catala/compiler/shared_ast/interpreter.ml
Louis Gesbert 712fc1e279 Support closure calls across modules
First I was disappointed that we couldn't convert closure environment properly
because of their opaque nature (native/interpreted conversion is based on the
Catala types) ; but after more thought it's actually unnecessary to convert them
at all since we are guaranteed that they can't be consumed outside of their
realm.
2024-06-21 12:23:01 +02:00

1221 lines
48 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>, Emile Rolley
<emile.rolley@tuta.io>, Alain Delaët <alain.delaet--tixeuil@inria.Fr>, Louis
Gesbert <louis.gesbert@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
(** Reference interpreter for the default calculus *)
open Catala_utils
open Definitions
open Op
module Runtime = Runtime_ocaml.Runtime
(** {1 Helpers} *)
let is_empty_error : type a. (a, 'm) gexpr -> bool =
fun e -> match Mark.remove e with EEmpty -> true | _ -> false
(* TODO: we should provide a generic way to print logs, that work across the
different backends: python, ocaml, javascript, and interpreter *)
let indent_str = ref ""
(** {1 Evaluation} *)
let rec format_runtime_value lang ppf = function
| Runtime.Unit -> Print.UserFacing.unit lang ppf ()
| Runtime.Bool b -> Print.UserFacing.bool lang ppf b
| Runtime.Money m -> Print.UserFacing.money lang ppf m
| Runtime.Integer i -> Print.UserFacing.integer lang ppf i
| Runtime.Decimal d -> Print.UserFacing.decimal lang ppf d
| Runtime.Date t -> Print.UserFacing.date lang ppf t
| Runtime.Duration dt -> Print.UserFacing.duration lang ppf dt
| Runtime.Enum (name, (constr, v)) ->
Format.fprintf ppf "@[<hov 2>%s.%s@ (%a)@]" name constr
(format_runtime_value lang)
v
| Runtime.Struct (name, fields) ->
Format.fprintf ppf "@[<hv 2>%s {@ %a@;<1 -2>}@]" name
(Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf (fld, v) ->
Format.fprintf ppf "@[<hov 2>-- %s:@ %a@]" fld
(format_runtime_value lang)
v))
fields
| Runtime.Array elts ->
Format.fprintf ppf "@[<hv 2>[@,@[<hov>%a@]@;<0 -2>]@]"
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf ";@ ")
(format_runtime_value lang))
(Array.to_list elts)
| Runtime.Unembeddable -> Format.pp_print_string ppf "<object>"
let print_log lang entry =
let pp_infos =
Format.(
pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf ".@,")
pp_print_string)
in
match entry with
| Runtime.BeginCall infos ->
Message.log "%s%a %a" !indent_str Print.log_entry BeginCall pp_infos infos;
indent_str := !indent_str ^ " "
| Runtime.EndCall infos ->
indent_str := String.sub !indent_str 0 (String.length !indent_str - 2);
Message.log "%s%a %a" !indent_str Print.log_entry EndCall pp_infos infos
| Runtime.VariableDefinition (infos, io, value) ->
Message.log "%s%a %a: @{<green>%s@}" !indent_str Print.log_entry
(VarDef
{
log_typ = TAny;
log_io_input = io.Runtime.io_input;
log_io_output = io.Runtime.io_output;
})
pp_infos infos
(Message.unformat (fun ppf -> format_runtime_value lang ppf value))
| Runtime.DecisionTaken rtpos ->
let pos = Expr.runtime_to_pos rtpos in
Message.log "%s@[<v>%a@{<green>Definition applied@}:@,%a@]" !indent_str
Print.log_entry PosRecordIfTrueBool Pos.format_loc_text pos
let rec value_to_runtime_embedded = function
| ELit LUnit -> Runtime.Unit
| ELit (LBool b) -> Runtime.Bool b
| ELit (LMoney m) -> Runtime.Money m
| ELit (LInt i) -> Runtime.Integer i
| ELit (LRat r) -> Runtime.Decimal r
| ELit (LDate d) -> Runtime.Date d
| ELit (LDuration dt) -> Runtime.Duration dt
| EInj { name; cons; e } ->
Runtime.Enum
( EnumName.to_string name,
( EnumConstructor.to_string cons,
value_to_runtime_embedded (Mark.remove e) ) )
| EStruct { name; fields } ->
Runtime.Struct
( StructName.to_string name,
List.map
(fun (f, e) ->
StructField.to_string f, value_to_runtime_embedded (Mark.remove e))
(StructField.Map.bindings fields) )
| EArray el ->
Runtime.Array
(Array.of_list
(List.map (fun e -> value_to_runtime_embedded (Mark.remove e)) el))
| _ -> Runtime.Unembeddable
(* Todo: this should be handled early when resolving overloads. Here we have
proper structural equality, but the OCaml backend for example uses the
builtin equality function instead of this. *)
let handle_eq pos evaluate_operator m lang e1 e2 =
let eq_eval = evaluate_operator (Eq, pos) m lang in
let open Runtime.Oper in
match e1, e2 with
| ELit LUnit, ELit LUnit -> true
| ELit (LBool b1), ELit (LBool b2) -> not (o_xor b1 b2)
| ELit (LInt x1), ELit (LInt x2) -> o_eq_int_int x1 x2
| ELit (LRat x1), ELit (LRat x2) -> o_eq_rat_rat x1 x2
| ELit (LMoney x1), ELit (LMoney x2) -> o_eq_mon_mon x1 x2
| ELit (LDuration x1), ELit (LDuration x2) ->
o_eq_dur_dur (Expr.pos_to_runtime (Expr.mark_pos m)) x1 x2
| ELit (LDate x1), ELit (LDate x2) -> o_eq_dat_dat x1 x2
| EArray es1, EArray es2 -> (
try
List.for_all2
(fun e1 e2 ->
match Mark.remove (eq_eval [e1; e2]) with
| ELit (LBool b) -> b
| _ -> assert false
(* should not happen *))
es1 es2
with Invalid_argument _ -> false)
