catala/compiler/dcalc/ast.ml
2022-07-11 17:42:34 +02:00

850 lines
28 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil
<alain.delaet--tixeuil@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
[@@@ocaml.warning "-7-34"]
open Utils
module ScopeName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructFieldName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructMap : Map.S with type key = StructName.t = Map.Make (StructName)
module EnumName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module EnumConstructor : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module EnumMap : Map.S with type key = EnumName.t = Map.Make (EnumName)
type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration
type struct_name = StructName.t
type enum_name = EnumName.t
type marked_typ = typ Marked.pos
and typ =
| TLit of typ_lit
| TTuple of marked_typ list * StructName.t option
| TEnum of marked_typ list * EnumName.t
| TArrow of marked_typ * marked_typ
| TArray of marked_typ
| TAny
type date = Runtime.date
type duration = Runtime.duration
type integer = Runtime.integer
type decimal = Runtime.decimal
type money = Runtime.money
type lit =
| LBool of bool
| LEmptyError
| LInt of integer
| LRat of decimal
| LMoney of money
| LUnit
| LDate of date
| LDuration of duration
type op_kind = KInt | KRat | KMoney | KDate | KDuration
type ternop = Fold
type binop =
| And
| Or
| Xor
| Add of op_kind
| Sub of op_kind
| Mult of op_kind
| Div of op_kind
| Lt of op_kind
| Lte of op_kind
| Gt of op_kind
| Gte of op_kind
| Eq
| Neq
| Map
| Concat
| Filter
type log_entry = VarDef of typ | BeginCall | EndCall | PosRecordIfTrueBool
type unop =
| Not
| Minus of op_kind
| Log of log_entry * Utils.Uid.MarkedString.info list
| Length
| IntToRat
| GetDay
| GetMonth
| GetYear
| RoundMoney
| RoundDecimal
type operator = Ternop of ternop | Binop of binop | Unop of unop
(** Some structures used for type inference *)
module Infer = struct
module Any =
Utils.Uid.Make
(struct
type info = unit
let format_info fmt () = Format.fprintf fmt "any"
end)
()
type unionfind_typ = typ Marked.pos UnionFind.elem
(** We do not reuse {!type: Dcalc.Ast.typ} because we have to include a new
[TAny] variant. Indeed, error terms can have any type and this has to be
captured by the type sytem. *)
and typ =
| TLit of typ_lit
| TArrow of unionfind_typ * unionfind_typ
| TTuple of unionfind_typ list * StructName.t option
| TEnum of unionfind_typ list * EnumName.t
| TArray of unionfind_typ
| TAny of Any.t
let rec typ_to_ast (ty : unionfind_typ) : marked_typ =
let ty, pos = UnionFind.get (UnionFind.find ty) in
match ty with
| TLit l -> TLit l, pos
| TTuple (ts, s) -> TTuple (List.map typ_to_ast ts, s), pos
| TEnum (ts, e) -> TEnum (List.map typ_to_ast ts, e), pos
| TArrow (t1, t2) -> TArrow (typ_to_ast t1, typ_to_ast t2), pos
| TAny _ -> TAny, pos
| TArray t1 -> TArray (typ_to_ast t1), pos
let rec ast_to_typ (ty : marked_typ) : unionfind_typ =
let ty' =
match Marked.unmark ty with
