catala/compiler/shared_ast/definitions.ml
2024-01-26 11:22:12 +01:00

704 lines
22 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020-2022 Inria,
contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil
<alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
(** This module defines generic types for types, literals and expressions shared
through several of the different ASTs. *)
(* Doesn't define values, so OK to have without an mli *)
open Catala_utils
module Runtime = Runtime_ocaml.Runtime
module ModuleName = Uid.Module
module ScopeName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 hi_magenta))
end)
()
module TopdefName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 hi_green))
end)
()
module StructName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 cyan))
end)
()
module StructField =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 magenta))
end)
()
module EnumName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 cyan))
end)
()
module EnumConstructor =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 magenta))
end)
()
(** Only used by surface *)
module RuleName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_white))
end)
()
module LabelName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_cyan))
end)
()
(** Used for unresolved structs/maps in desugared *)
module Ident = String
(** Only used by desugared/scopelang *)
module ScopeVar =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_white))
end)
()
module SubScopeName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_magenta))
end)
()
type scope_var_or_subscope =
| ScopeVar of ScopeVar.t
| SubScope of SubScopeName.t * ScopeName.t
module StateName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_cyan))
end)
()
(** {1 Abstract syntax tree} *)
(** Define a common base type for the expressions in most passes of the compiler *)
(** {2 Phantom types used to select relevant cases on the generic AST}
we instantiate them with a polymorphic variant to take advantage of
sub-typing. The values aren't actually used. *)
(** These types allow to select the features present in any given expression
type *)
type yes = Yes
type no =
| No
(** Phantom types used in the definitions below. We don't make them
abstract, because the typer needs to know that their intersection is
empty. *)
type desugared =
< monomorphic : yes
; polymorphic : yes
; overloaded : yes
; resolved : no
; syntacticNames : yes
; scopeVarStates : yes
; scopeVarSimpl : no
; explicitScopes : yes
; assertions : no
; defaultTerms : yes
; exceptions : no
; custom : no >
(* Technically, desugared before name resolution has [syntacticNames: yes;
resolvedNames: no], and after name resolution has the opposite; but the
disambiguation being done by the typer, we don't encode this invariant at the
type level.
Indeed, unfortunately, we cannot express the [<resolvedNames: _; 'a> ->
<resolvedNames: yes; 'a>] that would be needed for the typing function. *)
type scopelang =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : yes
; explicitScopes : yes
; assertions : no
; defaultTerms : yes
; exceptions : no
; custom : no >
type dcalc =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes
; defaultTerms : yes
; exceptions : no
; custom : no >
type lcalc =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes
; defaultTerms : no
; exceptions : yes
; custom : no >
type 'a any = < .. > as 'a
(** ['a any] is 'a, but adds the constraint that it should be restricted to
valid AST kinds *)
type dcalc_lcalc_features =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes >
(** Features that are common to Dcalc and Lcalc *)
type ('a, 'b) dcalc_lcalc =
< dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : no >
(** This type regroups Dcalc and Lcalc ASTs. *)
type ('a, 'b, 'c) interpr_kind =
< dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : 'c >
(** This type corresponds to the types handled by the interpreter: it regroups
Dcalc and Lcalc ASTs and may have custom terms *)
