catala/compiler/verification/conditions.ml
Louis Gesbert ae2801be6d Move mode handling code from dcalc to shared_ast
Handling code should now be reasonably well sorted between `Shared_ast.{Var,Expr,Scope,Program}`

The function parameters (e.g. `make_let_in`) could be removed from the
scope handling functions since now the types are compatible, which
makes them much easier to read.
2022-08-22 19:28:27 +02:00

433 lines
16 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2022 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët
<alain.delaet--tixeuil@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Utils
open Shared_ast
open Dcalc
open Ast
(** {1 Helpers and type definitions}*)
type vc_return = typed marked_expr * (typed expr, typ Marked.pos) Var.Map.t
(** The return type of VC generators is the VC expression plus the types of any
locally free variable inside that expression. *)
type ctx = {
current_scope_name : ScopeName.t;
decl : decl_ctx;
input_vars : typed expr Var.t list;
scope_variables_typs : (typed expr, typ Marked.pos) Var.Map.t;
}
let conjunction (args : vc_return list) (mark : typed mark) : vc_return =
let acc, list =
match args with
| hd :: tl -> hd, tl
| [] -> ((ELit (LBool true), mark), Var.Map.empty), []
in
List.fold_left
(fun (acc, acc_ty) (arg, arg_ty) ->
( (EApp ((EOp (Binop And), mark), [arg; acc]), mark),
Var.Map.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty
))
acc list
let negation ((arg, arg_ty) : vc_return) (mark : typed mark) : vc_return =
(EApp ((EOp (Unop Not), mark), [arg]), mark), arg_ty
let disjunction (args : vc_return list) (mark : typed mark) : vc_return =
let acc, list =
match args with
| hd :: tl -> hd, tl
| [] -> ((ELit (LBool false), mark), Var.Map.empty), []
in
List.fold_left
(fun ((acc, acc_ty) : vc_return) (arg, arg_ty) ->
( (EApp ((EOp (Binop Or), mark), [arg; acc]), mark),
Var.Map.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty
))
acc list
(** [half_product \[a1,...,an\] \[b1,...,bm\] returns \[(a1,b1),...(a1,bn),...(an,b1),...(an,bm)\]] *)
let half_product (l1 : 'a list) (l2 : 'b list) : ('a * 'b) list =
l1
|> List.mapi (fun i ei ->
List.filteri (fun j _ -> i < j) l2 |> List.map (fun ej -> ei, ej))
|> List.concat
(** This code skims through the topmost layers of the terms like this:
[log (error_on_empty < reentrant_variable () | true :- e1 >)] for scope
variables, or [fun () -> e1] for subscope variables. But what we really want
to analyze is only [e1], so we match this outermost structure explicitely
and have a clean verification condition generator that only runs on [e1] *)
let match_and_ignore_outer_reentrant_default (ctx : ctx) (e : typed marked_expr)
: typed marked_expr =
match Marked.unmark e with
| ErrorOnEmpty
( EDefault
( [(EApp ((EVar x, _), [(ELit LUnit, _)]), _)],
(ELit (LBool true), _),
cons ),
_ )
when List.exists (fun x' -> Var.eq x x') ctx.input_vars ->
(* scope variables*)
cons
| EAbs (binder, [(TLit TUnit, _)]) ->
(* context sub-scope variables *)
let _, body = Bindlib.unmbind binder in
body
| ErrorOnEmpty d ->
d (* input subscope variables and non-input scope variable *)
| _ ->
Errors.raise_spanned_error (Expr.pos e)
"Internal error: this expression does not have the structure expected by \
the VC generator:\n\
%a"
(Print.format_expr ~debug:true ctx.decl)
e
(** {1 Verification conditions generator}*)
(** [generate_vc_must_not_return_empty e] returns the dcalc boolean expression
[b] such that if [b] is true, then [e] will never return an empty error. It
also returns a map of all the types of locally free variables inside the
expression. *)
let rec generate_vc_must_not_return_empty (ctx : ctx) (e : typed marked_expr) :
vc_return =
let out =
match Marked.unmark e with
| ETuple (args, _) | EArray args ->
conjunction
(List.map (generate_vc_must_not_return_empty ctx) args)
(Marked.get_mark e)
| EMatch (arg, arms, _) ->
conjunction
(List.map (generate_vc_must_not_return_empty ctx) (arg :: arms))
(Marked.get_mark e)
| ETupleAccess (e1, _, _, _)
| EInj (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1 ->
(generate_vc_must_not_return_empty ctx) e1
| EAbs (binder, typs) ->
(* Hot take: for a function never to return an empty error when called, it has to do
so whatever its input. So we universally quantify over the variable of the function
when inspecting the body, resulting in simply traversing through in the code here. *)
let vars, body = Bindlib.unmbind binder in
let vc_body_expr, vc_body_ty =
(generate_vc_must_not_return_empty ctx) body
in
( vc_body_expr,
List.fold_left
(fun acc (var, ty) -> Var.Map.add var ty acc)
vc_body_ty
(List.map2 (fun x y -> x, y) (Array.to_list vars) typs) )
| EApp (f, args) ->
(* We assume here that function calls never return empty error, which implies
all functions have been checked never to return empty errors. *)
conjunction
(List.map (generate_vc_must_not_return_empty ctx) (f :: args))
(Marked.get_mark e)
| EIfThenElse (e1, e2, e3) ->
let e1_vc, vc_typ1 = generate_vc_must_not_return_empty ctx e1 in
let e2_vc, vc_typ2 = generate_vc_must_not_return_empty ctx e2 in
let e3_vc, vc_typ3 = generate_vc_must_not_return_empty ctx e3 in
conjunction
[
e1_vc, vc_typ1;
( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e),
Var.Map.union
(fun _ _ _ -> failwith "should not happen")
vc_typ2 vc_typ3 );
]
(Marked.get_mark e)
| ELit LEmptyError ->
Marked.same_mark_as (ELit (LBool false)) e, Var.Map.empty
| EVar _
(* Per default calculus semantics, you cannot call a function with an argument
that evaluates to the empty error. Thus, all variable evaluate to non-empty-error terms. *)
| ELit _ | EOp _ ->
Marked.same_mark_as (ELit (LBool true)) e, Var.Map.empty
| EDefault (exceptions, just, cons) ->
(* <e1 ... en | ejust :- econs > never returns empty if and only if:
- first we look if e1 .. en ejust can return empty;
- if no, we check that if ejust is true, whether econs can return empty.
