catala/compiler/surface/parser.mly
2024-04-30 16:35:08 +02:00

791 lines
21 KiB
OCaml

(*
This file is part of the Catala compiler, a specification language for tax and social benefits
computation rules.
Copyright (C) 2020 Inria, contributors: Denis Merigoux <denis.merigoux@inria.fr>,
Emile Rolley <emile.rolley@tuta.io>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
%{
open Catala_utils
%}
%parameter<Localisation: sig
val lex_builtin: string -> Ast.builtin_expression option
end>
(* The token is returned for every line of law text, make them right-associative
so that we concat them efficiently as much as possible. *)
%right LAW_TEXT
(* Precedence of expression constructions *)
%right top_expr
%right ALT
%right let_expr
%right AND OR XOR (* Desugaring enforces proper parens later on *)
%nonassoc GREATER GREATER_EQUAL LESSER LESSER_EQUAL EQUAL NOT_EQUAL
%left PLUS MINUS PLUSPLUS
%left MULT DIV
%right apply OF CONTAINS FOR SUCH WITH BUT_REPLACE
%right COMMA
%right unop_expr
%right CONTENT
%nonassoc UIDENT
%left DOT
(* Types of all rules, in order. Without this, Menhir type errors are nearly
impossible to debug because of inlining *)
%type<Ast.uident Mark.pos> addpos(UIDENT)
%type<Pos.t> pos(CONDITION)
%type<Ast.primitive_typ> primitive_typ
%type<Ast.base_typ_data> typ_data
%type<Ast.base_typ> typ
%type<Ast.uident Mark.pos> uident
%type<Ast.lident Mark.pos> lident
%type<Ast.scope_var> scope_var
%type<Ast.path * Ast.uident Mark.pos> quident
%type<Ast.path * Ast.lident Mark.pos> qlident
%type<Ast.expression> expression
%type<Ast.naked_expression> naked_expression
%type<Ast.lident Mark.pos * expression> struct_content_field
%type<Ast.naked_expression> struct_or_enum_inject
%type<Ast.literal_number> num_literal
%type<Ast.literal_unit> unit_literal
%type<Ast.literal> literal
%type<(Ast.lident Mark.pos * expression) list> scope_call_args
%type<bool> minmax
%type<Ast.unop> unop
%type<Ast.binop> binop
%type<Ast.match_case_pattern> constructor_binding
%type<Ast.match_case> match_arm
%type<Ast.expression> condition_consequence
%type<Ast.scope_var Mark.pos * Ast.lident Mark.pos list Mark.pos option> rule_expr
%type<bool> rule_consequence
%type<Ast.rule> rule
%type<Ast.lident Mark.pos list> definition_parameters
%type<Ast.lident Mark.pos> label
%type<Ast.lident Mark.pos> state
%type<Ast.exception_to> exception_to
%type<Ast.definition> definition
%type<Ast.variation_typ> variation_type
%type<Ast.scope_use_item> assertion
%type<Ast.scope_use_item Mark.pos> scope_item
%type<Ast.lident Mark.pos * Ast.base_typ Mark.pos> struct_scope_base
%type<Ast.struct_decl_field> struct_scope
%type<Ast.io_input option> scope_decl_item_attribute_input
%type<bool> scope_decl_item_attribute_output
%type<Ast.io_input option Mark.pos * bool Mark.pos * Ast.lident Mark.pos> scope_decl_item_attribute
%type<Ast.scope_decl_context_io * Ast.lident Mark.pos> scope_decl_item_attribute_mandatory
%type<Ast.scope_decl_context_item> scope_decl_item
%type<Ast.enum_decl_case> enum_decl_line
%type<Ast.code_item> code_item
%type<Ast.code_block> code
%type<Ast.code_block * string Mark.pos> metadata_block
%type<Ast.law_heading> law_heading
%type<string> law_text
%type<Ast.law_structure> source_file_item
%type<Ast.law_structure list> source_file
%start source_file
%%
let pos(x) ==
