catala/compiler/lcalc/compile_without_exceptions.ml
Louis Gesbert 9d07015864 Unify runtime error handling
- Clearly distinguish Exceptions from Errors. The only catchable exception
  available in our AST is `EmptyError`, so the corresponding nodes are made less
  generic, and a node `FatalError` is added

- Runtime errors are defined as a specific type in the OCaml runtime, with a
  carrier exception and printing functions. These are used throughout, and
  consistently by the interpreter. They always carry a position, that can be
  converted to be printed with the fancy compiler location printer, or in a
  simpler way from the backends.

- All operators that might be subject to an error take a position as argument,
  in order to print an informative message without relying on backtraces from
  the backend
2024-04-26 18:31:26 +02:00

126 lines
4.9 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
module D = Dcalc.Ast
module A = Ast
(** We make use of the strong invriants on the structure of programs:
Defaultable values can only appear in certin positions. This information is
given by the type structure of expressions. In particular this mean we don't
need to use the monadic bind while computing arithmetic opertions or
function calls. The resulting function is not more difficult than what we
had when translating without exceptions.
The typing translation is to simply trnsform default type into option types. *)
let rec translate_typ (tau : typ) : typ =
Mark.copy tau
begin
match Mark.remove tau with
| TDefault t -> TOption (translate_typ t)
| TLit l -> TLit l
| TTuple ts -> TTuple (List.map translate_typ ts)
| TStruct s -> TStruct s
| TEnum en -> TEnum en
| TOption _ ->
Message.error ~internal:true
"The types option should not appear before the dcalc -> lcalc \
translation step."
| TClosureEnv ->
Message.error ~internal:true
"The types closure_env should not appear before the dcalc -> lcalc \
translation step."
| TAny -> TAny
| TArray ts -> TArray (translate_typ ts)
| TArrow (t1, t2) -> TArrow (List.map translate_typ t1, translate_typ t2)
end
let translate_mark m = Expr.map_ty translate_typ m
let rec translate_default
(exceptions : 'm D.expr list)
(just : 'm D.expr)
(cons : 'm D.expr)
(mark_default : 'm mark) : 'm A.expr boxed =
(* Since the program is well typed, all exceptions have as type [option 't] *)
let pos = Expr.mark_pos mark_default in
let exceptions = List.map translate_expr exceptions in
let exceptions_and_cons_ty = Expr.maybe_ty mark_default in
Expr.eappop ~op:Op.HandleDefaultOpt
~tys:
[
TArray exceptions_and_cons_ty, pos;
TArrow ([TLit TUnit, pos], (TLit TBool, pos)), pos;
TArrow ([TLit TUnit, pos], exceptions_and_cons_ty), pos;
]
~args:
[
Expr.earray exceptions
(Expr.map_ty (fun ty -> TArray ty, pos) mark_default);
(* In call-by-value programming languages, as lcalc, arguments are
evalulated before calling the function. Since we don't want to
execute the justification and conclusion while before checking every
exceptions, we need to thunk them. *)
Expr.thunk_term (translate_expr just);
Expr.thunk_term (translate_expr cons);
]
mark_default
and translate_expr (e : 'm D.expr) : 'm A.expr boxed =
match e with
| EEmpty, m ->
let m = translate_mark m in
let pos = Expr.mark_pos m in
Expr.einj
~e:(Expr.elit LUnit (Expr.with_ty m (TLit TUnit, pos)))
~cons:Expr.none_constr ~name:Expr.option_enum m
| EErrorOnEmpty arg, m ->
let m = translate_mark m in
let pos = Expr.mark_pos m in
let cases =
EnumConstructor.Map.of_list
[
( Expr.none_constr,
let x = Var.make "_" in
Expr.make_abs [| x |] (Expr.efatalerror NoValue m) [TAny, pos] pos
);
(* | None x -> raise NoValueProvided *)
Expr.some_constr, Expr.fun_id ~var_name:"arg" m (* | Some x -> x *);
]
in
Expr.ematch ~e:(translate_expr arg) ~name:Expr.option_enum ~cases m
| EDefault { excepts; just; cons }, m ->
translate_default excepts just cons (translate_mark m)
| EPureDefault e, m ->
Expr.einj ~e:(translate_expr e) ~cons:Expr.some_constr
~name:Expr.option_enum (translate_mark m)
| EAppOp { op; tys; args }, m ->
Expr.eappop ~op:(Operator.translate op)
~tys:(List.map translate_typ tys)
~args:(List.map translate_expr args)
(translate_mark m)
| ( ( ELit _ | EArray _ | EVar _ | EApp _ | EAbs _ | EExternal _
| EIfThenElse _ | ETuple _ | ETupleAccess _ | EInj _ | EAssert _
| EFatalError _ | EStruct _ | EStructAccess _ | EMatch _ ),
_ ) as e ->
Expr.map ~f:translate_expr ~typ:translate_typ e
| _ -> .
let translate_program (prg : 'm D.program) : 'm A.program =
Program.map_exprs prg ~typ:translate_typ ~varf:Var.translate ~f:translate_expr