(** {2 Types} *)
type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration
type typ = naked_typ Mark.pos
and naked_typ =
| TLit of typ_lit
| TTuple of typ list
| TStruct of StructName.t
| TEnum of EnumName.t
| TOption of typ
| TArrow of typ list * typ
| TArray of typ
| TDefault of typ
| TAny
| TClosureEnv (** Hides an existential type needed for closure conversion *)
(** {2 Constants and operators} *)
type date = Runtime.date
type date_rounding = Runtime.date_rounding
type duration = Runtime.duration
type var_def_log = {
log_typ : naked_typ;
log_io_input : Runtime.io_input;
log_io_output : bool;
}
type log_entry =
| VarDef of var_def_log
(** During code generation, we need to know the type of the variable being
logged for embedding as well as its I/O properties. *)
| BeginCall
| EndCall
| PosRecordIfTrueBool
module Op = struct
(** Classification of operators on how they should be typed *)
type monomorphic = < monomorphic : yes >
(** Operands and return types of the operator are fixed *)
type polymorphic = < polymorphic : yes >
(** The operator is truly polymorphic: it's the same runtime function that may
work on multiple types. We require that resolving the argument types from
right to left trivially resolves all type variables declared in the
operator type. *)
type overloaded = < overloaded : yes >
(** The operator is ambiguous and requires the types of its arguments to be
known before it can be typed, using a pre-defined table *)
type resolved = < resolved : yes >
(** Explicit monomorphic versions of the overloaded operators *)
type _ t =
(* unary *)
(* * monomorphic *)
| Not : < monomorphic ; .. > t
| GetDay : < monomorphic ; .. > t
| GetMonth : < monomorphic ; .. > t
| GetYear : < monomorphic ; .. > t
| FirstDayOfMonth : < monomorphic ; .. > t
| LastDayOfMonth : < monomorphic ; .. > t
(* * polymorphic *)
| Length : < polymorphic ; .. > t
| Log : log_entry * Uid.MarkedString.info list -> < polymorphic ; .. > t
| ToClosureEnv : < polymorphic ; .. > t
| FromClosureEnv : < polymorphic ; .. > t
(* * overloaded *)
| Minus : < overloaded ; .. > t
| Minus_int : < resolved ; .. > t
| Minus_rat : < resolved ; .. > t
| Minus_mon : < resolved ; .. > t
| Minus_dur : < resolved ; .. > t
| ToRat : < overloaded ; .. > t
| ToRat_int : < resolved ; .. > t
| ToRat_mon : < resolved ; .. > t
| ToMoney : < overloaded ; .. > t
| ToMoney_rat : < resolved ; .. > t
| Round : < overloaded ; .. > t
| Round_rat : < resolved ; .. > t
| Round_mon : < resolved ; .. > t
(* binary *)
(* * monomorphic *)
| And : < monomorphic ; .. > t
| Or : < monomorphic ; .. > t
| Xor : < monomorphic ; .. > t
(* * polymorphic *)
| Eq : < polymorphic ; .. > t
| Map : < polymorphic ; .. > t
| Map2 : < polymorphic ; .. > t
| Concat : < polymorphic ; .. > t
| Filter : < polymorphic ; .. > t
(* * overloaded *)
| Add : < overloaded ; .. > t
| Add_int_int : < resolved ; .. > t
| Add_rat_rat : < resolved ; .. > t
| Add_mon_mon : < resolved ; .. > t
| Add_dat_dur : date_rounding -> < resolved ; .. > t
| Add_dur_dur : < resolved ; .. > t
| Sub : < overloaded ; .. > t
| Sub_int_int : < resolved ; .. > t
| Sub_rat_rat : < resolved ; .. > t
| Sub_mon_mon : < resolved ; .. > t
| Sub_dat_dat : < resolved ; .. > t
| Sub_dat_dur : < resolved ; .. > t
| Sub_dur_dur : < resolved ; .. > t
| Mult : < overloaded ; .. > t
| Mult_int_int : < resolved ; .. > t
| Mult_rat_rat : < resolved ; .. > t
| Mult_mon_rat : < resolved ; .. > t
| Mult_dur_int : < resolved ; .. > t
| Div : < overloaded ; .. > t
| Div_int_int : < resolved ; .. > t
| Div_rat_rat : < resolved ; .. > t
| Div_mon_rat : < resolved ; .. > t
| Div_mon_mon : < resolved ; .. > t
| Div_dur_dur : < resolved ; .. > t
| Lt : < overloaded ; .. > t
| Lt_int_int : < resolved ; .. > t
| Lt_rat_rat : < resolved ; .. > t
| Lt_mon_mon : < resolved ; .. > t
| Lt_dat_dat : < resolved ; .. > t
| Lt_dur_dur : < resolved ; .. > t
| Lte : < overloaded ; .. > t
| Lte_int_int : < resolved ; .. > t
| Lte_rat_rat : < resolved ; .. > t
| Lte_mon_mon : < resolved ; .. > t