| EStruct { fields = es1; name = s1 }, EStruct { fields = es2; name = s2 } ->
StructName.equal s1 s2
&& StructField.Map.equal
(fun e1 e2 ->
match Mark.remove (eq_eval [e1; e2]) with
| ELit (LBool b) -> b
| _ -> assert false
(* should not happen *))
es1 es2
| ( EInj { e = e1; cons = i1; name = en1 },
EInj { e = e2; cons = i2; name = en2 } ) -> (
try
EnumName.equal en1 en2
&& EnumConstructor.equal i1 i2
&&
match Mark.remove (eq_eval [e1; e2]) with
| ELit (LBool b) -> b
| _ -> assert false
(* should not happen *)
with Invalid_argument _ -> false)
| _, _ -> false (* comparing anything else return false *)
(* Call-by-value: the arguments are expected to be already evaluated here *)
let rec evaluate_operator
evaluate_expr
((op, opos) : < overloaded : no ; .. > operator Mark.pos)
m
lang
args =
let pos = Expr.mark_pos m in
let rpos () = Expr.pos_to_runtime opos in
let div_pos () =
(* Division by 0 errors point to their 2nd operand *)
Expr.pos_to_runtime
@@ match args with _ :: denom :: _ -> Expr.pos denom | _ -> opos
in
let err () =
Message.error
~extra_pos:
([
( Format.asprintf "Operator (value %a):"
(Print.operator ~debug:true)
op,
opos );
]
@ List.mapi
(fun i arg ->
( Format.asprintf "Argument n°%d, value %a" (i + 1)
(Print.UserFacing.expr lang)
arg,
Expr.pos arg ))
args)
"Operator %a applied to the wrong@ arguments@ (should not happen if the \
term was well-typed)"
(Print.operator ~debug:true)
op
in
let open Runtime.Oper in
Mark.add m
@@
match op, args with
| Length, [(EArray es, _)] ->
ELit (LInt (Runtime.integer_of_int (List.length es)))
| Log (entry, infos), [(e, _)] when Global.options.trace -> (
let rtinfos = List.map Uid.MarkedString.to_string infos in
match entry with
| BeginCall -> Runtime.log_begin_call rtinfos e
| EndCall -> Runtime.log_end_call rtinfos e
| PosRecordIfTrueBool ->
(match e with
| ELit (LBool b) ->
Runtime.log_decision_taken (Expr.pos_to_runtime pos) b |> ignore
| _ -> ());
e
| VarDef def ->
Runtime.log_variable_definition rtinfos
{ Runtime.io_input = def.log_io_input; io_output = def.log_io_output }
value_to_runtime_embedded e)
| Log _, [(e', _)] -> e'
| (FromClosureEnv | ToClosureEnv), [e'] ->
(* [FromClosureEnv] and [ToClosureEnv] are just there to bypass the need for
existential types when typing code after closure conversion. There are
effectively no-ops. *)
Mark.remove e'
| (ToClosureEnv | FromClosureEnv), _ -> err ()
| Eq, [(e1, _); (e2, _)] ->
ELit (LBool (handle_eq opos (evaluate_operator evaluate_expr) m lang e1 e2))
| Map, [f; (EArray es, _)] ->
EArray
(List.map
(fun e' ->
evaluate_expr
(Mark.copy e'
(EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] })))
es)
| Map2, [f; (EArray es1, _); (EArray es2, _)] ->
EArray
(List.map2
(fun e1 e2 ->
evaluate_expr
(Mark.add m
(EApp
{
f;
args = [e1; e2];
tys =
[
Expr.maybe_ty (Mark.get e1); Expr.maybe_ty (Mark.get e2);
];
})))
es1 es2)
| Reduce, [_; default; (EArray [], _)] -> Mark.remove default
| Reduce, [f; _; (EArray (x0 :: xn), _)] ->
Mark.remove
(List.fold_left
(fun acc x ->
evaluate_expr
(Mark.copy f
(EApp
{
f;
args = [acc; x];
tys =
[
Expr.maybe_ty (Mark.get acc); Expr.maybe_ty (Mark.get x);
];
})))
x0 xn)
| Concat, [(EArray es1, _); (EArray es2, _)] -> EArray (es1 @ es2)
| Filter, [f; (EArray es, _)] ->
EArray
(List.filter
(fun e' ->
match
evaluate_expr
(Mark.copy e'
(EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] }))
with
| ELit (LBool b), _ -> b
| _ ->
Message.error
~pos:(Expr.pos (List.nth args 0))
"%a" Format.pp_print_text
"This predicate evaluated to something else than a boolean \
(should not happen if the term was well-typed)")
es)
| Fold, [f; init; (EArray es, _)] ->
Mark.remove
(List.fold_left
(fun acc e' ->
evaluate_expr
(Mark.copy e'
(EApp
{
f;
args = [acc; e'];
tys =
[
Expr.maybe_ty (Mark.get acc);
Expr.maybe_ty (Mark.get e');
];
})))
init es)
| (Length | Log _ | Eq | Map | Map2 | Concat | Filter | Fold | Reduce), _ ->
err ()
| Not, [(ELit (LBool b), _)] -> ELit (LBool (o_not b))
| GetDay, [(ELit (LDate d), _)] -> ELit (LInt (o_getDay d))
| GetMonth, [(ELit (LDate d), _)] -> ELit (LInt (o_getMonth d))
| GetYear, [(ELit (LDate d), _)] -> ELit (LInt (o_getYear d))
| FirstDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_firstDayOfMonth d))
| LastDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_lastDayOfMonth d))
| And, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
ELit (LBool (o_and b1 b2))
| Or, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
ELit (LBool (o_or b1 b2))
| Xor, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
ELit (LBool (o_xor b1 b2))
| ( ( Not | GetDay | GetMonth | GetYear | FirstDayOfMonth | LastDayOfMonth
| And | Or | Xor ),
_ ) ->
err ()
| Minus_int, [(ELit (LInt x), _)] -> ELit (LInt (o_minus_int x))
| Minus_rat, [(ELit (LRat x), _)] -> ELit (LRat (o_minus_rat x))
| Minus_mon, [(ELit (LMoney x), _)] -> ELit (LMoney (o_minus_mon x))
| Minus_dur, [(ELit (LDuration x), _)] -> ELit (LDuration (o_minus_dur x))
| ToRat_int, [(ELit (LInt i), _)] -> ELit (LRat (o_torat_int i))
