catala/compiler/desugared/desugared_to_scope.ml
2022-01-05 15:37:34 +01:00

265 lines
12 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax and social benefits
computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux
<denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions and limitations under
the License. *)
(** Translation from {!module: Desugared.Ast} to {!module: Scopelang.Ast} *)
open Utils
(** {1 Rule tree construction} *)
(** Intermediate representation for the exception tree of rules for a particular scope definition. *)
type rule_tree =
| Leaf of Ast.rule list (** Rules defining a base case piecewise. List is non-empty. *)
| Node of rule_tree list * Ast.rule list
(** A list of exceptions to a non-empty list of rules defining a base case piecewise. *)
(** Transforms a flat list of rules into a tree, taking into account the priorities declared between
rules *)
let def_map_to_tree (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t) : rule_tree list =
let exc_graph = Dependency.build_exceptions_graph def def_info in
Dependency.check_for_exception_cycle exc_graph;
(* we start by the base cases: they are the vertices which have no successors *)
let base_cases =
Dependency.ExceptionsDependencies.fold_vertex
(fun v base_cases ->
if Dependency.ExceptionsDependencies.out_degree exc_graph v = 0 then v :: base_cases
else base_cases)
exc_graph []
in
let rec build_tree (base_cases : Ast.RuleSet.t) : rule_tree =
let exceptions = Dependency.ExceptionsDependencies.pred exc_graph base_cases in
let base_case_as_rule_list =
List.map (fun r -> Ast.RuleMap.find r def) (List.of_seq (Ast.RuleSet.to_seq base_cases))
in
match exceptions with
| [] -> Leaf base_case_as_rule_list
| _ -> Node (List.map build_tree exceptions, base_case_as_rule_list)
in
List.map build_tree base_cases
(** From the {!type: rule_tree}, builds an {!constructor: Dcalc.Ast.EDefault} expression in the
scope language. The [~toplevel] parameter is used to know when to place the toplevel binding in
the case of functions. *)
let rec rule_tree_to_expr ~(toplevel : bool) (def_pos : Pos.t)
(is_func : Scopelang.Ast.Var.t option) (tree : rule_tree) :
Scopelang.Ast.expr Pos.marked Bindlib.box =
let exceptions, base_rules =
match tree with Leaf r -> ([], r) | Node (exceptions, r) -> (exceptions, r)
in
(* because each rule has its own variable parameter and we want to convert the whole rule tree
into a function, we need to perform some alpha-renaming of all the expressions *)
let substitute_parameter (e : Scopelang.Ast.expr Pos.marked Bindlib.box) (rule : Ast.rule) :
Scopelang.Ast.expr Pos.marked Bindlib.box =
match (is_func, rule.Ast.rule_parameter) with
| Some new_param, Some (old_param, _) ->
let binder = Bindlib.bind_var old_param e in
Bindlib.box_apply2
(fun binder new_param -> Bindlib.subst binder new_param)
binder (Bindlib.box_var new_param)
| None, None -> e
| _ -> assert false
(* should not happen *)
in
let base_just_list =
List.map (fun rule -> substitute_parameter rule.Ast.rule_just rule) base_rules
in
let base_cons_list =
List.map (fun rule -> substitute_parameter rule.Ast.rule_cons rule) base_rules
in
let default_containing_base_cases =
Bindlib.box_apply2
(fun base_just_list base_cons_list ->
( Scopelang.Ast.EDefault
( List.map2
(fun base_just base_cons ->
(Scopelang.Ast.EDefault ([], base_just, base_cons), Pos.get_position base_just))
base_just_list base_cons_list,
(Scopelang.Ast.ELit (Dcalc.Ast.LBool false), def_pos),
(Scopelang.Ast.ELit Dcalc.Ast.LEmptyError, def_pos) ),
def_pos ))
(Bindlib.box_list base_just_list) (Bindlib.box_list base_cons_list)
in
let exceptions =
Bindlib.box_list (List.map (rule_tree_to_expr ~toplevel:false def_pos is_func) exceptions)
in
let default =
Bindlib.box_apply2
(fun exceptions default_containing_base_cases ->
( Scopelang.Ast.EDefault
( exceptions,
(Scopelang.Ast.ELit (Dcalc.Ast.LBool true), def_pos),
default_containing_base_cases ),
def_pos ))
exceptions default_containing_base_cases
in
match (is_func, (List.hd base_rules).Ast.rule_parameter) with
| None, None -> default
| Some new_param, Some (_, typ) ->
if toplevel then
(* When we're creating a function from multiple defaults, we must check that the result
returned by the function is not empty *)
let default =
Bindlib.box_apply
(fun (default : Scopelang.Ast.expr * Pos.t) ->
(Scopelang.Ast.ErrorOnEmpty default, def_pos))
default
in
Scopelang.Ast.make_abs (Array.of_list [ new_param ]) default def_pos [ typ ] def_pos
else default
| _ -> (* should not happen *) assert false
(** {1 AST translation} *)
(** Translates a definition inside a scope, the resulting expression should be an {!constructor:
Dcalc.Ast.EDefault} *)
let translate_def (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t)
(typ : Scopelang.Ast.typ Pos.marked) (is_cond : bool) : Scopelang.Ast.expr Pos.marked =
