catala/compiler/plugins/explain.ml
Louis Gesbert f2fc79f640 Add some helper functions in a wrapper Map module
and use them throughout. No more `List.map fst (Map.bindings m)` !

Also adds some facilities for direct formatting without going through a list.
2023-07-12 11:51:15 +02:00

1454 lines
49 KiB
OCaml
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2023 Inria, contributor:
Louis Gesbert <louis.gesbert@inria.fr>.
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
open Shared_ast
type flags = {
with_conditions : bool;
with_cleanup : bool;
merge_level : int;
format : [ `Dot | `Convert of string ];
show : string option;
output : string option;
base_src_url : string;
}
(* -- Definition of the lazy interpreter -- *)
let log fmt = Format.ifprintf Format.err_formatter (fmt ^^ "@\n")
let error e = Message.raise_spanned_error (Expr.pos e)
let noassert = true
module Env = struct
type t = Env of (expr, elt) Var.Map.t
and elt = { base : expr * t; mutable reduced : expr * t }
and expr = (dcalc, annot custom) gexpr
and annot = { conditions : (expr * t) list }
let find v (Env t) = Var.Map.find v t
(* let get_bas v t = let v, env = find v t in v, !env *)
let add v e e_env (Env t) =
Env (Var.Map.add v { base = e, e_env; reduced = e, e_env } t)
let empty = Env Var.Map.empty
let join (Env t1) (Env t2) =
Env
(Var.Map.union
(fun _ x1 x2 ->
(* assert (x1 == x2); *)
Some x2)
t1 t2)
let print ppf (Env t) =
Format.pp_print_list ~pp_sep:Format.pp_print_space
(fun ppf v -> Print.var_debug ppf v)
ppf (Var.Map.keys t)
end
type expr = Env.expr
type annot = Env.annot = { conditions : (expr * Env.t) list }
type laziness_level = {
eval_struct : bool;
(* if true, evaluate members of structures, tuples, etc. *)
eval_op : bool;
(* if false, evaluate the operands but keep e.g. `3 + 4` as is *)
eval_match : bool;
eval_default : bool;
(* if false, stop evaluating as soon as you can discriminate with
`EEmptyError` *)
eval_vars : expr Var.t -> bool;
(* if false, variables are only resolved when they point to another
unchanged variable *)
}
let value_level =
{
eval_struct = false;
eval_op = true;
eval_match = true;
eval_default = true;
eval_vars = (fun _ -> true);
}
let add_condition ~condition e =
Mark.map_mark
(fun (Custom { pos; custom = { conditions } }) ->
Custom { pos; custom = { conditions = condition :: conditions } })
e
let add_conditions ~conditions e =
Mark.map_mark
(fun (Custom { pos; custom = { conditions = c } }) ->
Custom { pos; custom = { conditions = conditions @ c } })
e
let neg_op = function
| Op.Xor ->
Some Op.Eq
(* Alright, we are cheating here since the type is wider, but the
transformation preserves the semantics *)
| Op.Lt_int_int -> Some Op.Gte_int_int
| Op.Lt_rat_rat -> Some Op.Gte_rat_rat
| Op.Lt_mon_mon -> Some Op.Gte_mon_mon
| Op.Lt_dat_dat -> Some Op.Gte_dat_dat
| Op.Lt_dur_dur -> Some Op.Gte_dur_dur
| Op.Lte_int_int -> Some Op.Gt_int_int
| Op.Lte_rat_rat -> Some Op.Gt_rat_rat
| Op.Lte_mon_mon -> Some Op.Gt_mon_mon
| Op.Lte_dat_dat -> Some Op.Gt_dat_dat
| Op.Lte_dur_dur -> Some Op.Gt_dur_dur
| Op.Gt_int_int -> Some Op.Lte_int_int
| Op.Gt_rat_rat -> Some Op.Lte_rat_rat
| Op.Gt_mon_mon -> Some Op.Lte_mon_mon
| Op.Gt_dat_dat -> Some Op.Lte_dat_dat
| Op.Gt_dur_dur -> Some Op.Lte_dur_dur
| Op.Gte_int_int -> Some Op.Lt_int_int
| Op.Gte_rat_rat -> Some Op.Lt_rat_rat
| Op.Gte_mon_mon -> Some Op.Lt_mon_mon
| Op.Gte_dat_dat -> Some Op.Lt_dat_dat
| Op.Gte_dur_dur -> Some Op.Lt_dur_dur
| _ -> None
let rec bool_negation e =
match Expr.skip_wrappers e with
| ELit (LBool true), m -> ELit (LBool false), m
| ELit (LBool false), m -> ELit (LBool true), m
| EApp { f = EOp { op = Op.Not; _ }, _; args = [(e, _)] }, m -> e, m
| (EApp { f = EOp { op; tys }, mop; args = [e1; e2] }, m) as e -> (
match op with
| Op.And ->
( EApp
{
f = EOp { op = Op.Or; tys }, mop;
