catala/compiler/lcalc/closure_conversion.ml
2023-06-15 16:33:14 +02:00

395 lines
15 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2022 Inria, contributor:
Denis Merigoux <denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
open Ast
module D = Dcalc.Ast
(** TODO: This version is not yet debugged and ought to be specialized when
Lcalc has more structure. *)
type 'm ctx = {
decl_ctx : decl_ctx;
name_context : string;
globally_bound_vars : 'm expr Var.Set.t;
}
let tys_as_tanys tys = List.map (fun x -> Mark.map (fun _ -> TAny) x) tys
type 'm hoisted_closure = { name : 'm expr Var.t; closure : 'm expr }
let rec hoist_context_free_closures :
type m. m ctx -> m expr -> m hoisted_closure list * m expr boxed =
fun ctx e ->
let m = Mark.get e in
match Mark.remove e with
| EMatch { e; cases; name } ->
let collected_closures, new_e = (hoist_context_free_closures ctx) e in
(* We do not close the closures inside the arms of the match expression,
since they get a special treatment at compilation to Scalc. *)
let collected_closures, new_cases =
EnumConstructor.Map.fold
(fun cons e1 (collected_closures, new_cases) ->
match Mark.remove e1 with
| EAbs { binder; tys } ->
let vars, body = Bindlib.unmbind binder in
let new_collected_closures, new_body =
(hoist_context_free_closures ctx) body
in
let new_binder = Expr.bind vars new_body in
( collected_closures @ new_collected_closures,
EnumConstructor.Map.add cons
(Expr.eabs new_binder tys (Mark.get e1))
new_cases )
| _ -> failwith "should not happen")
cases
(collected_closures, EnumConstructor.Map.empty)
in
collected_closures, Expr.ematch new_e name new_cases m
| EApp { f = EAbs { binder; tys }, e1_pos; args } ->
(* let-binding, we should not close these *)
let vars, body = Bindlib.unmbind binder in
let collected_closures, new_body = (hoist_context_free_closures ctx) body in
let new_binder = Expr.bind vars new_body in
let collected_closures, new_args =
List.fold_right
(fun arg (collected_closures, new_args) ->
let new_collected_closures, new_arg =
(hoist_context_free_closures ctx) arg
in
collected_closures @ new_collected_closures, new_arg :: new_args)
args (collected_closures, [])
in
( collected_closures,
Expr.eapp (Expr.eabs new_binder (tys_as_tanys tys) e1_pos) new_args m )
| EAbs _ ->
(* this is the closure we want to hoist*)
let closure_var = Var.make ctx.name_context in
[{ name = closure_var; closure = e }], Expr.make_var closure_var m
| EApp _ | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _
| EArray _ | ELit _ | EAssert _ | EOp _ | EIfThenElse _ | ERaise _ | ECatch _
| EVar _ ->
Expr.map_gather ~acc:[] ~join:( @ ) ~f:(hoist_context_free_closures ctx) e
| _ -> .
[@@warning "-32"]
(** Returns the expression with closed closures and the set of free variables
inside this new expression. Implementation guided by
http://gallium.inria.fr/~fpottier/mpri/cours04.pdf#page=10
(environment-passing closure conversion). *)
let rec transform_closures_expr :
type m. m ctx -> m expr -> m expr Var.Set.t * m expr boxed =
fun ctx e ->
let m = Mark.get e in
match Mark.remove e with
| EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EArray _
| ELit _ | EAssert _ | EOp _ | EIfThenElse _ | ERaise _ | ECatch _ ->
Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union
~f:(transform_closures_expr ctx)
e
| EVar v ->
( (if Var.Set.mem v ctx.globally_bound_vars then Var.Set.empty
else Var.Set.singleton v),
(Bindlib.box_var v, m) )
| EMatch { e; cases; name } ->
let free_vars, new_e = (transform_closures_expr ctx) e in
(* We do not close the clotures inside the arms of the match expression,
since they get a special treatment at compilation to Scalc. *)
let free_vars, new_cases =
EnumConstructor.Map.fold
(fun cons e1 (free_vars, new_cases) ->
match Mark.remove e1 with
| EAbs { binder; tys } ->
let vars, body = Bindlib.unmbind binder in
let new_free_vars, new_body = (transform_closures_expr ctx) body in
let new_binder = Expr.bind vars new_body in
( Var.Set.union free_vars
(Var.Set.diff new_free_vars
(Var.Set.of_list (Array.to_list vars))),
EnumConstructor.Map.add cons
(Expr.eabs new_binder tys (Mark.get e1))
new_cases )
| _ -> failwith "should not happen")
cases
(free_vars, EnumConstructor.Map.empty)