| ToRat_mon, [(ELit (LMoney i), _)] -> ELit (LRat (o_torat_mon i))
| ToMoney_rat, [(ELit (LRat i), _)] -> ELit (LMoney (o_tomoney_rat i))
| Round_mon, [(ELit (LMoney m), _)] -> ELit (LMoney (o_round_mon m))
| Round_rat, [(ELit (LRat m), _)] -> ELit (LRat (o_round_rat m))
| Add_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LInt (o_add_int_int x y))
| Add_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LRat (o_add_rat_rat x y))
| Add_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LMoney (o_add_mon_mon x y))
| Add_dat_dur r, [(ELit (LDate x), _); (ELit (LDuration y), _)] ->
ELit (LDate (o_add_dat_dur r x y))
| Add_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LDuration (o_add_dur_dur x y))
| Sub_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LInt (o_sub_int_int x y))
| Sub_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LRat (o_sub_rat_rat x y))
| Sub_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LMoney (o_sub_mon_mon x y))
| Sub_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LDuration (o_sub_dat_dat x y))
| Sub_dat_dur, [(ELit (LDate x), _); (ELit (LDuration y), _)] ->
ELit (LDate (o_sub_dat_dur x y))
| Sub_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LDuration (o_sub_dur_dur x y))
| Mult_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LInt (o_mult_int_int x y))
| Mult_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LRat (o_mult_rat_rat x y))
| Mult_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] ->
ELit (LMoney (o_mult_mon_rat x y))
| Mult_dur_int, [(ELit (LDuration x), _); (ELit (LInt y), _)] ->
ELit (LDuration (o_mult_dur_int x y))
| Div_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LRat (o_div_int_int (div_pos ()) x y))
| Div_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LRat (o_div_rat_rat (div_pos ()) x y))
| Div_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LRat (o_div_mon_mon (div_pos ()) x y))
| Div_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] ->
ELit (LMoney (o_div_mon_rat (div_pos ()) x y))
| Div_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LRat (o_div_dur_dur (div_pos ()) x y))
| Lt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LBool (o_lt_int_int x y))
| Lt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LBool (o_lt_rat_rat x y))
| Lt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LBool (o_lt_mon_mon x y))
| Lt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LBool (o_lt_dat_dat x y))
| Lt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LBool (o_lt_dur_dur (rpos ()) x y))
| Lte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LBool (o_lte_int_int x y))
| Lte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LBool (o_lte_rat_rat x y))
| Lte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LBool (o_lte_mon_mon x y))
| Lte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LBool (o_lte_dat_dat x y))
| Lte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LBool (o_lte_dur_dur (rpos ()) x y))
| Gt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LBool (o_gt_int_int x y))
| Gt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LBool (o_gt_rat_rat x y))
| Gt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LBool (o_gt_mon_mon x y))
| Gt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LBool (o_gt_dat_dat x y))
| Gt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LBool (o_gt_dur_dur (rpos ()) x y))
| Gte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LBool (o_gte_int_int x y))
| Gte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LBool (o_gte_rat_rat x y))
| Gte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LBool (o_gte_mon_mon x y))
| Gte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LBool (o_gte_dat_dat x y))
| Gte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LBool (o_gte_dur_dur (rpos ()) x y))
| Eq_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
ELit (LBool (o_eq_int_int x y))
| Eq_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
ELit (LBool (o_eq_rat_rat x y))
| Eq_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
ELit (LBool (o_eq_mon_mon x y))
| Eq_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
ELit (LBool (o_eq_dat_dat x y))
| Eq_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
ELit (LBool (o_eq_dur_dur (rpos ()) x y))
| HandleDefault, [(EArray excepts, _); just; cons] -> (
(* This case is for lcalc with exceptions: we rely OCaml exception handling
here *)
match
List.filter_map
(fun e ->
try Some (evaluate_expr (Expr.unthunk_term_nobox e))
with Runtime.Empty -> None)
excepts
with
| [] -> (
let just = evaluate_expr (Expr.unthunk_term_nobox just) in
match Mark.remove just with
| ELit (LBool true) ->
Mark.remove (evaluate_expr (Expr.unthunk_term_nobox cons))
| ELit (LBool false) -> raise Runtime.Empty
| _ ->
Message.error ~pos
"Default justification has not been reduced to a boolean at@ \
evaluation@ (should not happen if the term was well-typed@\n\
%a@."