| TLit l -> TLit l
| TArrow (t1, t2) -> TArrow (ast_to_typ t1, ast_to_typ t2)
| TTuple (ts, s) -> TTuple (List.map (fun t -> ast_to_typ t) ts, s)
| TEnum (ts, e) -> TEnum (List.map (fun t -> ast_to_typ t) ts, e)
| TArray t -> TArray (ast_to_typ t)
| TAny -> TAny (Any.fresh ())
in
UnionFind.make (Marked.same_mark_as ty' ty)
end
type untyped = { pos : Pos.t } [@@ocaml.unboxed]
type typed = { pos : Pos.t; ty : Infer.unionfind_typ }
(** The generic type of AST markings. Using a GADT allows functions to be
polymorphic in the marking, but still do transformations on types when
appropriate *)
type _ mark = Untyped : untyped -> untyped mark | Typed : typed -> typed mark
type ('a, 'm) marked = ('a, 'm mark) Marked.t
type 'm marked_expr = ('m expr, 'm) marked
and 'm expr =
| EVar of 'm expr Bindlib.var
| ETuple of 'm marked_expr list * StructName.t option
| ETupleAccess of
'm marked_expr * int * StructName.t option * typ Marked.pos list
| EInj of 'm marked_expr * int * EnumName.t * typ Marked.pos list
| EMatch of 'm marked_expr * 'm marked_expr list * EnumName.t
| EArray of 'm marked_expr list
| ELit of lit
| EAbs of
(('m expr, 'm marked_expr) Bindlib.mbinder[@opaque]) * typ Marked.pos list
| EApp of 'm marked_expr * 'm marked_expr list
| EAssert of 'm marked_expr
| EOp of operator
| EDefault of 'm marked_expr list * 'm marked_expr * 'm marked_expr
| EIfThenElse of 'm marked_expr * 'm marked_expr * 'm marked_expr
| ErrorOnEmpty of 'm marked_expr
type typed_expr = typed marked_expr
type struct_ctx = (StructFieldName.t * typ Marked.pos) list StructMap.t
type enum_ctx = (EnumConstructor.t * typ Marked.pos) list EnumMap.t
type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx }
type 'm binder = ('m expr, 'm marked_expr) Bindlib.binder
type scope_let_kind =
| DestructuringInputStruct
| ScopeVarDefinition
| SubScopeVarDefinition
| CallingSubScope
| DestructuringSubScopeResults
| Assertion
type ('expr, 'm) scope_let = {
scope_let_kind : scope_let_kind;
scope_let_typ : typ Marked.pos;
scope_let_expr : ('expr, 'm) marked;
scope_let_next : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder;
scope_let_pos : Pos.t;
}
and ('expr, 'm) scope_body_expr =
| Result of ('expr, 'm) marked
| ScopeLet of ('expr, 'm) scope_let
type ('expr, 'm) scope_body = {
scope_body_input_struct : StructName.t;
scope_body_output_struct : StructName.t;
scope_body_expr : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder;
}
type ('expr, 'm) scope_def = {
scope_name : ScopeName.t;
scope_body : ('expr, 'm) scope_body;
scope_next : ('expr, ('expr, 'm) scopes) Bindlib.binder;
}
and ('expr, 'm) scopes = Nil | ScopeDef of ('expr, 'm) scope_def
type 'm program = {
decl_ctx : decl_ctx;
scopes : ('m expr, 'm) scopes;
}
let no_mark (type m) : m mark -> m mark = function
| Untyped _ -> Untyped { pos = Pos.no_pos }
| Typed _ ->
Typed
{
pos = Pos.no_pos;
ty = UnionFind.make Infer.(TAny (Any.fresh ()), Pos.no_pos);
}
let mark_pos (type m) (m : m mark) : Pos.t =