| x ; { Pos.from_lpos $loc }
let addpos(x) ==
| ~=x ; { x, Pos.from_lpos $loc(x) }
let primitive_typ :=
| INTEGER ; { Integer }
| BOOLEAN ; { Boolean }
| MONEY ; { Money }
| DURATION ; { Duration }
| TEXT ; { Text }
| DECIMAL ; { Decimal }
| DATE ; { Date }
| c = quident ; { let path, uid = c in Named (path, uid) }
let typ_data :=
| t = primitive_typ ; <Primitive>
| LIST ; t = addpos(typ_data) ; <Collection>
| LPAREN ; tl = separated_nonempty_list(COMMA,addpos(typ_data)) ; RPAREN ; {
match tl with
| [t, _] -> t
| ts -> TTuple ts
}
let typ == t = typ_data ; <Data>
let uident ==
| ~ = addpos(UIDENT) ; <>
let lident :=
| i = LIDENT ; {
match Localisation.lex_builtin i with
| Some _ ->
Message.error ~pos:
(Pos.from_lpos $sloc)
"Reserved builtin name"
| None ->
(i, Pos.from_lpos $sloc)
}
let scope_var ==
| b = separated_nonempty_list(DOT, addpos(LIDENT)) ; <>
let quident :=
| uid = uident ; DOT ; quid = quident ; {
let path, quid = quid in uid :: path, quid
}
| id = uident ; { [], id }
let qlident :=
| uid = uident ; DOT ; qlid = qlident ; {
let path, lid = qlid in uid :: path, lid
}
| id = lident ; { [], id }
let mbinder ==
| id = lident ; { [id] }
| LPAREN ; ids = separated_nonempty_list(COMMA,lident) ; RPAREN ; <>
let expression :=
| e = addpos(naked_expression) ; <>
let state_qualifier ==
| STATE ; state = addpos(LIDENT); <>
let naked_expression ==
| id = addpos(LIDENT) ; state = option(state_qualifier) ; {
match Localisation.lex_builtin (Mark.remove id), state with
| Some b, None -> Builtin b
| Some _, Some _ ->
Message.error ~pos:
(Pos.from_lpos $loc(id))
"Invalid use of built-in @{<bold>%s@}" (Mark.remove id)
| None, state -> Ident ([], id, state)
}
| uid = uident ; DOT ; qlid = qlident ; {
let path, lid = qlid in Ident (uid :: path, lid, None)
}
| l = literal ; {
Literal l
}
| LPAREN ; el = separated_nonempty_list(COMMA, expression) ; RPAREN ; {
match el with
| [e] -> Paren e
| es -> Tuple es
}
| e = expression ;
DOT ; i = addpos(qlident) ; <Dotted>
| e = expression ; DOT ; arg = addpos(INT_LITERAL) ; {
let n_str, pos_n = arg in
let n = int_of_string n_str in
if n <= 0 then
Message.error ~pos:pos_n "Tuple indices must be >= 1";
TupleAccess (e, (n, pos_n))
}
| CARDINAL ; {
Builtin Cardinal
}
| DECIMAL ; {
Builtin ToDecimal
}
| MONEY ; {
Builtin ToMoney
}
| LBRACKET ; l = separated_list(SEMICOLON, expression) ; RBRACKET ;
<ArrayLit>
| e = struct_or_enum_inject ; <>
| e1 = expression ;
OF ;
args = funcall_args ; {
FunCall (e1, args)
}
| OUTPUT ; OF ;
c = addpos(quident) ;
fields = option(scope_call_args) ; {
let fields = Option.value ~default:[] fields in
ScopeCall (c, fields)
}
| e = expression ;
WITH ; c = constructor_binding ; {
TestMatchCase (e, (c, Pos.from_lpos $sloc))
}
| e = expression ;
BUT_REPLACE ;
LBRACE ;
fields = nonempty_list(preceded (ALT, struct_content_field)) ;
RBRACE ; {
StructReplace (e, fields)
}
| coll = expression ;
pos = pos(CONTAINS) ;
element = expression ; {
CollectionOp ((Member { element }, pos), coll)
} %prec apply
| pos = pos(SUM) ; typ = addpos(primitive_typ) ;
OF ; coll = expression ; {
CollectionOp ((AggregateSum { typ = Mark.remove typ }, pos), coll)
} %prec apply
| f = expression ;
pos = pos(FOR) ; i = mbinder ;
AMONG ; coll = expression ; {
CollectionOp ((Map {f = i, f}, pos), coll)
} %prec apply