Expr.format just)
| [e] -> Mark.remove e
| es ->
raise
Runtime.(
Error
(Conflict, List.map (fun e -> Expr.pos_to_runtime (Expr.pos e)) es))
)
| HandleDefaultOpt, [(EArray exps, _); justification; conclusion] -> (
let valid_exceptions =
ListLabels.filter exps ~f:(function
| EInj { name; cons; _ }, _ when EnumName.equal name Expr.option_enum ->
EnumConstructor.equal cons Expr.some_constr
| _ -> err ())
in
match valid_exceptions with
| [] -> (
let e = evaluate_expr (Expr.unthunk_term_nobox justification) in
match Mark.remove e with
| ELit (LBool true) ->
Mark.remove (evaluate_expr (Expr.unthunk_term_nobox conclusion))
| ELit (LBool false) ->
EInj
{
name = Expr.option_enum;
cons = Expr.none_constr;
e = Mark.copy justification (ELit LUnit);
}
| EInj { name; cons; e }
when EnumName.equal name Expr.option_enum
&& EnumConstructor.equal cons Expr.none_constr ->
EInj
{
name = Expr.option_enum;
cons = Expr.none_constr;
e = Mark.copy e (ELit LUnit);
}
| _ -> err ())
| [((EInj { cons; name; _ } as e), _)]
when EnumName.equal name Expr.option_enum
&& EnumConstructor.equal cons Expr.some_constr ->
e
| [_] -> err ()
| excs ->
raise
Runtime.(
Error (Conflict, List.map Expr.(fun e -> pos_to_runtime (pos e)) excs))
)
| ( ( Minus_int | Minus_rat | Minus_mon | Minus_dur | ToRat_int | ToRat_mon
| ToMoney_rat | Round_rat | Round_mon | Add_int_int | Add_rat_rat
| Add_mon_mon | Add_dat_dur _ | Add_dur_dur | Sub_int_int | Sub_rat_rat
| Sub_mon_mon | Sub_dat_dat | Sub_dat_dur | Sub_dur_dur | Mult_int_int
| Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Div_int_int | Div_rat_rat
| Div_mon_mon | Div_mon_rat | Div_dur_dur | Lt_int_int | Lt_rat_rat
| Lt_mon_mon | Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat
| Lte_mon_mon | Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat
| Gt_mon_mon | Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat
| Gte_mon_mon | Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat
| Eq_mon_mon | Eq_dat_dat | Eq_dur_dur | HandleDefault | HandleDefaultOpt
),
_ ) ->
err ()
(* /S\ dark magic here. This relies both on internals of [Lcalc.to_ocaml] *and*
of the OCaml runtime *)
let rec runtime_to_val :
type d e.
(decl_ctx ->
((d, e, _) interpr_kind, 'm) gexpr ->
((d, e, _) interpr_kind, 'm) gexpr) ->
decl_ctx ->
'm mark ->
typ ->
Obj.t ->
(((d, e, yes) interpr_kind as 'a), 'm) gexpr =
fun eval_expr ctx m ty o ->
let m = Expr.map_ty (fun _ -> ty) m in
match Mark.remove ty with
| TLit TBool -> ELit (LBool (Obj.obj o)), m
| TLit TUnit -> ELit LUnit, m
| TLit TInt -> ELit (LInt (Obj.obj o)), m
| TLit TRat -> ELit (LRat (Obj.obj o)), m
| TLit TMoney -> ELit (LMoney (Obj.obj o)), m
| TLit TDate -> ELit (LDate (Obj.obj o)), m
| TLit TDuration -> ELit (LDuration (Obj.obj o)), m
| TTuple ts ->
( ETuple
(List.map2
(runtime_to_val eval_expr ctx m)
ts
(Array.to_list (Obj.obj o))),
m )
| TStruct name ->
StructName.Map.find name ctx.ctx_structs
|> StructField.Map.to_seq
|> Seq.map2
(fun o (fld, ty) -> fld, runtime_to_val eval_expr ctx m ty o)
(Array.to_seq (Obj.obj o))
|> StructField.Map.of_seq
|> fun fields -> EStruct { name; fields }, m
| TEnum name ->
(* we only use non-constant constructors of arity 1, which allows us to
always use the tag directly (ordered as declared in the constr map), and
the field 0 *)
let cons_map = EnumName.Map.find name ctx.ctx_enums in
let cons, ty =
List.nth
(EnumConstructor.Map.bindings cons_map)
(Obj.tag o - Obj.first_non_constant_constructor_tag)
in
let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in
EInj { name; cons; e }, m
| TOption ty -> (
match Obj.tag o - Obj.first_non_constant_constructor_tag with
| 0 ->
let e =
runtime_to_val eval_expr ctx m (TLit TUnit, Pos.no_pos) (Obj.field o 0)
in
EInj { name = Expr.option_enum; cons = Expr.none_constr; e }, m
| 1 ->
let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in
EInj { name = Expr.option_enum; cons = Expr.some_constr; e }, m
| _ -> assert false)
| TClosureEnv ->
(* By construction, a closure environment can only be consumed from the same
scope where it was built (compiled or not) ; for this reason, we can
safely avoid converting in depth here *)
Obj.obj o, m
| TArray ty ->
( EArray
(List.map
(runtime_to_val eval_expr ctx m ty)
(Array.to_list (Obj.obj o))),
m )
| TArrow (targs, tret) -> ECustom { obj = o; targs; tret }, m
| TDefault ty -> runtime_to_val eval_expr ctx m ty o
| TAny -> assert false
and val_to_runtime :
type d e.