match m with Untyped { pos } | Typed { pos; _ } -> pos
let pos (type m) (x : ('a, m) marked) : Pos.t = mark_pos (Marked.get_mark x)
let ty (_, Typed { ty; _ }) : typ = Marked.unmark (Infer.typ_to_ast ty)
let with_ty (type m) (ty : Infer.unionfind_typ) (x : ('a, m) marked) :
('a, typed) marked =
Marked.mark
(match Marked.get_mark x with
| Untyped { pos } -> Typed { pos; ty }
| Typed m -> Typed { m with ty })
(Marked.unmark x)
let evar v mark = Bindlib.box_apply (Marked.mark mark) (Bindlib.box_var v)
let etuple args s mark =
Bindlib.box_apply (fun args -> ETuple (args, s), mark) (Bindlib.box_list args)
let etupleaccess e1 i s typs mark =
Bindlib.box_apply (fun e1 -> ETupleAccess (e1, i, s, typs), mark) e1
let einj e1 i e_name typs mark =
Bindlib.box_apply (fun e1 -> EInj (e1, i, e_name, typs), mark) e1
let ematch arg arms e_name mark =
Bindlib.box_apply2
(fun arg arms -> EMatch (arg, arms, e_name), mark)
arg (Bindlib.box_list arms)
let earray args mark =
Bindlib.box_apply (fun args -> EArray args, mark) (Bindlib.box_list args)
let elit l mark = Bindlib.box (ELit l, mark)
let eabs binder typs mark =
Bindlib.box_apply (fun binder -> EAbs (binder, typs), mark) binder
let eapp e1 args mark =
Bindlib.box_apply2
(fun e1 args -> EApp (e1, args), mark)
e1 (Bindlib.box_list args)
let eassert e1 mark = Bindlib.box_apply (fun e1 -> EAssert e1, mark) e1
let eop op mark = Bindlib.box (EOp op, mark)
let edefault excepts just cons mark =
Bindlib.box_apply3
(fun excepts just cons -> EDefault (excepts, just, cons), mark)
(Bindlib.box_list excepts) just cons
let eifthenelse e1 e2 e3 mark =
Bindlib.box_apply3 (fun e1 e2 e3 -> EIfThenElse (e1, e2, e3), mark) e1 e2 e3
let eerroronempty e1 mark =
Bindlib.box_apply (fun e1 -> ErrorOnEmpty e1, mark) e1
let translate_var v =
Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)
let map_expr ctx ~f e =
let m = Marked.get_mark e in
match Marked.unmark e with
| EVar v -> evar (translate_var v) m
| EApp (e1, args) ->
eapp (f ctx e1) (List.map (f ctx) args) m
| EAbs (binder, typs) ->
let vars, body = Bindlib.unmbind binder in
eabs
(Bindlib.bind_mvar (Array.map translate_var vars) (f ctx body))
typs
m
| ETuple (args, s) -> etuple (List.map (f ctx) args) s m
| ETupleAccess (e1, n, s_name, typs) ->
etupleaccess ((f ctx) e1) n s_name typs m
| EInj (e1, i, e_name, typs) ->
einj ((f ctx) e1) i e_name typs m
| EMatch (arg, arms, e_name) ->
ematch ((f ctx) arg) (List.map (f ctx) arms) e_name m
| EArray args -> earray (List.map (f ctx) args) m
| ELit l -> elit l m
| EAssert e1 -> eassert ((f ctx) e1) m
| EOp op -> Bindlib.box (EOp op, m)
| EDefault (excepts, just, cons) ->
edefault
(List.map (f ctx) excepts)
((f ctx) just)
((f ctx) cons)
m
| EIfThenElse (e1, e2, e3) ->
eifthenelse ((f ctx) e1) ((f ctx) e2) ((f ctx) e3) m
| ErrorOnEmpty e1 -> eerroronempty ((f ctx) e1) m
let rec map_expr_top_down ~f e =
map_expr () ~f:(fun () -> map_expr_top_down ~f) (f e)
let map_expr_marks ~f e =
Bindlib.unbox @@
map_expr_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e