| Lte_dat_dat : < resolved ; .. > t
| Lte_dur_dur : < resolved ; .. > t
| Gt : < overloaded ; .. > t
| Gt_int_int : < resolved ; .. > t
| Gt_rat_rat : < resolved ; .. > t
| Gt_mon_mon : < resolved ; .. > t
| Gt_dat_dat : < resolved ; .. > t
| Gt_dur_dur : < resolved ; .. > t
| Gte : < overloaded ; .. > t
| Gte_int_int : < resolved ; .. > t
| Gte_rat_rat : < resolved ; .. > t
| Gte_mon_mon : < resolved ; .. > t
| Gte_dat_dat : < resolved ; .. > t
| Gte_dur_dur : < resolved ; .. > t
(* Todo: Eq is not an overload at the moment, but it should be one. The
trick is that it needs generation of specific code for arrays, every
struct and enum: operators [Eq_structs of StructName.t], etc. *)
| Eq_int_int : < resolved ; .. > t
| Eq_rat_rat : < resolved ; .. > t
| Eq_mon_mon : < resolved ; .. > t
| Eq_dur_dur : < resolved ; .. > t
| Eq_dat_dat : < resolved ; .. > t
(* ternary *)
(* * polymorphic *)
| Reduce : < polymorphic ; .. > t
| Fold : < polymorphic ; .. > t
| HandleDefault : < polymorphic ; .. > t
| HandleDefaultOpt : < polymorphic ; .. > t
end
type 'a operator = 'a Op.t
type except = ConflictError | EmptyError | NoValueProvided | Crash
(** {2 Markings} *)
type untyped = { pos : Pos.t } [@@caml.unboxed]
type typed = { pos : Pos.t; ty : typ }
type 'a custom = { pos : Pos.t; custom : 'a }
(** Using empty markings will ensure terms can't be constructed: used for
example in interfaces to ensure that they don't contain any expressions *)
type nil = |
(** The generic type of AST markings. Using a GADT allows functions to be
polymorphic in the marking, but still do transformations on types when
appropriate. The [Custom] case can be used within passes that need to store
specific information, e.g. typing *)
type _ mark =
| Untyped : untyped -> untyped mark
| Typed : typed -> typed mark
| Custom : 'a custom -> 'a custom mark
type ('a, 'm) marked = ('a, 'm mark) Mark.ed
(** Type of values marked with the above standard mark GADT *)
(** {2 Generic expressions} *)
(** Define a common base type for the expressions in most passes of the compiler *)
(** Literals are the same throughout compilation except for the [LEmptyError]
case which is eliminated midway through. *)
type lit =
| LBool of bool
| LInt of Runtime.integer
| LRat of Runtime.decimal
| LMoney of Runtime.money
| LUnit
| LDate of date
| LDuration of duration
(** External references are resolved to strings that point to functions or
constants in the end, but we need to keep different references for typing *)
type external_ref =
| External_value of TopdefName.t
| External_scope of ScopeName.t
(** Locations are handled differently in [desugared] and [scopelang] *)
type 'a glocation =
| DesugaredScopeVar : {
name : ScopeVar.t Mark.pos;
state : StateName.t option;
}
-> < scopeVarStates : yes ; .. > glocation
| ScopelangScopeVar : {
name : ScopeVar.t Mark.pos;
}
-> < scopeVarSimpl : yes ; .. > glocation
| SubScopeVar : {
scope : ScopeName.t;
alias : SubScopeName.t Mark.pos;
var : ScopeVar.t Mark.pos;
}
-> < explicitScopes : yes ; .. > glocation
| ToplevelVar : {
name : TopdefName.t Mark.pos;
}
-> < explicitScopes : yes ; .. > glocation
type ('a, 'm) gexpr = (('a, 'm) naked_gexpr, 'm) marked
and ('a, 'm) naked_gexpr = ('a, 'a, 'm) base_gexpr
(** General expressions: groups all expression cases of the different ASTs, and
uses a GADT to eliminate irrelevant cases for each one. The ['t] annotations
are also totally unconstrained at this point. The dcalc exprs, for ex ample,
are then defined with [type naked_expr = dcalc naked_gexpr] plus the
annotations.
A few tips on using this GADT:
- To write a function that handles cases from different ASTs, explicit the
type variables: [fun (type a) (x: a naked_gexpr) -> ...]
- For recursive functions, you may need to additionally explicit the
generalisation of the variable: [let rec f: type a . a naked_gexpr -> ...]
- Always think of using the pre-defined map/fold functions in [Expr] rather
than completely defining your recursion manually.