*)
disjunction
(List.map (generate_vc_must_not_return_empty ctx) exceptions
@ [
conjunction
[
generate_vc_must_not_return_empty ctx just;
(let vc_just_expr, vc_just_ty =
generate_vc_must_not_return_empty ctx cons
in
( ( EIfThenElse
( just,
(* Comment from Alain: the justification is not checked for holding an default term.
In such cases, we need to encode the logic of the default terms within
the generation of the verification condition (Z3encoding.translate_expr).
Answer from Denis: Normally, there is a structural invariant from the
surface language to intermediate representation translation preventing
any default terms to appear in justifications.*)
vc_just_expr,
(ELit (LBool false), Marked.get_mark e) ),
Marked.get_mark e ),
vc_just_ty ));
]
(Marked.get_mark e);
])
(Marked.get_mark e)
in
out
[@@ocamlformat "wrap-comments=false"]
(** [generate_vs_must_not_return_confict e] returns the dcalc boolean expression
[b] such that if [b] is true, then [e] will never return a conflict error.
It also returns a map of all the types of locally free variables inside the
expression. *)
let rec generate_vs_must_not_return_confict (ctx : ctx) (e : typed marked_expr)
: vc_return =
let out =
(* See the code of [generate_vc_must_not_return_empty] for a list of invariants on which this
function relies on. *)
match Marked.unmark e with
| ETuple (args, _) | EArray args ->
conjunction
(List.map (generate_vs_must_not_return_confict ctx) args)
(Marked.get_mark e)
| EMatch (arg, arms, _) ->
conjunction
(List.map (generate_vs_must_not_return_confict ctx) (arg :: arms))
(Marked.get_mark e)
| ETupleAccess (e1, _, _, _)
| EInj (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1 ->
generate_vs_must_not_return_confict ctx e1
| EAbs (binder, typs) ->
let vars, body = Bindlib.unmbind binder in
let vc_body_expr, vc_body_ty =
(generate_vs_must_not_return_confict ctx) body
in
( vc_body_expr,
List.fold_left
(fun acc (var, ty) -> Var.Map.add var ty acc)
vc_body_ty
(List.map2 (fun x y -> x, y) (Array.to_list vars) typs) )
| EApp (f, args) ->
conjunction
(List.map (generate_vs_must_not_return_confict ctx) (f :: args))
(Marked.get_mark e)
| EIfThenElse (e1, e2, e3) ->
let e1_vc, vc_typ1 = generate_vs_must_not_return_confict ctx e1 in
let e2_vc, vc_typ2 = generate_vs_must_not_return_confict ctx e2 in
let e3_vc, vc_typ3 = generate_vs_must_not_return_confict ctx e3 in
conjunction
[
e1_vc, vc_typ1;
( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e),
Var.Map.union
(fun _ _ _ -> failwith "should not happen")
vc_typ2 vc_typ3 );
]
(Marked.get_mark e)
| EVar _ | ELit _ | EOp _ ->
Marked.same_mark_as (ELit (LBool true)) e, Var.Map.empty
| EDefault (exceptions, just, cons) ->
(* <e1 ... en | ejust :- econs > never returns conflict if and only if:
- neither e1 nor ... nor en nor ejust nor econs return conflict
- there is no two differents ei ej that are not empty. *)
let quadratic =
negation
(disjunction
(List.map
(fun (e1, e2) ->
conjunction
[
generate_vc_must_not_return_empty ctx e1;
generate_vc_must_not_return_empty ctx e2;
]
(Marked.get_mark e))
(half_product exceptions exceptions))
(Marked.get_mark e))
(Marked.get_mark e)
in
let others =
List.map
(generate_vs_must_not_return_confict ctx)
(just :: cons :: exceptions)
in
let out = conjunction (quadratic :: others) (Marked.get_mark e) in
out
in
out
[@@ocamlformat "wrap-comments=false"]
(** {1 Interface}*)
type verification_condition_kind = NoEmptyError | NoOverlappingExceptions
type verification_condition = {
vc_guard : typed marked_expr;
(* should have type bool *)
vc_kind : verification_condition_kind;
vc_scope : ScopeName.t;
vc_variable : typed expr Var.t Marked.pos;
vc_free_vars_typ : (typed expr, typ Marked.pos) Var.Map.t;
}
let rec generate_verification_conditions_scope_body_expr
(ctx : ctx)