let untype_expr e =
map_expr_marks ~f:(fun m -> Untyped {pos=mark_pos m}) e
type ('expr, 'm) box_expr_sig =
('expr, 'm) marked -> ('expr, 'm) marked Bindlib.box
(** See [Bindlib.box_term] documentation for why we are doing that. *)
let box_expr : ('m expr, 'm) box_expr_sig =
fun e ->
let rec id_t () e = map_expr () ~f:id_t e in
id_t () e
let rec fold_left_scope_lets ~f ~init scope_body_expr =
match scope_body_expr with
| Result _ -> init
| ScopeLet scope_let ->
let var, next = Bindlib.unbind scope_let.scope_let_next in
fold_left_scope_lets ~f ~init:(f init scope_let var) next
let rec fold_right_scope_lets ~f ~init scope_body_expr =
match scope_body_expr with
| Result result -> init result
| ScopeLet scope_let ->
let var, next = Bindlib.unbind scope_let.scope_let_next in
let next_result = fold_right_scope_lets ~f ~init next in
f scope_let var next_result
let map_exprs_in_scope_lets ~f ~varf scope_body_expr =
fold_right_scope_lets
~f:(fun scope_let var_next acc ->
Bindlib.box_apply2
(fun scope_let_next scope_let_expr ->
ScopeLet { scope_let with scope_let_next; scope_let_expr })
(Bindlib.bind_var (varf var_next) acc)
(f scope_let.scope_let_expr))
~init:(fun res -> Bindlib.box_apply (fun res -> Result res) (f res))
scope_body_expr
let rec fold_left_scope_defs ~f ~init scopes =
match scopes with
| Nil -> init
| ScopeDef scope_def ->
let var, next = Bindlib.unbind scope_def.scope_next in
fold_left_scope_defs ~f ~init:(f init scope_def var) next
let rec fold_right_scope_defs ~f ~init scopes =
match scopes with
| Nil -> init
| ScopeDef scope_def ->
let var_next, next = Bindlib.unbind scope_def.scope_next in
let result_next = fold_right_scope_defs ~f ~init next in
f scope_def var_next result_next
let map_scope_defs ~f scopes =
fold_right_scope_defs
~f:(fun scope_def var_next acc ->
let new_scope_def = f scope_def in
let new_next = Bindlib.bind_var var_next acc in
Bindlib.box_apply2
(fun new_scope_def new_next ->
ScopeDef { new_scope_def with scope_next = new_next })
new_scope_def new_next)
~init:(Bindlib.box Nil) scopes
let map_exprs_in_scopes ~f ~varf scopes =
fold_right_scope_defs
~f:(fun scope_def var_next acc ->
let scope_input_var, scope_lets =
Bindlib.unbind scope_def.scope_body.scope_body_expr
in
let new_scope_body_expr = map_exprs_in_scope_lets ~f ~varf scope_lets in
let new_scope_body_expr =
Bindlib.bind_var (varf scope_input_var) new_scope_body_expr
in
let new_next = Bindlib.bind_var (varf var_next) acc in
Bindlib.box_apply2
(fun scope_body_expr scope_next ->
ScopeDef
{
scope_def with
scope_body = { scope_def.scope_body with scope_body_expr };
scope_next;
})
new_scope_body_expr new_next)
~init:(Bindlib.box Nil) scopes
type 'm var = 'm expr Bindlib.var
type 'm vars = 'm expr Bindlib.mvar
let new_var s = Bindlib.new_var (fun x -> EVar x) s
module Var = struct
type t = V : 'a expr Bindlib.var -> t
(* We use this trivial GADT to make the 'm parameter disappear under an
existential. It's fine for a use as keys only.
