catala/compiler/dcalc/optimizations.ml
2022-04-06 09:48:34 +02:00

287 lines
11 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2022 Inria,
contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux
<denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Utils
open Ast
type partial_evaluation_ctx = {
var_values : expr Pos.marked Ast.VarMap.t;
decl_ctx : decl_ctx;
}
let rec partial_evaluation (ctx : partial_evaluation_ctx) (e : expr Pos.marked)
: expr Pos.marked Bindlib.box =
let pos = Pos.get_position e in
let rec_helper = partial_evaluation ctx in
match Pos.unmark e with
| EApp
( (( EOp (Unop Not), _
| EApp ((EOp (Unop (Log _)), _), [ (EOp (Unop Not), _) ]), _ ) as op),
[ e1 ] ) ->
(* reduction of logical not *)
(Bindlib.box_apply (fun e1 ->
match e1 with
| ELit (LBool false), _ -> (ELit (LBool true), pos)
| ELit (LBool true), _ -> (ELit (LBool false), pos)
| _ -> (EApp (op, [ e1 ]), pos)))
(rec_helper e1)
| EApp
( (( EOp (Binop Or), _
| EApp ((EOp (Unop (Log _)), _), [ (EOp (Binop Or), _) ]), _ ) as op),
[ e1; e2 ] ) ->
(* reduction of logical or *)
(Bindlib.box_apply2 (fun e1 e2 ->
match (e1, e2) with
| (ELit (LBool false), _), new_e | new_e, (ELit (LBool false), _) ->
new_e
| (ELit (LBool true), _), _ | _, (ELit (LBool true), _) ->
(ELit (LBool true), pos)
| _ -> (EApp (op, [ e1; e2 ]), pos)))
(rec_helper e1) (rec_helper e2)
| EApp
( (( EOp (Binop And), _
| EApp ((EOp (Unop (Log _)), _), [ (EOp (Binop And), _) ]), _ ) as op),
[ e1; e2 ] ) ->
(* reduction of logical and *)
(Bindlib.box_apply2 (fun e1 e2 ->
match (e1, e2) with
| (ELit (LBool true), _), new_e | new_e, (ELit (LBool true), _) ->
new_e
| (ELit (LBool false), _), _ | _, (ELit (LBool false), _) ->
(ELit (LBool false), pos)
| _ -> (EApp (op, [ e1; e2 ]), pos)))
(rec_helper e1) (rec_helper e2)
| EVar (x, _) -> Bindlib.box_apply (fun x -> (x, pos)) (Bindlib.box_var x)
| ETuple (args, s_name) ->
Bindlib.box_apply
(fun args -> (ETuple (args, s_name), pos))
(List.map rec_helper args |> Bindlib.box_list)
| ETupleAccess (arg, i, s_name, typs) ->
Bindlib.box_apply
(fun arg -> (ETupleAccess (arg, i, s_name, typs), pos))
(rec_helper arg)
| EInj (arg, i, e_name, typs) ->
Bindlib.box_apply
(fun arg -> (EInj (arg, i, e_name, typs), pos))
(rec_helper arg)
| EMatch (arg, arms, e_name) ->
Bindlib.box_apply2
(fun arg arms ->
match (arg, arms) with
| (EInj (e1, i, e_name', _ts), _), _
when Ast.EnumName.compare e_name e_name' = 0 ->
(* iota reduction *)
(EApp (List.nth arms i, [ e1 ]), pos)
| _ -> (EMatch (arg, arms, e_name), pos))
(rec_helper arg)
(List.map rec_helper arms |> Bindlib.box_list)
| EArray args ->
Bindlib.box_apply
(fun args -> (EArray args, pos))
(List.map rec_helper args |> Bindlib.box_list)
| ELit l -> Bindlib.box (ELit l, pos)
| EAbs ((binder, binder_pos), typs) ->
let vars, body = Bindlib.unmbind binder in
let new_body = rec_helper body in
let new_binder = Bindlib.bind_mvar vars new_body in
Bindlib.box_apply
(fun binder -> (EAbs ((binder, binder_pos), typs), pos))
new_binder
| EApp (f, args) ->
Bindlib.box_apply2
(fun f args ->
match Pos.unmark f with
| EAbs ((binder, _pos_binder), _ts) ->
(* beta reduction *)
Bindlib.msubst binder (List.map fst args |> Array.of_list)
| _ -> (EApp (f, args), pos))
(rec_helper f)
(List.map rec_helper args |> Bindlib.box_list)
| EAssert e1 ->
Bindlib.box_apply (fun e1 -> (EAssert e1, pos)) (rec_helper e1)
| EOp op -> Bindlib.box (EOp op, pos)
| EDefault (exceptions, just, cons) ->
Bindlib.box_apply3
(fun exceptions just cons ->
(* TODO: mechanically prove each of these optimizations correct :) *)
match
( List.filter
(fun except ->
match Pos.unmark except with
| ELit LEmptyError -> false
| _ -> true)
exceptions
(* we can discard the exceptions that are always empty error *),
just,
cons )
with
| exceptions, just, cons
when List.fold_left
(fun nb except -> if is_value except then nb + 1 else nb)
0 exceptions
> 1 ->
(* at this point we know a conflict error will be triggered so we
just feed the expression to the interpreter that will print the
beautiful right error message *)
Interpreter.evaluate_expr ctx.decl_ctx
(EDefault (exceptions, just, cons), pos)
| [ except ], _, _ when is_value except ->
(* if there is only one exception and it is a non-empty value it
is always chosen *)
except
| ( [],
( ( ELit (LBool true)
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool true), _) ]) ),
_ ),
cons ) ->
cons
| ( [],
( ( ELit (LBool false)
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool false), _) ]) ),
_ ),
_ ) ->
(ELit LEmptyError, pos)