| maxp = addpos(minmax) ;
OF ; coll = expression ;
OR ; IF ; LIST_EMPTY ; THEN ;
default = expression ; {
let max, pos = maxp in
CollectionOp ((AggregateExtremum { max; default }, pos), coll)
} %prec apply
| op = addpos(unop) ; e = expression ; {
Unop (op, e)
} %prec unop_expr
| e1 = expression ;
binop = addpos(binop) ;
e2 = expression ; {
Binop (binop, e1, e2)
}
| pos = pos(EXISTS) ; i = mbinder ;
AMONG ; coll = expression ;
SUCH ; THAT ; predicate = expression ; {
CollectionOp ((Exists {predicate = i, predicate}, pos), coll)
} %prec let_expr
| pos = pos(FOR) ; ALL ; i = mbinder ;
AMONG ; coll = expression ;
WE_HAVE ; predicate = expression ; {
CollectionOp ((Forall {predicate = i, predicate}, pos), coll)
} %prec let_expr
| MATCH ; e = expression ;
WITH ;
arms = addpos(nonempty_list(addpos(preceded(ALT, match_arm)))) ; {
MatchWith (e, arms)
}
| IF ; e1 = expression ;
THEN ; e2 = expression ;
ELSE ; e3 = expression ; {
IfThenElse (e1, e2, e3)
} %prec let_expr
| LET ; ids = mbinder ;
DEFINED_AS ; e1 = expression ;
IN ; e2 = expression ; {
LetIn (ids, e1, e2)
} %prec let_expr
| pos = pos(LIST); ids = mbinder ;
AMONG ; coll = expression ;
SUCH ; THAT ; f = expression ; {
CollectionOp ((Filter {f = ids, f}, pos), coll)
} %prec top_expr
| fmap = expression ;
pfor = pos(FOR) ; i = mbinder ;
AMONG ; coll = expression ;
psuch = pos(SUCH) ; THAT ; ffilt = expression ; {
CollectionOp ((Map {f = i, fmap}, pfor), (CollectionOp ((Filter {f = i, ffilt}, psuch), coll), Pos.from_lpos $loc))
} %prec top_expr
| pos = pos(CONTENT); OF; ids = mbinder ;
AMONG ; coll = expression ;
SUCH ; THAT ; f = expression ;
IS ; max = minmax ;
OR ; IF ; LIST_EMPTY ; THEN ; default = expression ; {
CollectionOp ((AggregateArgExtremum { max; default; f = ids, f }, pos), coll)
} %prec top_expr
let struct_content_field :=
| field = lident ; COLON ; e = expression ; <>
let struct_or_enum_inject ==
| uid = addpos(quident) ;
data = option(preceded(CONTENT,expression)) ; {
EnumInject(uid, data)
}
| c = addpos(quident) ;
LBRACE ;
fields = nonempty_list(preceded(ALT, struct_content_field)) ;
RBRACE ; {
StructLit(c, fields)
}
let num_literal ==
| d = INT_LITERAL ; <Int>
| d = DECIMAL_LITERAL ; {
let (d1, d2) = d in Dec (d1, d2)
}
let unit_literal ==
| PERCENT ; { Percent }
| YEAR ; { Year}
| MONTH ; { Month }
| DAY ; { Day }
let literal :=
| l = addpos(num_literal); u = option(addpos(unit_literal)) ; <LNumber>
| money = MONEY_AMOUNT ; {
let (units, cents) = money in
LMoneyAmount {
money_amount_units = units;
money_amount_cents = cents;
}
}
| d = DATE_LITERAL ; {
let (y,m,d) = d in
LDate {
literal_date_year = y;
literal_date_month = m;
literal_date_day = d;
}
}
| TRUE ; { LBool true }
| FALSE ; { LBool false }
let scope_call_args ==
| WITH_V ;
LBRACE ;
fields = list(preceded (ALT, struct_content_field)) ;
RBRACE ; {
fields
}
let funcall_args :=
| e = expression; { [e] } %prec apply
| e = expression; COMMA; el = funcall_args ; { e :: el }
let minmax ==
| MAXIMUM ; { true }
| MINIMUM ; { false }
let unop ==
| NOT ; { Not }
| k = MINUS ; <Minus>
let binop ==
| k = MULT ; <Mult>
| k = DIV ; <Div>
| k = PLUS ; <Add>
| k = MINUS ; <Sub>
| PLUSPLUS ; { Concat }
| k = LESSER ; <Lt>
| k = LESSER_EQUAL ; <Lte>
| k = GREATER ; <Gt>
| k = GREATER_EQUAL ; <Gte>
| EQUAL ; { Eq }
| NOT_EQUAL ; { Neq }