in
free_vars, Expr.ematch new_e name new_cases m
| EApp { f = EAbs { binder; tys }, e1_pos; args } ->
(* let-binding, we should not close these *)
let vars, body = Bindlib.unmbind binder in
let free_vars, new_body = (transform_closures_expr ctx) body in
let new_binder = Expr.bind vars new_body in
let free_vars, new_args =
List.fold_right
(fun arg (free_vars, new_args) ->
let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
Var.Set.union free_vars new_free_vars, new_arg :: new_args)
args (free_vars, [])
in
( free_vars,
Expr.eapp (Expr.eabs new_binder (tys_as_tanys tys) e1_pos) new_args m )
| EAbs { binder; tys } ->
(* λ x.t *)
let binder_mark = m in
let binder_pos = Expr.mark_pos binder_mark in
(* Converting the closure. *)
let vars, body = Bindlib.unmbind binder in
(* t *)
let body_vars, new_body = (transform_closures_expr ctx) body in
(* [[t]] *)
let extra_vars =
Var.Set.diff body_vars (Var.Set.of_list (Array.to_list vars))
in
let extra_vars_list = Var.Set.elements extra_vars in
(* x1, ..., xn *)
let code_var = Var.make ctx.name_context in
(* code *)
let inner_c_var = Var.make "env" in
let any_ty = TAny, binder_pos in
let new_closure_body =
Expr.make_multiple_let_in
(Array.of_list extra_vars_list)
(List.map (fun _ -> any_ty) extra_vars_list)
(List.mapi
(fun i _ ->
Expr.etupleaccess
(Expr.evar inner_c_var binder_mark)
i
(List.length extra_vars_list)
binder_mark)
extra_vars_list)
new_body
(Expr.mark_pos binder_mark)
in
let new_closure =
Expr.make_abs
(Array.concat [Array.make 1 inner_c_var; vars])
new_closure_body
((TAny, binder_pos) :: tys)
(Expr.pos e)
in
( extra_vars,
Expr.make_let_in code_var
(TAny, Expr.pos e)
new_closure
(Expr.etuple
((Bindlib.box_var code_var, binder_mark)
:: [
Expr.etuple
(List.map
(fun extra_var -> Bindlib.box_var extra_var, binder_mark)
extra_vars_list)
m;
])
m)
(Expr.pos e) )
| EApp
{
f =
(EOp { op = HandleDefaultOpt | Fold | Map | Filter | Reduce; _ }, _)
as f;
args;
} ->
(* Special case for some operators: its arguments closures thunks because if
you want to extract it as a function you need these closures to preserve
evaluation order, but backends that don't support closures will simply
extract these operators in a inlined way and skip the thunks. *)
let free_vars, new_args =
List.fold_right
(fun (arg : (lcalc, m) gexpr) (free_vars, new_args) ->
let m_arg = Mark.get arg in
match Mark.remove arg with
| EAbs { binder; tys } ->
let vars, arg = Bindlib.unmbind binder in
let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
let new_arg =
Expr.make_abs vars new_arg tys (Expr.mark_pos m_arg)
in
Var.Set.union free_vars new_free_vars, new_arg :: new_args
| _ ->
let new_free_vars, new_arg = transform_closures_expr ctx arg in
Var.Set.union free_vars new_free_vars, new_arg :: new_args)
args (Var.Set.empty, [])
in
free_vars, Expr.eapp (Expr.box f) new_args (Mark.get e)
| EApp { f = EOp _, _; _ } ->
(* This corresponds to an operator call, which we don't want to transform*)
Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union
~f:(transform_closures_expr ctx)
e
| EApp { f = EVar v, _; _ } when Var.Set.mem v ctx.globally_bound_vars ->
(* This corresponds to a scope call, which we don't want to transform*)
Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union
~f:(transform_closures_expr ctx)
e
| EApp { f = e1; args } ->
let free_vars, new_e1 = (transform_closures_expr ctx) e1 in
let code_env_var = Var.make "code_and_env" in
let env_var = Var.make "env" in
let code_var = Var.make "code" in
let free_vars, new_args =
List.fold_right
(fun arg (free_vars, new_args) ->
let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
Var.Set.union free_vars new_free_vars, new_arg :: new_args)
args (free_vars, [])
in
let call_expr =
let m1 = Mark.get e1 in
Expr.make_let_in code_var
(TAny, Expr.pos e)
(Expr.etupleaccess (Bindlib.box_var code_env_var, m1) 0 2 m)
(Expr.make_let_in env_var
(TAny, Expr.pos e)
(Expr.etupleaccess (Bindlib.box_var code_env_var, m1) 1 2 m)
(Expr.eapp
(Bindlib.box_var code_var, m1)
((Bindlib.box_var env_var, m1) :: new_args)
m)
(Expr.pos e))
(Expr.pos e)
in
( free_vars,
Expr.make_let_in code_env_var
(TAny, Expr.pos e)
new_e1 call_expr (Expr.pos e) )
| _ -> .