(scope_body_expr : 'm expr scope_body_expr) :
ctx * verification_condition list =
match scope_body_expr with
| Result _ -> ctx, []
| ScopeLet scope_let ->
let scope_let_var, scope_let_next =
Bindlib.unbind scope_let.scope_let_next
in
let new_ctx, vc_list =
match scope_let.scope_let_kind with
| DestructuringInputStruct ->
{ ctx with input_vars = scope_let_var :: ctx.input_vars }, []
| ScopeVarDefinition | SubScopeVarDefinition ->
(* For scope variables, we should check both that they never evaluate to
emptyError nor conflictError. But for subscope variable definitions,
what we're really doing is adding exceptions to something defined in
the subscope so we just ought to verify only that the exceptions
overlap. *)
let e =
Bindlib.unbox (Expr.remove_logging_calls scope_let.scope_let_expr)
in
let e = match_and_ignore_outer_reentrant_default ctx e in
let vc_confl, vc_confl_typs =
generate_vs_must_not_return_confict ctx e
in
let vc_confl =
if !Cli.optimize_flag then
Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_confl)
else vc_confl
in
let vc_list =
[
{
vc_guard = Marked.same_mark_as (Marked.unmark vc_confl) e;
vc_kind = NoOverlappingExceptions;
vc_free_vars_typ =
Var.Map.union
(fun _ _ -> failwith "should not happen")
ctx.scope_variables_typs vc_confl_typs;
vc_scope = ctx.current_scope_name;
vc_variable = scope_let_var, scope_let.scope_let_pos;
};
]
in
let vc_list =
match scope_let.scope_let_kind with
| ScopeVarDefinition ->
let vc_empty, vc_empty_typs =
generate_vc_must_not_return_empty ctx e
in
let vc_empty =
if !Cli.optimize_flag then
Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_empty)
else vc_empty
in
{
vc_guard = Marked.same_mark_as (Marked.unmark vc_empty) e;
vc_kind = NoEmptyError;
vc_free_vars_typ =
Var.Map.union
(fun _ _ -> failwith "should not happen")
ctx.scope_variables_typs vc_empty_typs;
vc_scope = ctx.current_scope_name;
vc_variable = scope_let_var, scope_let.scope_let_pos;
}
:: vc_list
| _ -> vc_list
in
ctx, vc_list
| _ -> ctx, []
in
let new_ctx, new_vcs =
generate_verification_conditions_scope_body_expr
{
new_ctx with
scope_variables_typs =
Var.Map.add scope_let_var scope_let.scope_let_typ
new_ctx.scope_variables_typs;
}
scope_let_next
in
new_ctx, vc_list @ new_vcs
let rec generate_verification_conditions_scopes
(decl_ctx : decl_ctx)
(scopes : 'm expr scopes)
(s : ScopeName.t option) : verification_condition list =
match scopes with
| Nil -> []
| ScopeDef scope_def ->
let is_selected_scope =
match s with
| Some s when ScopeName.compare s scope_def.scope_name = 0 -> true
| None -> true
| _ -> false
in
let vcs =
if is_selected_scope then
let _scope_input_var, scope_body_expr =
Bindlib.unbind scope_def.scope_body.scope_body_expr
in
let ctx =
{
current_scope_name = scope_def.scope_name;
decl = decl_ctx;
input_vars = [];
scope_variables_typs =
Var.Map.empty
(* We don't need to add the typ of the scope input var here
because it will never appear in an expression for which we
generate a verification conditions (the big struct is
destructured with a series of let bindings just after. )*);
}
in
let _, vcs =
generate_verification_conditions_scope_body_expr ctx scope_body_expr
in
vcs
else []
in
let _scope_var, next = Bindlib.unbind scope_def.scope_next in
generate_verification_conditions_scopes decl_ctx next s @ vcs
let generate_verification_conditions (p : 'm program) (s : ScopeName.t option) :
verification_condition list =
let vcs = generate_verification_conditions_scopes p.decl_ctx p.scopes s in
(* We sort this list by scope name and then variable name to ensure consistent
output for testing*)
List.sort
(fun vc1 vc2 ->
let to_str vc =
Format.asprintf "%s.%s"
(Format.asprintf "%a" ScopeName.format_t vc.vc_scope)
(Bindlib.name_of (Marked.unmark vc.vc_variable))
in
String.compare (to_str vc1) (to_str vc2))
vcs