| AND ; { And }
| OR ; { Or }
| XOR ; { Xor }
let constructor_binding :=
| uid = addpos(quident) ; OF ; lid = lident ; {
([uid], Some lid)
}
| uid = addpos(quident) ; {
([uid], None)
} %prec apply
let match_arm :=
| WILDCARD ; COLON ; ~ = expression ; <WildCard>
%prec ALT
| pat = addpos(constructor_binding) ;
COLON ; e = expression ; {
MatchCase {
match_case_pattern = pat;
match_case_expr = e;
}
} %prec ALT
let condition_consequence :=
| UNDER_CONDITION ; c = expression ; CONSEQUENCE ; <>
let rule_expr :=
| i = addpos(scope_var) ; p = option(addpos(definition_parameters)) ; <>
let rule_consequence :=
| flag = option(NOT); FILLED ; {
None = flag
}
let rule :=
| label = option(label) ;
except = option(addpos(exception_to)) ;
pos_rule = pos(RULE) ;
name_and_param = rule_expr ;
state = option(state) ;
cond = option(condition_consequence) ;
consequence = addpos(rule_consequence) ; {
let (name, params_applied) = name_and_param in
let cons : bool Mark.pos = consequence in
let rule_exception = match except with
| None -> NotAnException
| Some x -> Mark.remove x
in
let pos_start =
match label with Some l -> Mark.get l
| None -> match except with Some e -> Mark.get e
| None -> pos_rule
in
{
rule_label = label;
rule_exception_to = rule_exception;
rule_parameter = params_applied;
rule_condition = cond;
rule_name = name;
rule_id = Shared_ast.RuleName.fresh
(String.concat "." (List.map (fun i -> Mark.remove i) (Mark.remove name)),
Pos.join pos_start (Mark.get name));
rule_consequence = cons;
rule_state = state;
}
}
let definition_parameters :=
| OF ; args = separated_nonempty_list(COMMA,lident) ; <>
let label :=
| LABEL ; i = lident ; <>
let state :=
| STATE ; s = lident ; <>
let exception_to :=
| EXCEPTION ; i = option(lident) ; {
match i with
| None -> UnlabeledException
| Some x -> ExceptionToLabel x
}
let definition :=
| label = option(label);
except = option(exception_to) ;
pos_def = pos(DEFINITION) ;
name = addpos(scope_var) ;
params = option(addpos(definition_parameters)) ;
state = option(state) ;
cond = option(condition_consequence) ;
DEFINED_AS ;
e = expression ; {
let def_exception = match except with
| None -> NotAnException
| Some x -> x
in
let pos_start =
match label with Some _ -> Pos.from_lpos $loc(label)
| None -> match except with Some _ -> Pos.from_lpos $loc(except)
| None -> pos_def
in
{
definition_label = label;
definition_exception_to = def_exception;
definition_name = name;
definition_parameter = params;
definition_condition = cond;
definition_id =
Shared_ast.RuleName.fresh
(String.concat "." (List.map (fun i -> Mark.remove i) (Mark.remove name)),
Pos.join pos_start (Mark.get name));
definition_expr = e;
definition_state = state;
}
}
let variation_type :=
| INCREASING ; { Increasing }
| DECREASING ; { Decreasing }
let assertion :=
| cond = option(condition_consequence) ;
base = expression ; {
(Assertion {
assertion_condition = cond;
assertion_content = base;
})
}
| FIXED ; q = addpos(scope_var) ; BY ; i = lident ; {
MetaAssertion (FixedBy (q, i))
}
| VARIES ; q = addpos(scope_var) ;
WITH_V ; e = expression ;
t = option(addpos(variation_type)) ; {
MetaAssertion (VariesWith (q, e, t))
}
let scope_item :=
| r = rule ; {
Rule r, Mark.get (Shared_ast.RuleName.get_info r.rule_id)
}
| d = definition ; {
Definition d, Mark.get (Shared_ast.RuleName.get_info d.definition_id)