(* Here I have to reimplement Scope.map_exprs_in_lets because I'm changing the
type *)
let closure_conversion_scope_let ctx scope_body_expr =
Scope.fold_right_lets
~f:(fun scope_let var_next acc ->
let _free_vars, new_scope_let_expr =
(transform_closures_expr
{ ctx with name_context = Bindlib.name_of var_next })
scope_let.scope_let_expr
in
Bindlib.box_apply2
(fun scope_let_next scope_let_expr ->
ScopeLet
{
scope_let with
scope_let_next;
scope_let_expr;
scope_let_typ = Mark.copy scope_let.scope_let_typ TAny;
})
(Bindlib.bind_var var_next acc)
(Expr.Box.lift new_scope_let_expr))
~init:(fun res ->
let _free_vars, new_scope_let_expr = (transform_closures_expr ctx) res in
(* INVARIANT here: the result expr of a scope is simply a struct
containing all output variables so nothing should be converted here, so
no need to take into account free variables. *)
Bindlib.box_apply
(fun res -> Result res)
(Expr.Box.lift new_scope_let_expr))
scope_body_expr
let closure_conversion (p : 'm program) : 'm program Bindlib.box =
let _, new_code_items =
Scope.fold_map
~f:(fun toplevel_vars var code_item ->
match code_item with
| ScopeDef (name, body) ->
let scope_input_var, scope_body_expr =
Bindlib.unbind body.scope_body_expr
in
let ctx =
{
decl_ctx = p.decl_ctx;
name_context = Mark.remove (ScopeName.get_info name);
globally_bound_vars = toplevel_vars;
}
in
let new_scope_lets =
closure_conversion_scope_let ctx scope_body_expr
in
let new_scope_body_expr =
Bindlib.bind_var scope_input_var new_scope_lets
in
( Var.Set.add var toplevel_vars,
Bindlib.box_apply
(fun scope_body_expr ->
ScopeDef (name, { body with scope_body_expr }))
new_scope_body_expr )
| Topdef (name, ty, expr) ->
let ctx =
{
decl_ctx = p.decl_ctx;
name_context = Mark.remove (TopdefName.get_info name);
globally_bound_vars = toplevel_vars;
}
in
let _free_vars, new_expr = transform_closures_expr ctx expr in
( Var.Set.add var toplevel_vars,
Bindlib.box_apply
(fun e -> Topdef (name, ty, e))
(Expr.Box.lift new_expr) ))
~varf:(fun v -> v)
Var.Set.empty p.code_items
in
(* Now we need to further tweak [decl_ctx] because some of the user-defined
types can have closures in them and these closured might have changed type.
So we reset them to [TAny] in the hopes that the transformation applied
will not yield to type unification conflicts. Indeed, consider the
following closure: [let f = if ... then fun v -> x + v else fun v -> v]. To
be typed correctly once converted, this closure needs an existential type
but the Catala typechecker doesn't have them. However, this kind of type
conflict is difficult to produce using the Catala surface language: it can
only happen if you store a closure which is the output of a scope inside a
user-defined data structure, and if you do it in two different places in
the code with two closures that don't have the same capture footprint. *)
let new_decl_ctx =
let rec type_contains_arrow t =
match Mark.remove t with
| TArrow _ -> true
| TAny -> true
| TOption t' -> type_contains_arrow t'
| TClosureEnv | TLit _ -> false
| TArray ts -> type_contains_arrow ts
| TTuple ts -> List.exists type_contains_arrow ts
| TEnum e ->
EnumConstructor.Map.exists
(fun _ t' -> type_contains_arrow t')
(EnumName.Map.find e p.decl_ctx.ctx_enums)
| TStruct s ->
StructField.Map.exists
(fun _ t' -> type_contains_arrow t')
(StructName.Map.find s p.decl_ctx.ctx_structs)
in
let replace_fun_typs t =
if type_contains_arrow t then Mark.copy t TAny else t
in
{
p.decl_ctx with
ctx_structs =
StructName.Map.map
(StructField.Map.map replace_fun_typs)
p.decl_ctx.ctx_structs;
ctx_enums =
EnumName.Map.map
(EnumConstructor.Map.map replace_fun_typs)
p.decl_ctx.ctx_enums;
}
in
Bindlib.box_apply
(fun new_code_items ->
{ code_items = new_code_items; decl_ctx = new_decl_ctx })
new_code_items