The first argument of the base_gexpr type caracterises the "deep" type of
the AST, while the second is the shallow type. They are always equal for
well-formed AST types, but differentiating them ephemerally allows us to do
well-typed recursive transformations on the AST that change its type *)
and ('a, 'b, 'm) base_gexpr =
(* Constructors common to all ASTs *)
| ELit : lit -> ('a, < .. >, 'm) base_gexpr
| EApp : {
f : ('a, 'm) gexpr;
args : ('a, 'm) gexpr list;
(** length may be 1 even if arity > 1 in desugared. scopelang performs
detuplification, so length = arity afterwards *)
tys : typ list; (** Set to [[]] before disambiguation *)
}
-> ('a, < .. >, 'm) base_gexpr
| EAppOp : {
op : 'b operator;
args : ('a, 'm) gexpr list;
tys : typ list;
}
-> ('a, (< .. > as 'b), 'm) base_gexpr
| EArray : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr
| EVar : ('a, 'm) naked_gexpr Bindlib.var -> ('a, _, 'm) base_gexpr
| EAbs : {
binder : (('a, 'a, 'm) base_gexpr, ('a, 'm) gexpr) Bindlib.mbinder;
tys : typ list;
}
-> ('a, < .. >, 'm) base_gexpr
| EIfThenElse : {
cond : ('a, 'm) gexpr;
etrue : ('a, 'm) gexpr;
efalse : ('a, 'm) gexpr;
}
-> ('a, < .. >, 'm) base_gexpr
| EStruct : {
name : StructName.t;
fields : ('a, 'm) gexpr StructField.Map.t;
}
-> ('a, < .. >, 'm) base_gexpr
| EInj : {
name : EnumName.t;
e : ('a, 'm) gexpr;
cons : EnumConstructor.t;
}
-> ('a, < .. >, 'm) base_gexpr
| EMatch : {
name : EnumName.t;
e : ('a, 'm) gexpr;
cases : ('a, 'm) gexpr EnumConstructor.Map.t;
}
-> ('a, < .. >, 'm) base_gexpr
| ETuple : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr
| ETupleAccess : {
e : ('a, 'm) gexpr;
index : int;
size : int;
}
-> ('a, < .. >, 'm) base_gexpr
(* Early stages *)
| ELocation : 'b glocation -> ('a, (< .. > as 'b), 'm) base_gexpr
| EScopeCall : {
scope : ScopeName.t;
args : ('a, 'm) gexpr ScopeVar.Map.t;
}
-> ('a, < explicitScopes : yes ; .. >, 'm) base_gexpr
| EDStructAccess : {
name_opt : StructName.t option;
e : ('a, 'm) gexpr;
field : Ident.t;
}
-> ('a, < syntacticNames : yes ; .. >, 'm) base_gexpr
(** [desugared] has ambiguous struct fields *)
| EStructAccess : {
name : StructName.t;
e : ('a, 'm) gexpr;
field : StructField.t;
}
-> ('a, < .. >, 'm) base_gexpr
(** Resolved struct/enums, after name resolution in [desugared] *)
(* Lambda-like *)
| EExternal : {
name : external_ref Mark.pos;
}
-> ('a, < explicitScopes : no ; .. >, 't) base_gexpr
| EAssert : ('a, 'm) gexpr -> ('a, < assertions : yes ; .. >, 'm) base_gexpr
(* Default terms *)
| EDefault : {
excepts : ('a, 'm) gexpr list;
just : ('a, 'm) gexpr;
cons : ('a, 'm) gexpr;
}
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
| EPureDefault :
('a, 'm) gexpr
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
(** "return" of a pure term, so that it can be typed as [default] *)
| EEmptyError : ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
| EErrorOnEmpty :
('a, 'm) gexpr
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
(* Lambda calculus with exceptions *)
| ERaise : except -> ('a, < exceptions : yes ; .. >, 'm) base_gexpr
| ECatch : {
body : ('a, 'm) gexpr;
exn : except;
handler : ('a, 'm) gexpr;
}
-> ('a, < exceptions : yes ; .. >, 'm) base_gexpr
(* Only used during evaluation *)
| ECustom : {
obj : Obj.t;
targs : typ list;
tret : typ;
}
-> ('a, < custom : yes ; .. >, 't) base_gexpr
(** A function of the given type, as a runtime OCaml object. The specified
types for arguments and result must be the Catala types corresponding
to the runtime types of the function. *)
(** Useful for errors and printing, for example *)
type any_expr = AnyExpr : ('a, _) gexpr -> any_expr
type ('a, 'm) boxed_gexpr = (('a, 'm) naked_gexpr Bindlib.box, 'm) marked
(** The annotation is lifted outside of the box for expressions *)
type 'e boxed = ('a, 'm) boxed_gexpr constraint 'e = ('a, 'm) gexpr
(** [('a, 'm) gexpr boxed] is [('a, 'm) boxed_gexpr]. The difference with
[('a, 'm) gexpr Bindlib.box] is that the annotations is outside of the box,
and can therefore be accessed without the need to resolve the box *)
type ('e, 'b) binder = (('a, 'm) naked_gexpr, 'b) Bindlib.binder
constraint 'e = ('a, 'm) gexpr
(** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib}
library, based on higher-order abstract syntax *)
type ('e, 'b) mbinder = (('a, 'm) naked_gexpr, 'b) Bindlib.mbinder
constraint 'e = ('a, 'm) gexpr
(** {2 Higher-level program structure} *)
(** Constructs scopes and programs on top of expressions. The ['e] type
parameter throughout is expected to match instances of the [gexpr] type
defined above. Markings are constrained to the [mark] GADT defined above.