args = [bool_negation e1; bool_negation e2];
},
m )
| Op.Or ->
( EApp
{
f = EOp { op = Op.And; tys }, mop;
args = [bool_negation e1; bool_negation e2];
},
m )
| op -> (
match neg_op op with
| Some op -> EApp { f = EOp { op; tys }, mop; args = [e1; e2] }, m
| None ->
( EApp
{
f = EOp { op = Op.Not; tys = [TLit TBool, Expr.mark_pos m] }, m;
args = [e];
},
m )))
| (_, m) as e ->
( EApp
{
f = EOp { op = Op.Not; tys = [TLit TBool, Expr.mark_pos m] }, m;
args = [e];
},
m )
let rec lazy_eval : decl_ctx -> Env.t -> laziness_level -> expr -> expr * Env.t
=
fun ctx env llevel e0 ->
let eval_to_value ?(eval_default = true) env e =
lazy_eval ctx env { value_level with eval_default } e
in
match e0 with
| EVar v, _ ->
if (not llevel.eval_default) || not (llevel.eval_vars v) then e0, env
else
(* Variables reducing to EEmpty should not propagate to parent EDefault
(?) *)
let env_elt =
try Env.find v env
with Not_found ->
error e0 "Variable %a undefined [@[<hv>%a@]]" Print.var_debug v
Env.print env
in
let e, env1 = env_elt.reduced in
let r, env1 = lazy_eval ctx env1 llevel e in
env_elt.reduced <- r, env1;
r, Env.join env env1
| EApp { f; args }, m -> (
if
(not llevel.eval_default)
&& not (List.equal Expr.equal args [ELit LUnit, m])
(* Applications to () encode thunked default terms *)
then e0, env
else
match eval_to_value env f with
| (EAbs { binder; _ }, _), env ->
let vars, body = Bindlib.unmbind binder in
log "@[<v 2>@[<hov 4>{";
let env =
Seq.fold_left2
(fun env1 var e ->
log "@[<hov 2>LET %a = %a@]@ " Print.var_debug var Expr.format e;
Env.add var e env env1)
env (Array.to_seq vars) (List.to_seq args)
in
log "@]@[<hov 4>IN [%a]@]" (Print.expr ~debug:true ()) body;
let e, env = lazy_eval ctx env llevel body in
log "@]}";
e, env
| ( ( EOp
{
op = (Op.Map | Op.Filter | Op.Reduce | Op.Fold | Op.Length) as op;
tys;
},
m ),
env (* when not llevel.eval_op *) ) -> (
(* Distribute collection operations to the terms rather than use their
runtime implementations *)
let arr = List.hd (List.rev args) in
(* All these ops have the array as last arg *)
let aty = List.hd (List.rev tys) in
match eval_to_value env arr with
| (EArray elts, _), env ->
let eapp f e = EApp { f; args = [e] }, m in
let empty_condition () =
(* Is the expression [length(arr) = 0] *)
let pos = Expr.mark_pos m in
( EApp
{
f =
( EOp
{
op = Op.Eq_int_int;
tys = [TLit TInt, pos; TLit TInt, pos];
},
m );
args =
[
( EApp
{
f = EOp { op = Op.Length; tys = [aty] }, m;
args = [arr];
},
m );
ELit (LInt (Runtime.integer_of_int 0)), m;
];
},
m )
in
let e, env =
match op, args, elts with
| (Op.Map | Op.Filter), _, [] ->
let e = EArray [], m in
add_condition ~condition:(empty_condition (), env) e, env
| (Op.Reduce | Op.Fold), [_; dft; _], [] ->
add_condition ~condition:(empty_condition (), env) dft, env
| Op.Map, [f; _], elts -> (EArray (List.map (eapp f) elts), m), env
| Op.Filter, [f; _], elts ->
let rev_elts, env =
List.fold_left
(fun (elts, env) e ->
let cond = eapp f e in
match lazy_eval ctx env value_level cond with
| (ELit (LBool true), _), _ ->
add_condition ~condition:(cond, env) e :: elts, env
| (ELit (LBool false), _), _ -> elts, env
| _ -> assert false)
([], env) elts
in
(EArray (List.rev rev_elts), m), env
(* Note: no annots for removed terms, even if the result is empty *)
| Op.Reduce, [f; _; _], elt0 :: elts ->
let e =
List.fold_left
(fun acc elt -> EApp { f; args = [acc; elt] }, m)
elt0 elts
in
e, env
| Op.Fold, [f; base; _], elts ->
let e =
List.fold_left
(fun acc elt -> EApp { f; args = [acc; elt] }, m)
base elts
in
e, env
| Op.Length, [_], elts ->
(ELit (LInt (Runtime.integer_of_int (List.length elts))), m), env
| _ -> assert false
in
(* We did a transformation (removing the outer operator), but further
evaluation may be needed to guarantee that [llevel] is reached *)
lazy_eval ctx env { llevel with eval_match = true } e