(bindlib defines [any_var] similarly but it's not exported)
todo: add [@@ocaml.unboxed] once it's possible through abstract types *)
let t v = V v
let get (V v) = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)
let compare (V x) (V y) = Bindlib.compare_vars x y
let eq (V x) (V y) = Bindlib.eq_vars x y
end
module VarSet = Set.Make (Var)
module VarMap = Map.Make (Var)
(** {[
let rec free_vars_expr (e : untyped marked_expr) : VarSet.t =
match Marked.unmark e with
| EVar v -> VarSet.singleton v
| ETuple (es, _) | EArray es ->
es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| ETupleAccess (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1
| EInj (e1, _, _, _) ->
free_vars_expr e1
| EApp (e1, es) | EMatch (e1, es, _) ->
e1 :: es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EDefault (es, ejust, econs) ->
ejust :: econs :: es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EOp _ | ELit _ -> VarSet.empty
| EIfThenElse (e1, e2, e3) ->
[e1; e2; e3] |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EAbs (binder, _) ->
let vs, body = Bindlib.unmbind binder in
Array.fold_right VarSet.remove vs (free_vars_expr body)
module VarMap = Map.Make (Var (struct
type t = untyped
end))
module VarSet = Set.Make (Var (struct
type t = untyped
end))
let rec free_vars_expr (e : expr) : VarSet.t =
match Marked.unmark e with
| EVar (v, _) -> VarSet.singleton v
| ETuple (es, _) | EArray es ->
es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| ETupleAccess (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1
| EInj (e1, _, _, _) ->
free_vars_expr e1
| EApp (e1, es) | EMatch (e1, es, _) ->
e1 :: es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EDefault (es, ejust, econs) ->
ejust :: econs :: es |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EOp _ | ELit _ -> VarSet.empty
| EIfThenElse (e1, e2, e3) ->
[e1; e2; e3] |> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EAbs ((binder, _), _) ->
let vs, body = Bindlib.unmbind binder in
Array.fold_right VarSet.remove vs (free_vars_expr body)
let rec free_vars_scope_body_expr (scope_lets : expr scope_body_expr) :
VarSet.t =
match scope_lets with
| Result e -> free_vars_expr e
| ScopeLet { scope_let_expr = e; scope_let_next = next; _ } ->
let v, body = Bindlib.unbind next in
VarSet.union (free_vars_expr e)
(VarSet.remove v (free_vars_scope_body_expr body))
let free_vars_scope_body (scope_body : expr scope_body) : VarSet.t =
let { scope_body_expr = binder; _ } = scope_body in
let v, body = Bindlib.unbind binder in
VarSet.remove v (free_vars_scope_body_expr body)
let rec free_vars_scopes (scopes : expr scopes) : VarSet.t =
match scopes with
| Nil -> VarSet.empty
| ScopeDef { scope_body = body; scope_next = next; _ } ->
let v, next = Bindlib.unbind next in
VarSet.union
(VarSet.remove v (free_vars_scopes next))
(free_vars_scope_body body)
(* type vars = expr Bindlib.mvar *)
]}*)
let make_var ((x, mark) : ('m expr Bindlib.var, 'm) marked) :
'm marked_expr Bindlib.box =
Bindlib.box_apply (fun x -> x, mark) (Bindlib.box_var x)
(* 'm expr → 'e 'm marked_expr = ('m expr, 'm) marked → ('e, 'm) marked
('e, 'x) marked = ('e, 'x mark) Marked.t = ('e * 'x mark)
'e Bindlib.mvar -> ('e, 'm) Marked.t Bindlib.box -> typ Marked.pos list -> 'm
-> ('e, 'm) Marked.t Bindlib.box *)
(* 'e = 'm expr ('e, 'm) marked = ('e, 'm mark) Marked.t = ('m expr, 'm mark)
Marked.t *)