(decl_ctx ->
((d, e, _) interpr_kind, 'm) gexpr ->
((d, e, _) interpr_kind, 'm) gexpr) ->
decl_ctx ->
typ ->
((d, e, _) interpr_kind, 'm) gexpr ->
Obj.t =
fun eval_expr ctx ty v ->
match Mark.remove ty, Mark.remove v with
| _, EEmpty -> raise Runtime.Empty
| TLit TBool, ELit (LBool b) -> Obj.repr b
| TLit TUnit, ELit LUnit -> Obj.repr ()
| TLit TInt, ELit (LInt i) -> Obj.repr i
| TLit TRat, ELit (LRat r) -> Obj.repr r
| TLit TMoney, ELit (LMoney m) -> Obj.repr m
| TLit TDate, ELit (LDate t) -> Obj.repr t
| TLit TDuration, ELit (LDuration d) -> Obj.repr d
| TTuple ts, ETuple es ->
List.map2 (val_to_runtime eval_expr ctx) ts es |> Array.of_list |> Obj.repr
| TStruct name1, EStruct { name; fields } ->
assert (StructName.equal name name1);
let fld_tys = StructName.Map.find name ctx.ctx_structs in
Seq.map2
(fun (_, ty) (_, v) -> val_to_runtime eval_expr ctx ty v)
(StructField.Map.to_seq fld_tys)
(StructField.Map.to_seq fields)
|> Array.of_seq
|> Obj.repr
| TEnum name1, EInj { name; cons; e } ->
assert (EnumName.equal name name1);
let cons_map = EnumName.Map.find name ctx.ctx_enums in
let rec find_tag n = function
| [] -> assert false
| (c, ty) :: _ when EnumConstructor.equal c cons -> n, ty
| _ :: r -> find_tag (n + 1) r
in
let tag, ty =
find_tag Obj.first_non_constant_constructor_tag
(EnumConstructor.Map.bindings cons_map)
in
let field = val_to_runtime eval_expr ctx ty e in
let o = Obj.with_tag tag (Obj.repr (Some ())) in
Obj.set_field o 0 field;
o
| TOption ty, EInj { name; cons; e } ->
assert (EnumName.equal name Expr.option_enum);
let tag, ty =
(* None is before Some because the constructors have been defined in this
order in [expr.ml], and the ident maps preserve definition ordering *)
if EnumConstructor.equal cons Expr.none_constr then
Obj.first_non_constant_constructor_tag, (TLit TUnit, Pos.no_pos)
else if EnumConstructor.equal cons Expr.some_constr then
Obj.first_non_constant_constructor_tag + 1, ty
else assert false
in
let field = val_to_runtime eval_expr ctx ty e in
let o = Obj.with_tag tag (Obj.repr (Some ())) in
Obj.set_field o 0 field;
o
| TArray ty, EArray es ->
Array.of_list (List.map (val_to_runtime eval_expr ctx ty) es) |> Obj.repr
| TArrow (targs, tret), _ ->
let m = Mark.get v in
(* we want stg like [fun args -> val_to_runtime (eval_expr ctx (EApp (v,
args)))] but in curried form *)
let rec curry acc = function
| [] ->
let args = List.rev acc in
let tys = List.map (fun a -> Expr.maybe_ty (Mark.get a)) args in
val_to_runtime eval_expr ctx tret
(eval_expr ctx (EApp { f = v; args; tys }, m))
| targ :: targs ->
Obj.repr (fun x ->
curry (runtime_to_val eval_expr ctx m targ x :: acc) targs)
in
curry [] targs
| TDefault ty, _ -> val_to_runtime eval_expr ctx ty v
| TClosureEnv, v ->
(* By construction, a closure environment can only be consumed from the same
scope where it was built (compiled or not) ; for this reason, we can
safely avoid converting in depth here *)
Obj.repr v
| _ ->
Message.error ~internal:true
"Could not convert value of type %a@ to@ runtime:@ %a" (Print.typ ctx) ty
Expr.format v
let rec evaluate_expr :
type d e.
decl_ctx ->
Global.backend_lang ->
((d, e, yes) interpr_kind, 't) gexpr ->
((d, e, yes) interpr_kind, 't) gexpr =
fun ctx lang e ->
let m = Mark.get e in
let pos = Expr.mark_pos m in
match Mark.remove e with
| EVar _ ->
Message.error ~pos "%a" Format.pp_print_text
"free variable found at evaluation (should not happen if term was \
well-typed)"
| EExternal { name } ->
let path =
match Mark.remove name with
| External_value td -> TopdefName.path td
| External_scope s -> ScopeName.path s
in
let ty =
try
match Mark.remove name with
| External_value name -> TopdefName.Map.find name ctx.ctx_topdefs
| External_scope name ->
let scope_info = ScopeName.Map.find name ctx.ctx_scopes in
( TArrow
( [TStruct scope_info.in_struct_name, pos],
(TStruct scope_info.out_struct_name, pos) ),
pos )
with TopdefName.Map.Not_found _ | ScopeName.Map.Not_found _ ->
Message.error ~pos "Reference to %a@ could@ not@ be@ resolved"
Print.external_ref name
in
let runtime_path =
( List.map ModuleName.to_string path,
match Mark.remove name with
| External_value name -> Mark.remove (TopdefName.get_info name)
| External_scope name -> Mark.remove (ScopeName.get_info name) )
(* we have the guarantee that the two cases won't collide because they
have different capitalisation rules inherited from the input *)
in
let o = Runtime.lookup_value runtime_path in
runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m ty o
| EApp { f = e1; args; _ } -> (
let e1 = evaluate_expr ctx lang e1 in
let args = List.map (evaluate_expr ctx lang) args in
match Mark.remove e1 with
| EAbs { binder; _ } ->
if Bindlib.mbinder_arity binder = List.length args then
evaluate_expr ctx lang
(Bindlib.msubst binder (Array.of_list (List.map Mark.remove args)))
else
Message.error ~pos "wrong function call, expected %d arguments, got %d"
(Bindlib.mbinder_arity binder)
(List.length args)
| ECustom { obj; targs; tret } ->
(* Applies the arguments one by one to the curried form *)
let o =
List.fold_left2
(fun fobj targ arg ->
(Obj.obj fobj : Obj.t -> Obj.t)
(val_to_runtime (fun ctx -> evaluate_expr ctx lang) ctx targ arg))
obj targs args
in
runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m tret o
| _ ->