}
| ASSERTION ; contents = addpos(assertion) ; <>
| DATE ; i = LIDENT ; v = addpos(variation_type) ;
{
(* Round is a builtin, we need to check which one it is *)
match Localisation.lex_builtin i with
| Some Round ->
DateRounding(v), Mark.get v
| _ ->
Message.error ~pos:
(Pos.from_lpos $loc(i))
"Expected the form 'date round increasing' or 'date round decreasing'"
}
let struct_scope_base :=
| DATA ; i = lident ;
CONTENT ; t = addpos(typ) ; <>
| pos = pos(CONDITION) ; i = lident ; {
(i, (Condition, pos))
}
let struct_scope :=
| name_and_typ = struct_scope_base ;
args = depends_stance; {
let (name, typ) = name_and_typ in
(* let (typ, typ_pos) = typ in *)
{
struct_decl_field_name = name;
struct_decl_field_typ = Ast.type_from_args args typ;
}
}
let scope_decl_item_attribute_input ==
| CONTEXT ; { Some Context }
| INPUT ; { Some Input }
| INTERNAL ; { Some Internal }
| { None }
let scope_decl_item_attribute_output ==
| OUTPUT ; { true }
| { false }
let scope_decl_item_attribute ==
| input = addpos(scope_decl_item_attribute_input) ;
output = addpos(scope_decl_item_attribute_output) ;
i = lident ; {
match input, output with
| (Some Internal, _), (true, pos) ->
Message.error ~pos
"A variable cannot be declared both 'internal' and 'output'."
| input, output -> input, output, i
}
let scope_decl_item_attribute_mandatory ==
| attr = scope_decl_item_attribute ; {
let in_attr_opt, out_attr, i = attr in
let in_attr = match in_attr_opt, out_attr with
| (None, _), (false, _) ->
Message.error ~pos:(Pos.from_lpos $loc(attr))
"Variable declaration requires input qualification ('internal', \
'input' or 'context')"
| (None, pos), (true, _) -> Internal, pos
| (Some i, pos), _ -> i, pos
in
{
scope_decl_context_io_input = in_attr;
scope_decl_context_io_output = out_attr;
}, i
}
let scope_decl_item :=
| attr_i = scope_decl_item_attribute_mandatory ;
CONTENT ; t = addpos(typ) ;
args_typ = depends_stance ;
states = list(state) ; {
let attr, i = attr_i in
ContextData {
scope_decl_context_item_name = i;
scope_decl_context_item_attribute = attr;
scope_decl_context_item_parameters =
Option.map
(Mark.map
(List.map (fun (lbl, (base_t, m)) -> lbl, (Base base_t, m))))
args_typ;
scope_decl_context_item_typ = type_from_args args_typ t;
scope_decl_context_item_states = states;
}
}
| attr = scope_decl_item_attribute ;
SCOPE ; c = addpos(quident) ; {
let in_attr_opt, out_attr, i = attr in
let attr = match in_attr_opt, out_attr with
| (None, pos), out -> {
scope_decl_context_io_input = (Internal, pos);
scope_decl_context_io_output = out;
};
| (Some _, pos), _ ->
Message.error ~pos
"Scope declaration does not support input qualifiers ('internal', \
'input' or 'context')"
in
ContextScope{
scope_decl_context_scope_name = i;
scope_decl_context_scope_sub_scope = c;
scope_decl_context_scope_attribute = attr;
}
}
| attr_i = scope_decl_item_attribute_mandatory ;
pos_condition = pos(CONDITION) ;
args = depends_stance ;
states = list(state) ; {
let attr, i = attr_i in
ContextData {
scope_decl_context_item_name = i;
scope_decl_context_item_attribute = attr;
scope_decl_context_item_parameters =
Option.map
(Mark.map
(List.map (fun (lbl, (base_t, m)) -> lbl, (Base base_t, m))))
args;
scope_decl_context_item_typ =
Ast.type_from_args args (Condition, pos_condition);