type ('e, 'm) make_abs_sig =
'e Bindlib.mvar ->
('e, 'm) marked Bindlib.box ->
typ Marked.pos list ->
'm mark ->
('e, 'm) marked Bindlib.box
let (make_abs : ('m expr, 'm) make_abs_sig) =
fun xs e taus mark ->
Bindlib.box_apply (fun b -> EAbs (b, taus), mark) (Bindlib.bind_mvar xs e)
let make_app :
'm marked_expr Bindlib.box ->
'm marked_expr Bindlib.box list ->
'm mark ->
'm marked_expr Bindlib.box =
fun e u mark ->
Bindlib.box_apply2 (fun e u -> EApp (e, u), mark) e (Bindlib.box_list u)
type ('expr, 'm) make_let_in_sig =
'expr Bindlib.var ->
typ Marked.pos ->
('expr, 'm) marked Bindlib.box ->
('expr, 'm) marked Bindlib.box ->
Pos.t ->
('expr, 'm) marked Bindlib.box
let map_mark
(type m)
(pos_f : Pos.t -> Pos.t)
(ty_f : Infer.unionfind_typ -> Infer.unionfind_typ)
(m : m mark) : m mark =
match m with
| Untyped { pos } -> Untyped { pos = pos_f pos }
| Typed { pos; ty } -> Typed { pos = pos_f pos; ty = ty_f ty }
let map_mark2
(type m)
(pos_f : Pos.t -> Pos.t -> Pos.t)
(ty_f : typed -> typed -> Infer.unionfind_typ)
(m1 : m mark)
(m2 : m mark) : m mark =
match m1, m2 with
| Untyped m1, Untyped m2 -> Untyped { pos = pos_f m1.pos m2.pos }
| Typed m1, Typed m2 -> Typed { pos = pos_f m1.pos m2.pos; ty = ty_f m1 m2 }
let fold_marks
(type m)
(pos_f : Pos.t list -> Pos.t)
(ty_f : typed list -> Infer.unionfind_typ)
(ms : m mark list) : m mark =
match ms with
| [] -> invalid_arg "Dcalc.Ast.fold_mark"
| Untyped _ :: _ as ms ->
Untyped { pos = pos_f (List.map (function Untyped { pos } -> pos) ms) }
| Typed _ :: _ ->
Typed
{
pos = pos_f (List.map (function Typed { pos; _ } -> pos) ms);
ty = ty_f (List.map (function Typed m -> m) ms);
}
let empty_thunked_term mark : 'm marked_expr =
let silent = new_var "_" in
let pos = mark_pos mark in
Bindlib.unbox
(make_abs [| silent |]
(Bindlib.box (ELit LEmptyError, mark))
[TLit TUnit, mark_pos mark]
(map_mark
(fun pos -> pos)
(fun ty ->
UnionFind.make
Infer.(
TArrow (UnionFind.make (TLit TUnit, pos), ty), mark_pos mark))
mark))
let (make_let_in : ('m expr, 'm) make_let_in_sig) =
fun x tau e1 e2 pos ->
let m_e1 = Marked.get_mark (Bindlib.unbox e1) in
let m_e2 = Marked.get_mark (Bindlib.unbox e2) in
let m_abs =
map_mark2
(fun _ _ -> pos)
(fun m1 m2 -> UnionFind.make (Infer.TArrow (m1.ty, m2.ty), m1.pos))
m_e1 m_e2
in
make_app (make_abs [| x |] e2 [tau] m_abs) [e1] m_e2
let is_value (e : 'e marked_expr) : bool =
match Marked.unmark e with ELit _ | EAbs _ | EOp _ -> true | _ -> false
let rec equal_typs (ty1 : typ Marked.pos) (ty2 : typ Marked.pos) : bool =
match Marked.unmark ty1, Marked.unmark ty2 with
| TLit l1, TLit l2 -> l1 = l2
| TTuple (tys1, n1), TTuple (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2
| TEnum (tys1, n1), TEnum (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2
| TArrow (t1, t1'), TArrow (t2, t2') -> equal_typs t1 t2 && equal_typs t1' t2'
| TArray t1, TArray t2 -> equal_typs t1 t2
| TAny, TAny -> true
| _, _ -> false
and equal_typs_list (tys1 : typ Marked.pos list) (tys2 : typ Marked.pos list) :
bool =
List.length tys1 = List.length tys2
&& (* OCaml && operator short-circuits when a clause is false, we can safely
assume here that both lists have equal length *)
List.for_all (fun (x, y) -> equal_typs x y) (List.combine tys1 tys2)
let equal_log_entries (l1 : log_entry) (l2 : log_entry) : bool =
match l1, l2 with
| VarDef t1, VarDef t2 -> equal_typs (t1, Pos.no_pos) (t2, Pos.no_pos)