Message.error ~pos ~internal:true "%a" Format.pp_print_text
"function has not been reduced to a lambda at evaluation (should not \
happen if the term was well-typed")
| EAppOp { op; args; _ } ->
let args = List.map (evaluate_expr ctx lang) args in
evaluate_operator (evaluate_expr ctx lang) op m lang args
| EAbs _ | ELit _ | ECustom _ | EEmpty -> e (* these are values *)
| EStruct { fields = es; name } ->
let fields, es = List.split (StructField.Map.bindings es) in
let es = List.map (evaluate_expr ctx lang) es in
Mark.add m
(EStruct
{
fields =
StructField.Map.of_seq
(Seq.zip (List.to_seq fields) (List.to_seq es));
name;
})
| EStructAccess { e; name = s; field } -> (
let e = evaluate_expr ctx lang e in
match Mark.remove e with
| EStruct { fields = es; name } -> (
if not (StructName.equal s name) then
Message.error
~extra_pos:["", pos; "", Expr.pos e]
"%a" Format.pp_print_text
"Error during struct access: not the same structs (should not happen \
if the term was well-typed)";
match StructField.Map.find_opt field es with
| Some e' -> e'
| None ->
Message.error ~pos:(Expr.pos e)
"Invalid field access %a@ in@ struct@ %a@ (should not happen if the \
term was well-typed)"
StructField.format field StructName.format s)
| _ ->
Message.error ~pos:(Expr.pos e)
"The expression %a@ should@ be@ a@ struct@ %a@ but@ is@ not@ (should \
not happen if the term was well-typed)"
(Print.UserFacing.expr lang)
e StructName.format s)
| ETuple es -> Mark.add m (ETuple (List.map (evaluate_expr ctx lang) es))
| ETupleAccess { e = e1; index; size } -> (
match evaluate_expr ctx lang e1 with
| ETuple es, _ when List.length es = size -> List.nth es index
| e ->
Message.error ~pos:(Expr.pos e)
"The expression %a@ was@ expected@ to@ be@ a@ tuple@ of@ size@ %d@ \
(should not happen if the term was well-typed)"
(Print.UserFacing.expr lang)
e size)
| EInj { e; name; cons } ->
let e = evaluate_expr ctx lang e in
Mark.add m (EInj { e; name; cons })
| EMatch { e; cases; name } -> (
let e = evaluate_expr ctx lang e in
match Mark.remove e with
| EInj { e = e1; cons; name = name' } ->
if not (EnumName.equal name name') then
Message.error
~extra_pos:["", Expr.pos e; "", Expr.pos e1]
"%a" Format.pp_print_text
"Error during match: two different enums found (should not happen if \
the term was well-typed)";
let es_n =
match EnumConstructor.Map.find_opt cons cases with
| Some es_n -> es_n
| None ->
Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
"sum type index error (should not happen if the term was \
well-typed)"
in
let ty =
EnumConstructor.Map.find cons (EnumName.Map.find name ctx.ctx_enums)
in
let new_e = Mark.add m (EApp { f = es_n; args = [e1]; tys = [ty] }) in
evaluate_expr ctx lang new_e
| _ ->
Message.error ~pos:(Expr.pos e)
"Expected a term having a sum type as an argument to a match (should \
not happen if the term was well-typed")
| EIfThenElse { cond; etrue; efalse } -> (
let cond = evaluate_expr ctx lang cond in
match Mark.remove cond with
| ELit (LBool true) -> evaluate_expr ctx lang etrue
| ELit (LBool false) -> evaluate_expr ctx lang efalse
| _ ->
Message.error ~pos:(Expr.pos cond) "%a" Format.pp_print_text
"Expected a boolean literal for the result of this condition (should \
not happen if the term was well-typed)")
| EArray es ->
let es = List.map (evaluate_expr ctx lang) es in
Mark.add m (EArray es)
| EAssert e' -> (
let e = evaluate_expr ctx lang e' in
match Mark.remove e with
| ELit (LBool true) -> Mark.add m (ELit LUnit)
| ELit (LBool false) ->
Message.warning "Assertion failed:@ %a"
(Print.UserFacing.expr lang)
(partially_evaluate_expr_for_assertion_failure_message ctx lang
(Expr.skip_wrappers e'));
raise Runtime.(Error (AssertionFailed, [Expr.pos_to_runtime pos]))
| _ ->
Message.error ~pos:(Expr.pos e') "%a" Format.pp_print_text
"Expected a boolean literal for the result of this assertion (should \
not happen if the term was well-typed)")
| EFatalError err -> raise (Runtime.Error (err, [Expr.pos_to_runtime pos]))
| EErrorOnEmpty e' -> (
match evaluate_expr ctx lang e' with
| EEmpty, _ -> raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos]))
| exception Runtime.Empty ->
raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos]))
| e -> e)
| EDefault { excepts; just; cons } -> (
let excepts = List.map (evaluate_expr ctx lang) excepts in
let empty_count = List.length (List.filter is_empty_error excepts) in
match List.length excepts - empty_count with
| 0 -> (
let just = evaluate_expr ctx lang just in
match Mark.remove just with
| ELit (LBool true) -> evaluate_expr ctx lang cons
| ELit (LBool false) -> Mark.copy e EEmpty
| _ ->
Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
"Default justification has not been reduced to a boolean at \
evaluation (should not happen if the term was well-typed")
| 1 -> List.find (fun sub -> not (is_empty_error sub)) excepts
| _ ->
let poslist =
List.filter_map
(fun ex ->
if is_empty_error ex then None
else Some Expr.(pos_to_runtime (pos ex)))
excepts
in
raise Runtime.(Error (Conflict, poslist)))
| EPureDefault e -> evaluate_expr ctx lang e
| ERaiseEmpty -> raise Runtime.Empty
| ECatchEmpty { body; handler } -> (
try evaluate_expr ctx lang body
with Runtime.Empty -> evaluate_expr ctx lang handler)
| _ -> .
and partially_evaluate_expr_for_assertion_failure_message :
type d e.