Note that this structure is at the moment only relevant for [dcalc] and
[lcalc], as [scopelang] has its own scope structure, as the name implies. *)
(** This kind annotation signals that the let-binding respects a structural
invariant. These invariants concern the shape of the expression in the
let-binding, and are documented below. *)
type scope_let_kind =
| DestructuringInputStruct (** [let x = input.field]*)
| ScopeVarDefinition (** [let x = error_on_empty e]*)
| SubScopeVarDefinition
(** [let s.x = fun _ -> e] or [let s.x = error_on_empty e] for input-only
subscope variables. *)
| CallingSubScope (** [let result = s ({ x = s.x; y = s.x; ...}) ]*)
| DestructuringSubScopeResults (** [let s.x = result.x ]**)
| Assertion (** [let () = assert e]*)
type 'e scope_let = {
scope_let_kind : scope_let_kind;
scope_let_typ : typ;
scope_let_expr : 'e;
scope_let_next : ('e, 'e scope_body_expr) binder;
(* todo ? Factorise the code_item _list type below and use it here *)
scope_let_pos : Pos.t;
}
constraint 'e = ('a any, _) gexpr
(** This type is parametrized by the expression type so it can be reused in
later intermediate representations. *)
(** A scope let-binding has all the information necessary to make a proper
let-binding expression, plus an annotation for the kind of the let-binding
that comes from the compilation of a {!module: Scopelang.Ast} statement. *)
and 'e scope_body_expr =
| Result of 'e
| ScopeLet of 'e scope_let
constraint 'e = ('a any, _) gexpr
type 'e scope_body = {
scope_body_input_struct : StructName.t;
scope_body_output_struct : StructName.t;
scope_body_expr : ('e, 'e scope_body_expr) binder;
}
constraint 'e = ('a any, _) gexpr
(** Instead of being a single expression, we give a little more ad-hoc structure
to the scope body by decomposing it in an ordered list of let-bindings, and
a result expression that uses the let-binded variables. The first binder is
the argument of type [scope_body_input_struct]. *)
type 'e code_item =
| ScopeDef of ScopeName.t * 'e scope_body
| Topdef of TopdefName.t * typ * 'e
(** A chained list, but with a binder for each element into the next:
[x := let a
= e1 in e2] is thus [Cons (e1, {a. Cons (e2, {x. Nil})})] *)
type 'e code_item_list =
| Nil
| Cons of 'e code_item * ('e, 'e code_item_list) binder
type struct_ctx = typ StructField.Map.t StructName.Map.t
type enum_ctx = typ EnumConstructor.Map.t EnumName.Map.t
type scope_info = {
in_struct_name : StructName.t;
out_struct_name : StructName.t;
out_struct_fields : StructField.t ScopeVar.Map.t;
}
(** In practice, this is a DAG: beware of repeated names *)
type module_tree = M of module_tree ModuleName.Map.t [@@caml.unboxed]
type decl_ctx = {
ctx_enums : enum_ctx;
ctx_structs : struct_ctx;
ctx_scopes : scope_info ScopeName.Map.t;
ctx_topdefs : typ TopdefName.Map.t;
ctx_struct_fields : StructField.t StructName.Map.t Ident.Map.t;
(** needed for disambiguation (desugared -> scope) *)
ctx_enum_constrs : EnumConstructor.t EnumName.Map.t Ident.Map.t;
ctx_scope_index : ScopeName.t Ident.Map.t;
(** only used to lookup scopes (in the root module) specified from the cli *)
ctx_modules : module_tree;
}
type 'e program = {
decl_ctx : decl_ctx;
code_items : 'e code_item_list;
lang : Cli.backend_lang;
module_name : ModuleName.t option;
}