scope_decl_context_item_states = states;
}
}
let enum_decl_line :=
| ALT ; c = uident ;
t = option(preceded(CONTENT,addpos(typ))) ; {
{
enum_decl_case_name = c;
enum_decl_case_typ =
Option.map (fun (t, t_pos) -> Base t, t_pos) t;
}
}
let var_content ==
| ~ = lident ; CONTENT ; ty = addpos(typ) ; <>
let depends_stance ==
| DEPENDS ; args = separated_nonempty_list(COMMA,var_content) ; {
Some (args, Pos.from_lpos $sloc)
}
| DEPENDS ; LPAREN ; args = separated_nonempty_list(COMMA,var_content) ; RPAREN ; {
Some (args, Pos.from_lpos $sloc)
}
| { None }
let code_item :=
| SCOPE ; c = uident ;
e = option(preceded(UNDER_CONDITION,expression)) ;
COLON ; items = nonempty_list(scope_item) ; {
ScopeUse {
scope_use_name = c;
scope_use_condition = e;
scope_use_items = items;
}
}
| DECLARATION ; STRUCT ; c = uident ;
COLON ; scopes = list(addpos(struct_scope)) ; {
StructDecl {
struct_decl_name = c;
struct_decl_fields = scopes;
}
}
| DECLARATION ; SCOPE ; c = uident ;
COLON ; context = nonempty_list(addpos(scope_decl_item)) ; {
ScopeDecl {
scope_decl_name = c;
scope_decl_context = context;
}
}
| DECLARATION ; ENUM ; c = uident ;
COLON ; cases = list(addpos(enum_decl_line)) ; {
EnumDecl {
enum_decl_name = c;
enum_decl_cases = cases;
}
}
| DECLARATION ; name = lident ;
CONTENT ; ty = addpos(typ) ;
args = depends_stance ;
topdef_expr = option(opt_def) ; {
Topdef {
topdef_name = name;
topdef_args = args;
topdef_type = type_from_args args ty;
topdef_expr;
}
}
let opt_def ==
| DEFINED_AS; e = expression; <>
let code :=
| code = list(addpos(code_item)) ; <>
let metadata_block :=
| BEGIN_METADATA ; option(law_text) ;
~ = code ;
text = END_CODE ; {
(code, (text, Pos.from_lpos $sloc))
}
let law_heading :=
| title = LAW_HEADING ; {
let (title, id, is_archive, precedence) = title in {
law_heading_name = (title, Pos.from_lpos $sloc);
law_heading_id = id;
law_heading_is_archive = is_archive;
law_heading_precedence = precedence;
}
}
let law_text :=
| lines = nonempty_list(LAW_TEXT) ; { String.trim (String.concat "" lines) }
let directive :=
| LAW_INCLUDE ; COLON ;
args = nonempty_list(DIRECTIVE_ARG) ;
page = option(AT_PAGE) ; {
let filename = String.trim (String.concat "" args) in
let pos = Pos.from_lpos $sloc in
let jorftext = Re.Pcre.regexp "(JORFARTI\\d{12}|LEGIARTI\\d{12}|CETATEXT\\d{12})" in
if Re.Pcre.pmatch ~rex:jorftext filename && page = None then
LawInclude (Ast.LegislativeText (filename, pos))
else if Filename.extension filename = ".pdf" || page <> None then
LawInclude (Ast.PdfFile ((filename, pos), page))
else
LawInclude (Ast.CatalaFile (filename, pos))
}
| MODULE_DEF ; m = addpos(DIRECTIVE_ARG) ;
ext = option (MODULE_EXTERNAL) ; {
ModuleDef (m, ext <> None)
}
| MODULE_USE ; m = addpos(DIRECTIVE_ARG) ;
alias = option (preceded(MODULE_ALIAS,addpos(DIRECTIVE_ARG))) ; {
ModuleUse (m, alias)
}
let source_file_item :=
| text = law_text ; { LawText text }
| BEGIN_CODE ;
~ = code ;
text = END_CODE ; {
CodeBlock (code, (text, Pos.from_lpos $sloc), false)
}
| heading = law_heading ; {
LawHeading (heading, [])
}
| code = metadata_block ; {
let (code, source_repr) = code in
CodeBlock (code, source_repr, true)
}
| BEGIN_DIRECTIVE ; ~ = directive ; END_DIRECTIVE ; { directive }
let source_file :=
| hd = source_file_item ; tl = source_file ; { hd::tl }
| EOF ; { [] }