| x, y -> x = y
let equal_unops (op1 : unop) (op2 : unop) : bool =
match op1, op2 with
(* Log entries contain a typ which contain position information, we thus need
to descend into them *)
| Log (l1, info1), Log (l2, info2) -> equal_log_entries l1 l2 && info1 = info2
(* All the other cases can be discharged through equality *)
| _ -> op1 = op2
let equal_ops (op1 : operator) (op2 : operator) : bool =
match op1, op2 with
| Ternop op1, Ternop op2 -> op1 = op2
| Binop op1, Binop op2 -> op1 = op2
| Unop op1, Unop op2 -> equal_unops op1 op2
| _, _ -> false
let rec equal_exprs (e1 : 'm marked_expr) (e2 : 'm marked_expr) : bool =
match Marked.unmark e1, Marked.unmark e2 with
| EVar v1, EVar v2 -> Bindlib.eq_vars v1 v2
| ETuple (es1, n1), ETuple (es2, n2) -> n1 = n2 && equal_exprs_list es1 es2
| ETupleAccess (e1, id1, n1, tys1), ETupleAccess (e2, id2, n2, tys2) ->
equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2
| EInj (e1, id1, n1, tys1), EInj (e2, id2, n2, tys2) ->
equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2
| EMatch (e1, cases1, n1), EMatch (e2, cases2, n2) ->
n1 = n2 && equal_exprs e1 e2 && equal_exprs_list cases1 cases2
| EArray es1, EArray es2 -> equal_exprs_list es1 es2
| ELit l1, ELit l2 -> l1 = l2
| EAbs (b1, tys1), EAbs (b2, tys2) ->
equal_typs_list tys1 tys2
&&
let vars1, body1 = Bindlib.unmbind b1 in
let body2 = Bindlib.msubst b2 (Array.map (fun x -> EVar x) vars1) in
equal_exprs body1 body2
| EAssert e1, EAssert e2 -> equal_exprs e1 e2
| EOp op1, EOp op2 -> equal_ops op1 op2
| EDefault (exc1, def1, cons1), EDefault (exc2, def2, cons2) ->
equal_exprs def1 def2 && equal_exprs cons1 cons2
&& equal_exprs_list exc1 exc2
| EIfThenElse (if1, then1, else1), EIfThenElse (if2, then2, else2) ->
equal_exprs if1 if2 && equal_exprs then1 then2 && equal_exprs else1 else2
| ErrorOnEmpty e1, ErrorOnEmpty e2 -> equal_exprs e1 e2
| _, _ -> false
and equal_exprs_list (es1 : 'e marked_expr list) (es2 : 'm marked_expr list) :
bool =
List.length es1 = List.length es2
&& (* OCaml && operator short-circuits when a clause is false, we can safely
assume here that both lists have equal length *)
List.for_all (fun (x, y) -> equal_exprs x y) (List.combine es1 es2)
let rec unfold_scope_body_expr
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(scope_let : ('expr, 'm) scope_body_expr) : ('expr, 'm) marked Bindlib.box =
match scope_let with
| Result e -> box_expr e
| ScopeLet
{
scope_let_kind = _;
scope_let_typ;
scope_let_expr;
scope_let_next;
scope_let_pos;
} ->
let var, next = Bindlib.unbind scope_let_next in
make_let_in var scope_let_typ (box_expr scope_let_expr)
(unfold_scope_body_expr ~box_expr ~make_let_in ctx next)
scope_let_pos
let build_whole_scope_expr
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_abs : ('expr, 'm) make_abs_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(body : ('expr, 'm) scope_body)
(mark_scope : 'm mark) : ('expr, 'm) marked Bindlib.box =
let var, body_expr = Bindlib.unbind body.scope_body_expr in
let body_expr = unfold_scope_body_expr ~box_expr ~make_let_in ctx body_expr in
make_abs (Array.of_list [var]) body_expr
[
( TTuple
( List.map snd
(StructMap.find body.scope_body_input_struct ctx.ctx_structs),
Some body.scope_body_input_struct ),
mark_pos mark_scope );
]
mark_scope
let build_scope_typ_from_sig
(ctx : decl_ctx)