(* Here, we have to transform this list of rules into a default tree. *)
let is_func _ (r : Ast.rule) : bool = Option.is_some r.Ast.rule_parameter in
let all_rules_func = Ast.RuleMap.for_all is_func def in
let all_rules_not_func = Ast.RuleMap.for_all (fun n r -> not (is_func n r)) def in
let is_def_func : Scopelang.Ast.typ Pos.marked option =
if all_rules_func && Ast.RuleMap.cardinal def > 0 then
match Pos.unmark typ with
| Scopelang.Ast.TArrow (t_param, _) -> Some t_param
| _ ->
Errors.raise_spanned_error
(Format.asprintf
"The definitions of %a are function but its type, %a, is not a function type"
Ast.ScopeDef.format_t def_info Scopelang.Print.format_typ typ)
(Pos.get_position typ)
else if all_rules_not_func then None
else
Errors.raise_multispanned_error
"some definitions of the same variable are functions while others aren't"
(List.map
(fun (_, r) ->
( Some "This definition is a function:",
Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
(Ast.RuleMap.bindings (Ast.RuleMap.filter is_func def))
@ List.map
(fun (_, r) ->
( Some "This definition is not a function:",
Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
(Ast.RuleMap.bindings (Ast.RuleMap.filter (fun n r -> not (is_func n r)) def)))
in
let top_list = def_map_to_tree def_info def in
let top_value =
(if is_cond then Ast.always_false_rule else Ast.empty_rule) Pos.no_pos is_def_func
in
Bindlib.unbox
(rule_tree_to_expr ~toplevel:true
(Ast.ScopeDef.get_position def_info)
(Option.map (fun _ -> Scopelang.Ast.Var.make ("param", Pos.no_pos)) is_def_func)
(match top_list with
| [] ->
(* In this case, there are no rules to define the expression *)
Leaf [ top_value ]
| _ -> Node (top_list, [ top_value ])))
(** Translates a scope *)
let translate_scope (scope : Ast.scope) : Scopelang.Ast.scope_decl =
let scope_dependencies = Dependency.build_scope_dependencies scope in
Dependency.check_for_cycle scope scope_dependencies;
let scope_ordering = Dependency.correct_computation_ordering scope_dependencies in
let scope_decl_rules =
List.flatten
(List.map
(fun vertex ->
match vertex with
| Dependency.Vertex.Var (var : Scopelang.Ast.ScopeVar.t) ->
let scope_def = Ast.ScopeDefMap.find (Ast.ScopeDef.Var var) scope.scope_defs in
let var_def = scope_def.scope_def_rules in
let var_typ = scope_def.scope_def_typ in
let is_cond = scope_def.scope_def_is_condition in
let expr_def = translate_def (Ast.ScopeDef.Var var) var_def var_typ is_cond in
[
Scopelang.Ast.Definition
( ( Scopelang.Ast.ScopeVar
(var, Pos.get_position (Scopelang.Ast.ScopeVar.get_info var)),
Pos.get_position (Scopelang.Ast.ScopeVar.get_info var) ),
var_typ,
expr_def );
]
| Dependency.Vertex.SubScope sub_scope_index ->
(* Before calling the sub_scope, we need to include all the re-definitions of
subscope parameters*)
let sub_scope =
Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
in
let sub_scope_vars_redefs =
Ast.ScopeDefMap.mapi
(fun def_key scope_def ->
let def = scope_def.Ast.scope_def_rules in
let def_typ = scope_def.scope_def_typ in
let is_cond = scope_def.scope_def_is_condition in
match def_key with
| Ast.ScopeDef.Var _ -> assert false (* should not happen *)
| Ast.ScopeDef.SubScopeVar (_, sub_scope_var) ->
let expr_def = translate_def def_key def def_typ is_cond in
let subscop_real_name =
Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
in
let var_pos =
Pos.get_position (Scopelang.Ast.ScopeVar.get_info sub_scope_var)
in
Scopelang.Ast.Definition
( ( Scopelang.Ast.SubScopeVar
( subscop_real_name,
(sub_scope_index, var_pos),
(sub_scope_var, var_pos) ),
var_pos ),
def_typ,
expr_def ))
(Ast.ScopeDefMap.filter
(fun def_key _def ->
match def_key with
| Ast.ScopeDef.Var _ -> false
| Ast.ScopeDef.SubScopeVar (sub_scope_index', _) ->
sub_scope_index = sub_scope_index')
scope.scope_defs)
in
let sub_scope_vars_redefs =
List.map snd (Ast.ScopeDefMap.bindings sub_scope_vars_redefs)
in
sub_scope_vars_redefs @ [ Scopelang.Ast.Call (sub_scope, sub_scope_index) ])
scope_ordering)
in
(* Then, after having computed all the scopes variables, we add the assertions *)
let scope_decl_rules =
scope_decl_rules
@ List.map (fun e -> Scopelang.Ast.Assertion (Bindlib.unbox e)) scope.Ast.scope_assertions
in
let scope_sig =
Scopelang.Ast.ScopeVarSet.fold
(fun var acc ->
let typ = (Ast.ScopeDefMap.find (Ast.ScopeDef.Var var) scope.scope_defs).scope_def_typ in
Scopelang.Ast.ScopeVarMap.add var typ acc)
scope.scope_vars Scopelang.Ast.ScopeVarMap.empty
in
{
Scopelang.Ast.scope_decl_name = scope.scope_uid;
Scopelang.Ast.scope_decl_rules;
Scopelang.Ast.scope_sig;
}
(** {1 API} *)
let translate_program (pgrm : Ast.program) : Scopelang.Ast.program =
{
Scopelang.Ast.program_scopes = Scopelang.Ast.ScopeMap.map translate_scope pgrm.program_scopes;
Scopelang.Ast.program_structs = pgrm.program_structs;
Scopelang.Ast.program_enums = pgrm.program_enums;
}