typ = scope_let.scope_let_typ;
},
scope_let.scope_let_pos ),
ren_ctx )
in
let tail = translate_scope_body_expr { ctx with ren_ctx } scope_let_next in
RevBlock.rebuild statements ~tail
let translate_program ~(config : translation_config) (p : 'm L.program) :
A.program =
let ctxt =
{
func_dict = Var.Map.empty;
var_dict = Var.Map.empty;
inside_definition_of = None;
context_name = "";
config;
program_ctx = { A.decl_ctx = p.decl_ctx; modules = ModuleName.Map.empty };
ren_ctx = config.renaming_context;
}
in
let modules, ctxt =
List.fold_left
(fun (modules, ctxt) (m, _) ->
let name, pos = ModuleName.get_info m in
let vname, ctxt = get_name ctxt name in
ModuleName.Map.add m (A.VarName.fresh (vname, pos)) modules, ctxt)
(ModuleName.Map.empty, ctxt)
(Program.modules_to_list p.decl_ctx.ctx_modules)
in
let program_ctx = { ctxt.program_ctx with A.modules } in
let ctxt = { ctxt with program_ctx } in
let (_, rev_items), _vlist =
BoundList.fold_left ~init:(ctxt, [])
~f:(fun (ctxt, rev_items) code_item var ->
match code_item with
| ScopeDef (name, body) ->
let scope_input_var, scope_body_expr, ctxt1 =
unbind ctxt body.scope_body_expr
in
let input_pos = Mark.get (ScopeName.get_info name) in
let scope_input_var_id, ctxt =
register_fresh_var ctxt scope_input_var ~pos:input_pos
in
let new_scope_body =
translate_scope_body_expr
{ ctxt with context_name = Mark.remove (ScopeName.get_info name) }
scope_body_expr
in
let func_id, ctxt1 = register_fresh_func ctxt1 var ~pos:input_pos in
( ctxt1,
A.SScope
{
Ast.scope_body_name = name;
Ast.scope_body_var = func_id;
scope_body_func =
{
A.func_params =
[
( (scope_input_var_id, input_pos),
(TStruct body.scope_body_input_struct, input_pos) );
];
A.func_body = new_scope_body;
func_return_typ =
TStruct body.scope_body_output_struct, input_pos;
};
}
:: rev_items )
| Topdef (name, topdef_ty, (EAbs abs, m)) ->
(* Toplevel function def *)
let (block, expr, _ren_ctx), args_id =
let args_a, expr, ctxt = unmbind ctxt abs.binder in
let args = Array.to_list args_a in
let rargs_id, ctxt =
List.fold_left2
(fun (rargs_id, ctxt) v ty ->
let pos = Mark.get ty in
let id, ctxt = register_fresh_var ctxt v ~pos in
((id, pos), ty) :: rargs_id, ctxt)
([], ctxt) args abs.tys
in
let ctxt =
{
ctxt with
context_name = Mark.remove (TopdefName.get_info name);
}
in
translate_expr ctxt expr, List.rev rargs_id
in
let body_block =
RevBlock.rebuild block
~tail:[A.SReturn (Mark.remove expr), Mark.get expr]
in
let func_id, ctxt =
register_fresh_func ctxt var ~pos:(Expr.mark_pos m)
in
( ctxt,
A.SFunc
{
var = func_id;
func =
{
A.func_params = args_id;
A.func_body = body_block;
A.func_return_typ =
(match topdef_ty with
| TArrow (_, t2), _ -> t2
| TAny, pos_any -> TAny, pos_any
| _ -> failwith "should not happen");
};
}
:: rev_items )
| Topdef (name, topdef_ty, expr) ->
(* Toplevel constant def *)
let block, expr, _ren_ctx =
let ctxt =
{
ctxt with
context_name = Mark.remove (TopdefName.get_info name);
}
in
translate_expr ctxt expr
in
let var_id, ctxt =
register_fresh_var ctxt var
~pos:(Mark.get (TopdefName.get_info name))
in
(* If the evaluation of the toplevel expr requires preliminary
statements, we lift its computation into an auxiliary function *)
let rev_items, ctxt =
if (block :> (A.stmt * Pos.t) list) = [] then
A.SVar { var = var_id; expr; typ = topdef_ty } :: rev_items, ctxt
else
let pos = Mark.get expr in
let func_name, ctxt =
get_name ctxt (A.VarName.to_string var_id ^ "_init")
in
let func_id = A.FuncName.fresh (func_name, pos) in
(* The list is being built in reverse order *)
(* FIXME: find a better way than a function with no parameters... *)
( A.SVar
{
var = var_id;
expr = A.EApp { f = EFunc func_id, pos; args = [] }, pos;
typ = topdef_ty;
}
:: A.SFunc
{
var = func_id;
func =
{
A.func_params = [];
A.func_body =
RevBlock.rebuild block
~tail:
[A.SReturn (Mark.remove expr), Mark.get expr];
A.func_return_typ = topdef_ty;
};
}
:: rev_items,
ctxt )
in
( ctxt,
(* No need to add func_id since the function will only be called
right here *)
rev_items ))
p.code_items
in
{
ctx = program_ctx;
code_items = List.rev rev_items;
module_name = p.module_name;
}