decl_ctx ->
Global.backend_lang ->
((d, e, yes) interpr_kind, 't) gexpr ->
((d, e, yes) interpr_kind, 't) gexpr =
fun ctx lang e ->
(* Here we want to print an expression that explains why an assertion has
failed. Since assertions have type [bool] and are usually constructed with
comparisons and logical operators, we leave those unevaluated at the top of
the AST while evaluating everything below. This makes for a good error
message. *)
match Mark.remove e with
| EAppOp
{
args = [e1; e2];
tys;
op =
( ( And | Or | Xor | Eq | Lt_int_int | Lt_rat_rat | Lt_mon_mon
| Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat | Lte_mon_mon
| Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat | Gt_mon_mon
| Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat | Gte_mon_mon
| Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat | Eq_mon_mon
| Eq_dur_dur | Eq_dat_dat ),
_ ) as op;
} ->
( EAppOp
{
op;
tys;
args =
[
partially_evaluate_expr_for_assertion_failure_message ctx lang e1;
partially_evaluate_expr_for_assertion_failure_message ctx lang e2;
];
},
Mark.get e )
| _ -> evaluate_expr ctx lang e
let evaluate_expr_trace :
type d e.
decl_ctx ->
Global.backend_lang ->
((d, e, yes) interpr_kind, 't) gexpr ->
((d, e, yes) interpr_kind, 't) gexpr =
fun ctx lang e ->
Fun.protect
(fun () -> evaluate_expr ctx lang e)
~finally:(fun () ->
if Global.options.trace then
let trace = Runtime.retrieve_log () in
List.iter (print_log lang) trace
(* TODO: [Runtime.pp_events ~is_first_call:true Format.err_formatter
(Runtime.EventParser.parse_raw_events trace)] fais here, check why *))
let evaluate_expr_safe :
type d e.
decl_ctx ->
Global.backend_lang ->
((d, e, yes) interpr_kind, 't) gexpr ->
((d, e, yes) interpr_kind, 't) gexpr =
fun ctx lang e ->
try evaluate_expr_trace ctx lang e
with Runtime.Error (err, rpos) ->
Message.error
~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos)
"During evaluation: %a." Format.pp_print_text
(Runtime.error_message err)
(* Typing shenanigan to add custom terms to the AST type. *)
let addcustom e =
let rec f :
type c d e.
((d, e, c) interpr_kind, 't) gexpr ->
((d, e, yes) interpr_kind, 't) gexpr boxed = function
| (ECustom _, _) as e -> Expr.map ~f e
| EAppOp { op; tys; args }, m ->
Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m
| (EDefault _, _) as e -> Expr.map ~f e
| (EPureDefault _, _) as e -> Expr.map ~f e
| (EEmpty, _) as e -> Expr.map ~f e
| (EErrorOnEmpty _, _) as e -> Expr.map ~f e
| (ECatchEmpty _, _) as e -> Expr.map ~f e
| (ERaiseEmpty, _) as e -> Expr.map ~f e
| ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _
| EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _
| EInj _ | EStruct _ | EStructAccess _ | EMatch _ ),
_ ) as e ->
Expr.map ~f e
| _ -> .
in
let open struct
external id :
(('d, 'e, 'c) interpr_kind, 't) gexpr ->
(('d, 'e, yes) interpr_kind, 't) gexpr = "%identity"
end in
if false then Expr.unbox (f e)
(* We keep the implementation as a typing proof, but bypass the AST
traversal for performance. Note that it's not completely 1-1 since the
traversal would do a reboxing of all bound variables *)
else id e
let delcustom e =
let rec f :
type c d e.
((d, e, c) interpr_kind, 't) gexpr ->
((d, e, no) interpr_kind, 't) gexpr boxed = function
| ECustom _, _ -> invalid_arg "Custom term remaining in evaluated term"
| EAppOp { op; args; tys }, m ->
Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m
| (EDefault _, _) as e -> Expr.map ~f e
| (EPureDefault _, _) as e -> Expr.map ~f e
| (EEmpty, _) as e -> Expr.map ~f e
| (EErrorOnEmpty _, _) as e -> Expr.map ~f e
| (ECatchEmpty _, _) as e -> Expr.map ~f e
| (ERaiseEmpty, _) as e -> Expr.map ~f e
| ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _
| EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _
| EInj _ | EStruct _ | EStructAccess _ | EMatch _ ),
_ ) as e ->
Expr.map ~f e
| _ -> .
in
(* /!\ don't be tempted to use the same trick here, the function does one
thing: validate at runtime that the term does not contain [ECustom]
nodes. *)
Expr.unbox (f e)
let interpret_program_lcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list
=
let e = Expr.unbox @@ Program.to_expr p s in
let ctx = p.decl_ctx in
match evaluate_expr_safe ctx p.lang (addcustom e) with
| (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin
(* At this point, the interpreter seeks to execute the scope but does not
have a way to retrieve input values from the command line. [taus] contain
the types of the scope arguments. For [context] arguments, we can provide
an empty thunked term. But for [input] arguments of another type, we
cannot provide anything so we have to fail. *)
let taus = StructName.Map.find s_in ctx.ctx_structs in
let application_term =
let pos = Expr.mark_pos mark_e in
StructField.Map.map
(fun ty ->
match Mark.remove ty with
| TArrow (ty_in, (TOption _, _)) ->
(* Context args may return an option if avoid_exceptions is on *)
Expr.make_abs
(Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
(Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr
~name:Expr.option_enum mark_e
: (_, _) boxed_gexpr)
ty_in pos
| TArrow (ty_in, ty_out) ->
(* Or a default term (translated into a plain one if it is off) *)
(* Note: this might catch non-context args, but since the
compilation to lcalc strips the default around [ty_out] we can't
tell with just this info. *)
Expr.make_abs
(Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
(Expr.eraiseempty (Expr.with_ty mark_e ty_out))
ty_in (Expr.mark_pos mark_e)
| TTuple ((TArrow (ty_in, (TOption _, _)), _) :: _) ->
(* ... or a closure if closure conversion is enabled *)
Expr.make_tuple
[
Expr.make_abs
(Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
(Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr
~name:Expr.option_enum mark_e)
ty_in (Expr.mark_pos mark_e);
Expr.eappop
~op:(Operator.ToClosureEnv, pos)
~args:[Expr.etuple [] mark_e]
~tys:[TClosureEnv, pos]
mark_e;
]
mark_e
| _ ->
Message.error ~pos:(Mark.get ty)
"This scope needs an input argument of type@ %a@ %a"
Print.typ_debug ty Format.pp_print_text
"to be executed. But the Catala built-in interpreter does not \
have a way to retrieve input values from the command line, so \
it cannot execute this scope. Please create another scope that \
provides the input arguments to this one and execute it \
instead.")