(scope_input_struct_name : StructName.t)
(scope_return_struct_name : StructName.t)
(pos : Pos.t) : typ Marked.pos =
let scope_sig = StructMap.find scope_input_struct_name ctx.ctx_structs in
let scope_return_typ =
StructMap.find scope_return_struct_name ctx.ctx_structs
in
let result_typ =
TTuple (List.map snd scope_return_typ, Some scope_return_struct_name), pos
in
let input_typ =
TTuple (List.map snd scope_sig, Some scope_input_struct_name), pos
in
TArrow (input_typ, result_typ), pos
type 'expr scope_name_or_var =
| ScopeName of ScopeName.t
| ScopeVar of 'expr Bindlib.var
let get_scope_body_mark scope_body =
match snd (Bindlib.unbind scope_body.scope_body_expr) with
| Result e | ScopeLet { scope_let_expr = e; _ } -> Marked.get_mark e
let rec unfold_scopes
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_abs : ('expr, 'm) make_abs_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(s : ('expr, 'm) scopes)
(mark : 'm mark)
(main_scope : 'expr scope_name_or_var) : ('expr, 'm) marked Bindlib.box =
match s with
| Nil -> (
match main_scope with
| ScopeVar v ->
Bindlib.box_apply (fun v -> v, mark) (Bindlib.box_var v)
| ScopeName _ -> failwith "should not happen")
| ScopeDef { scope_name; scope_body; scope_next } ->
let scope_var, scope_next = Bindlib.unbind scope_next in
let scope_pos = Marked.get_mark (ScopeName.get_info scope_name) in
let scope_body_mark = get_scope_body_mark scope_body in
let main_scope =
match main_scope with
| ScopeVar v -> ScopeVar v
| ScopeName n ->
if ScopeName.compare n scope_name = 0 then ScopeVar scope_var
else ScopeName n
in
make_let_in scope_var
(build_scope_typ_from_sig ctx scope_body.scope_body_input_struct
scope_body.scope_body_output_struct scope_pos)
(build_whole_scope_expr ~box_expr ~make_abs ~make_let_in ctx scope_body
scope_body_mark)
(unfold_scopes ~box_expr ~make_abs ~make_let_in ctx scope_next
mark main_scope)
scope_pos
let rec find_scope name vars = function
| Nil -> raise Not_found
| ScopeDef {scope_name; scope_body; _} when scope_name = name ->
List.rev vars, scope_body
| ScopeDef {scope_next; _} ->
let var, next = Bindlib.unbind scope_next in
find_scope name (var :: vars) next
let build_whole_program_expr (p : 'm program) (main_scope : ScopeName.t) =
let _, main_scope_body = find_scope main_scope [] p.scopes in
unfold_scopes ~box_expr ~make_abs ~make_let_in p.decl_ctx p.scopes
(get_scope_body_mark main_scope_body) (ScopeName main_scope)
let rec expr_size (e : 'm marked_expr) : int =
match Marked.unmark e with
| EVar _ | ELit _ | EOp _ -> 1
| ETuple (args, _) | EArray args ->
List.fold_left (fun acc arg -> acc + expr_size arg) 1 args
| ETupleAccess (e1, _, _, _)
| EInj (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1 ->
expr_size e1 + 1
| EMatch (arg, args, _) | EApp (arg, args) ->
List.fold_left (fun acc arg -> acc + expr_size arg) (1 + expr_size arg) args
| EAbs (binder, _) ->
let _, body = Bindlib.unmbind binder in
1 + expr_size body
| EIfThenElse (e1, e2, e3) -> 1 + expr_size e1 + expr_size e2 + expr_size e3
| EDefault (exceptions, just, cons) ->
List.fold_left
(fun acc except -> acc + expr_size except)
(1 + expr_size just + expr_size cons)
exceptions
let remove_logging_calls (e : 'm marked_expr) : 'm marked_expr Bindlib.box =
let rec f () e =
match Marked.unmark e with
| EApp ((EOp (Unop (Log _)), _), [arg]) -> map_expr () ~f arg
| _ -> map_expr () ~f e
in
f () e