catala/compiler/lcalc/compile_without_exceptions.ml
Louis Gesbert 870716a3f8 Factorise a bit more with more arguments to Expr.map
allowing a safer way to translate types both in expressions and annotations, and
clarifying the code of the dcalc->lcalc translation
2024-02-05 16:28:56 +01:00

183 lines
6.6 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
module D = Dcalc.Ast
module A = Ast
(** We make use of the strong invriants on the structure of programs:
Defaultable values can only appear in certin positions. This information is
given by the type structure of expressions. In particular this mean we don't
need to use the monadic bind while computing arithmetic opertions or
function calls. The resulting function is not more difficult than what we
had when translating without exceptions.
The typing translation is to simply trnsform defult type into option types. *)
let rec translate_typ (tau : typ) : typ =
Mark.copy tau
begin
match Mark.remove tau with
| TDefault t -> TOption (translate_typ t)
| TLit l -> TLit l
| TTuple ts -> TTuple (List.map translate_typ ts)
| TStruct s -> TStruct s
| TEnum en -> TEnum en
| TOption _ ->
Message.raise_internal_error
"The types option should not appear before the dcalc -> lcalc \
translation step."
| TClosureEnv ->
Message.raise_internal_error
"The types closure_env should not appear before the dcalc -> lcalc \
translation step."
| TAny -> TAny
| TArray ts -> TArray (translate_typ ts)
| TArrow (t1, t2) -> TArrow (List.map translate_typ t1, translate_typ t2)
end
let translate_mark m = Expr.map_ty translate_typ m
let rec translate_default
(exceptions : 'm D.expr list)
(just : 'm D.expr)
(cons : 'm D.expr)
(mark_default : 'm mark) : 'm A.expr boxed =
(* Since the program is well typed, all exceptions have as type [option 't] *)
let pos = Expr.mark_pos mark_default in
let exceptions = List.map translate_expr exceptions in
let exceptions_and_cons_ty = Expr.maybe_ty mark_default in
Expr.eappop ~op:Op.HandleDefaultOpt
~tys:
[
TArray exceptions_and_cons_ty, pos;
TArrow ([TLit TUnit, pos], (TLit TBool, pos)), pos;
TArrow ([TLit TUnit, pos], exceptions_and_cons_ty), pos;
]
~args:
[
Expr.earray exceptions
(Expr.map_ty (fun ty -> TArray ty, pos) mark_default);
(* In call-by-value programming languages, as lcalc, arguments are
evalulated before calling the function. Since we don't want to
execute the justification and conclusion while before checking every
exceptions, we need to thunk them. *)
Expr.thunk_term (translate_expr just);
Expr.thunk_term (translate_expr cons);
]
mark_default
and translate_expr (e : 'm D.expr) : 'm A.expr boxed =
match e with
| EEmptyError, m ->
let m = translate_mark m in
let pos = Expr.mark_pos m in
Expr.einj
~e:(Expr.elit LUnit (Expr.with_ty m (TLit TUnit, pos)))
~cons:Expr.none_constr ~name:Expr.option_enum m
| EErrorOnEmpty arg, m ->
let m = translate_mark m in
let pos = Expr.mark_pos m in
let cases =
EnumConstructor.Map.of_list
[
( Expr.none_constr,
let x = Var.make "_" in
Expr.make_abs [| x |]
(Expr.eraise NoValueProvided m)
[TAny, pos]
pos );
(* | None x -> raise NoValueProvided *)
Expr.some_constr, Expr.fun_id ~var_name:"arg" m (* | Some x -> x *);
]
in
Expr.ematch ~e:(translate_expr arg) ~name:Expr.option_enum ~cases m
| EDefault { excepts; just; cons }, m ->
translate_default excepts just cons (translate_mark m)
| EPureDefault e, m ->
Expr.einj ~e:(translate_expr e) ~cons:Expr.some_constr
~name:Expr.option_enum (translate_mark m)
| EAppOp { op; tys; args }, m ->
Expr.eappop ~op:(Operator.translate op)
~tys:(List.map translate_typ tys)
~args:(List.map translate_expr args)
(translate_mark m)
| ( ( ELit _ | EArray _ | EVar _ | EApp _ | EAbs _ | EExternal _
| EIfThenElse _ | ETuple _ | ETupleAccess _ | EInj _ | EAssert _
| EStruct _ | EStructAccess _ | EMatch _ ),
_ ) as e ->
Expr.map ~f:translate_expr ~typ:translate_typ e
| _ -> .
let translate_scope_body_expr
(scope_body_expr : (dcalc, 'm) gexpr scope_body_expr) :
(lcalc, 'm) gexpr scope_body_expr Bindlib.box =
Scope.fold_right_lets
~f:(fun scope_let var_next acc ->
Bindlib.box_apply2
(fun scope_let_next scope_let_expr ->
ScopeLet
{
scope_let with
scope_let_next;
scope_let_expr;
scope_let_typ = translate_typ scope_let.scope_let_typ;
})
(Bindlib.bind_var (Var.translate var_next) acc)
(Expr.Box.lift (translate_expr scope_let.scope_let_expr)))
~init:(fun res ->
Bindlib.box_apply
(fun res -> Result res)
(Expr.Box.lift (translate_expr res)))
scope_body_expr
let translate_code_items scopes =
let f = function
| ScopeDef (name, body) ->
let scope_input_var, scope_lets = Bindlib.unbind body.scope_body_expr in
let new_body_expr = translate_scope_body_expr scope_lets in
let new_body_expr =
Bindlib.bind_var (Var.translate scope_input_var) new_body_expr
in
Bindlib.box_apply
(fun scope_body_expr -> ScopeDef (name, { body with scope_body_expr }))
new_body_expr
| Topdef (name, typ, expr) ->
Bindlib.box_apply
(fun e -> Topdef (name, typ, e))
(Expr.Box.lift (translate_expr expr))
in
Scope.map ~f ~varf:Var.translate scopes
let translate_program (prg : 'm D.program) : 'm A.program =
let code_items = Bindlib.unbox (translate_code_items prg.code_items) in
let ctx_enums =
EnumName.Map.map
(EnumConstructor.Map.map translate_typ)
prg.decl_ctx.ctx_enums
in
let ctx_structs =
StructName.Map.map
(StructField.Map.map translate_typ)
prg.decl_ctx.ctx_structs
in
{
prg with
code_items;
decl_ctx = { prg.decl_ctx with ctx_enums; ctx_structs };
}