taus
in
let to_interpret =
Expr.make_app (Expr.box e)
[
Expr.estruct ~name:s_in ~fields:application_term
(Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e);
]
[TStruct s_in, Expr.pos e]
(Expr.pos e)
in
match
Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret))
with
| EStruct { fields; _ } ->
List.map
(fun (fld, e) -> StructField.get_info fld, e)
(StructField.Map.bindings fields)
| exception Runtime.Error (err, rpos) ->
Message.error
~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos)
"%a" Format.pp_print_text
(Runtime.error_message err)
| _ ->
Message.error ~pos:(Expr.pos e) ~internal:true "%a" Format.pp_print_text
"The interpretation of the program doesn't yield a struct \
corresponding to the scope variables"
end
| _ ->
Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
"The interpreter can only interpret terms starting with functions having \
thunked arguments"
(** {1 API} *)
let interpret_program_dcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list
=
let ctx = p.decl_ctx in
let e = Expr.unbox (Program.to_expr p s) in
match evaluate_expr_safe p.decl_ctx p.lang (addcustom e) with
| (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin
(* At this point, the interpreter seeks to execute the scope but does not
have a way to retrieve input values from the command line. [taus] contain
the types of the scope arguments. For [context] arguments, we can provide
an empty thunked term. But for [input] arguments of another type, we
cannot provide anything so we have to fail. *)
let taus = StructName.Map.find s_in ctx.ctx_structs in
let application_term =
StructField.Map.map
(fun ty ->
match Mark.remove ty with
| TArrow (ty_in, ty_out) ->
Expr.make_abs
(Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
(Bindlib.box EEmpty, Expr.with_ty mark_e ty_out)
ty_in (Expr.mark_pos mark_e)
| _ ->
Message.error ~pos:(Mark.get ty) "%a" Format.pp_print_text
"This scope needs input arguments to be executed. But the Catala \
built-in interpreter does not have a way to retrieve input \
values from the command line, so it cannot execute this scope. \
Please create another scope that provides the input arguments \
to this one and execute it instead.")
taus
in
let to_interpret =
Expr.make_app (Expr.box e)
[
Expr.estruct ~name:s_in ~fields:application_term
(Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e);
]
[TStruct s_in, Expr.pos e]
(Expr.pos e)
in
match
Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret))
with
| EStruct { fields; _ } ->
List.map
(fun (fld, e) -> StructField.get_info fld, e)
(StructField.Map.bindings fields)
| _ ->
Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
"The interpretation of a program should always yield a struct \
corresponding to the scope variables"
end
| _ ->
Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
"The interpreter can only interpret terms starting with functions having \
thunked arguments"
(* Evaluation may introduce intermediate custom terms ([ECustom], pointers to
external functions), straying away from the DCalc and LCalc ASTS. [addcustom]
and [delcustom] are needed to expand and shrink the type of the terms to
reflect that. *)
let evaluate_expr ctx lang e = evaluate_expr ctx lang (addcustom e)
let load_runtime_modules ~hashf prg =
let load (mname, intf_id) =
let hash = hashf intf_id.hash in
let expect_hash =
if intf_id.is_external then Hash.external_placeholder
else Hash.to_string hash
in
let obj_file =
Dynlink.adapt_filename
File.(Pos.get_file (Mark.get (ModuleName.get_info mname)) -.- "cmo")
in
(if not (Sys.file_exists obj_file) then
Message.error
~pos_msg:(fun ppf -> Format.pp_print_string ppf "Module defined here")
~pos:(Mark.get (ModuleName.get_info mname))
"Compiled OCaml object %a@ not@ found.@ Make sure it has been \
suitably compiled."
File.format obj_file
else
try Dynlink.loadfile obj_file
with Dynlink.Error dl_err ->
Message.error
"While loading compiled module from %a:@;<1 2>@[<hov>%a@]"
File.format obj_file Format.pp_print_text
(Dynlink.error_message dl_err));
match Runtime.check_module (ModuleName.to_string mname) expect_hash with
| Ok () -> ()
| Error bad_hash ->
Message.debug
"Module hash mismatch for %a:@ @[<v>Expected: %a@,Found: %a@]"
ModuleName.format mname Hash.format hash
(fun ppf h ->
try Hash.format ppf (Hash.of_string h)
with Failure _ ->
if h = Hash.external_placeholder then
Format.fprintf ppf "@{<cyan>%s@}" Hash.external_placeholder
else Format.fprintf ppf "@{<red><invalid>@}")
bad_hash;
Message.error
"Module %a@ needs@ recompiling:@ %a@ was@ likely@ compiled@ from@ an@ \
older@ version@ or@ with@ incompatible@ flags."
ModuleName.format mname File.format obj_file
| exception Not_found ->
Message.error
"Module %a@ was loaded from file %a but did not register properly, \
there is something wrong in its code."
ModuleName.format mname File.format obj_file
in
let modules_list_topo = Program.modules_to_list prg.decl_ctx.ctx_modules in
if modules_list_topo <> [] then
Message.debug "Loading shared modules... %a"
(Format.pp_print_list ~pp_sep:Format.pp_print_space ModuleName.format)
(List.map (fun (m, _) -> m) modules_list_topo);
List.iter load modules_list_topo