| [], just, cons when not !Cli.avoid_exceptions_flag ->
(* without exceptions, a default is just an [if then else] raising
an error in the else case. This exception is only valid in the
context of compilation_with_exceptions, so we desactivate with
a global flag to know if we will be compiling using exceptions
or the option monad. *)
(EIfThenElse (just, cons, (ELit LEmptyError, pos)), pos)
| exceptions, just, cons -> (EDefault (exceptions, just, cons), pos))
(List.map rec_helper exceptions |> Bindlib.box_list)
(rec_helper just) (rec_helper cons)
| EIfThenElse (e1, e2, e3) ->
Bindlib.box_apply3
(fun e1 e2 e3 ->
match (Pos.unmark e1, Pos.unmark e2, Pos.unmark e3) with
| ELit (LBool true), _, _
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool true), _) ]), _, _ ->
e2
| ELit (LBool false), _, _
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool false), _) ]), _, _ ->
e3
| ( _,
( ELit (LBool true)
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool true), _) ]) ),
( ELit (LBool false)
| EApp ((EOp (Unop (Log _)), _), [ (ELit (LBool false), _) ]) ) )
->
e1
| _ when equal_exprs e2 e3 -> e2
| _ -> (EIfThenElse (e1, e2, e3), pos))
(rec_helper e1) (rec_helper e2) (rec_helper e3)
| ErrorOnEmpty e1 ->
Bindlib.box_apply (fun e1 -> (ErrorOnEmpty e1, pos)) (rec_helper e1)
let optimize_expr (decl_ctx : decl_ctx) (e : expr Pos.marked) =
partial_evaluation { var_values = VarMap.empty; decl_ctx } e
let rec scope_lets_map
(t : 'a -> expr Pos.marked -> expr Pos.marked Bindlib.box)
(ctx : 'a)
(scope_body_expr : scope_body_expr) : scope_body_expr Bindlib.box =
match scope_body_expr with
| Result e -> Bindlib.box_apply (fun e' -> Result e') (t ctx e)
| ScopeLet scope_let ->
let var, next = Bindlib.unbind scope_let.scope_let_next in
let new_scope_let_expr = t ctx scope_let.scope_let_expr in
let new_next = scope_lets_map t ctx next in
let new_next = Bindlib.bind_var var new_next in
Bindlib.box_apply2
(fun new_scope_let_expr new_next ->
ScopeLet
{
scope_let with
scope_let_expr = new_scope_let_expr;
scope_let_next = new_next;
})
new_scope_let_expr new_next
let rec scopes_map
(t : 'a -> expr Pos.marked -> expr Pos.marked Bindlib.box)
(ctx : 'a)
(scopes : scopes) : scopes Bindlib.box =
match scopes with
| Nil -> Bindlib.box Nil
| ScopeDef scope_def ->
let scope_var, scope_next = Bindlib.unbind scope_def.scope_next in
let scope_arg_var, scope_body_expr =
Bindlib.unbind scope_def.scope_body.scope_body_expr
in
let new_scope_body_expr = scope_lets_map t ctx scope_body_expr in
let new_scope_body_expr =
Bindlib.bind_var scope_arg_var new_scope_body_expr
in
let new_scope_next = scopes_map t ctx scope_next in
let new_scope_next = Bindlib.bind_var scope_var new_scope_next in
Bindlib.box_apply2
(fun new_scope_body_expr new_scope_next ->
ScopeDef
{
scope_def with
scope_next = new_scope_next;
scope_body =
{
scope_def.scope_body with
scope_body_expr = new_scope_body_expr;
};
})
new_scope_body_expr new_scope_next
let program_map
(t : 'a -> expr Pos.marked -> expr Pos.marked Bindlib.box)
(ctx : 'a)
(p : program) : program Bindlib.box =
Bindlib.box_apply
(fun new_scopes -> { p with scopes = new_scopes })
(scopes_map t ctx p.scopes)
let optimize_program (p : program) : program =
Bindlib.unbox
(program_map partial_evaluation
{ var_values = VarMap.empty; decl_ctx = p.decl_ctx }
p)
let rec remove_all_logs (e : expr Pos.marked) : expr Pos.marked Bindlib.box =
let pos = Pos.get_position e in
let rec_helper = remove_all_logs in
match Pos.unmark e with
| EVar (x, _) -> evar x pos
| ETuple (args, s_name) -> etuple (List.map rec_helper args) s_name pos
| ETupleAccess (arg, i, s_name, typs) ->
etupleaccess (rec_helper arg) i s_name typs pos
| EInj (arg, i, e_name, typs) -> einj (rec_helper arg) i e_name typs pos
| EMatch (arg, arms, e_name) ->
ematch (rec_helper arg) (List.map rec_helper arms) e_name pos
| EArray args -> earray (List.map rec_helper args) pos
| ELit l -> elit l pos
| EAbs ((binder, binder_pos), typs) ->
let vars, body = Bindlib.unmbind binder in
let new_body = rec_helper body in
let new_binder = Bindlib.bind_mvar vars new_body in
eabs new_binder binder_pos typs pos
| EApp (f, args) -> eapp (rec_helper f) (List.map rec_helper args) pos
| EAssert e1 -> eassert (rec_helper e1) pos
| EOp op -> eop op pos
| EDefault (exceptions, just, cons) ->
edefault
(List.map rec_helper exceptions)
(rec_helper just) (rec_helper cons) pos
| EIfThenElse (e1, e2, e3) ->
eifthenelse (rec_helper e1) (rec_helper e2) (rec_helper e3) pos
| ErrorOnEmpty e1 -> eerroronempty (rec_helper e1) pos