| _ -> (EApp { f; args }, m), env)
| ((EOp { op; _ }, m) as f), env ->
let env, args =
List.fold_left_map
(fun env e ->
let e, env = lazy_eval ctx env llevel e in
env, e)
env args
in
if not llevel.eval_op then (EApp { f; args }, m), env
else
let renv = ref env in
(* Dirty workaround returning env and conds from evaluate_operator *)
let eval e =
let e, env = lazy_eval ctx !renv llevel e in
renv := env;
e
in
let e = Interpreter.evaluate_operator eval op m args in
e, !renv
(* fixme: this forwards eempty *)
| e, _ -> error e "Invalid apply on %a" Expr.format e)
| (EAbs _ | ELit _ | EOp _ | EEmptyError), _ -> e0, env (* these are values *)
| (EStruct _ | ETuple _ | EInj _ | EArray _), _ ->
if not llevel.eval_struct then e0, env
else
let env, e =
Expr.map_gather ~acc:env ~join:Env.join
~f:(fun e ->
let e, env = lazy_eval ctx env llevel e in
env, Expr.box e)
e0
in
Expr.unbox e, env
| EStructAccess { e; name; field }, _ -> (
if not llevel.eval_default then e0, env
else
match eval_to_value env e with
| (EStruct { name = n; fields }, _), env when StructName.equal name n ->
let e, env =
lazy_eval ctx env llevel (StructField.Map.find field fields)
in
e, env
| _ -> e0, env)
| ETupleAccess { e; index; size }, _ -> (
if not llevel.eval_default then e0, env
else
match eval_to_value env e with
| (ETuple es, _), env when List.length es = size ->
lazy_eval ctx env llevel (List.nth es index)
| e, _ -> error e "Invalid tuple access on %a" Expr.format e)
| EMatch { e; name; cases }, _ -> (
if not llevel.eval_match then e0, env
else
match eval_to_value env e with
| (EInj { name = n; cons; e = e1 }, m), env when EnumName.equal name n ->
let condition = e, env in
(* FIXME: condition should be "e TEST_MATCH n" but we don't have a
concise expression to express that *)
let e1, env =
lazy_eval ctx env llevel
(EApp { f = EnumConstructor.Map.find cons cases; args = [e1] }, m)
in
add_condition ~condition e1, env
| e, _ -> error e "Invalid match argument %a" Expr.format e)
| EDefault { excepts; just; cons }, m -> (
let excs =
List.filter_map
(fun e ->
match eval_to_value env e ~eval_default:false with
| (EEmptyError, _), _ -> None
| e -> Some e)
excepts
in
match excs with
| [] -> (
match eval_to_value env just with
| (ELit (LBool true), _), _ ->
let condition = just, env in
let e, env = lazy_eval ctx env llevel cons in
add_condition ~condition e, env
| (ELit (LBool false), _), _ -> (EEmptyError, m), env
(* Note: conditions for empty are skipped *)
| e, _ -> error e "Invalid exception justification %a" Expr.format e)
| [(e, env)] ->
log "@[<hov 5>EVAL %a@]" Expr.format e;
lazy_eval ctx env llevel e
| _ :: _ :: _ ->
Message.raise_multispanned_error
((None, Expr.mark_pos m)
:: List.map (fun (e, _) -> None, Expr.pos e) excs)
"Conflicting exceptions")
| EIfThenElse { cond; etrue; efalse }, _ -> (
match eval_to_value env cond with
| (ELit (LBool true), _), _ ->
let condition = cond, env in
let e, env = lazy_eval ctx env llevel etrue in
add_condition ~condition e, env
| (ELit (LBool false), m), _ -> (
let condition = bool_negation cond, env in
let e, env = lazy_eval ctx env llevel efalse in
match efalse with
(* The negated condition is not added for nested [else if] to reduce
verbosity *)
| EIfThenElse _, _ -> e, env
| _ -> add_condition ~condition e, env)
| e, _ -> error e "Invalid condition %a" Expr.format e)
| EErrorOnEmpty e, _ -> (
match eval_to_value env e ~eval_default:false with
| ((EEmptyError, _) as e'), _ ->
(* This does _not_ match the eager semantics ! *)
error e' "This value is undefined %a" Expr.format e
| e, env -> lazy_eval ctx env llevel e)
| EAssert e, m -> (
if noassert then (ELit LUnit, m), env
else
match eval_to_value env e with
| (ELit (LBool true), m), env -> (ELit LUnit, m), env
| (ELit (LBool false), _), _ ->
error e "Assert failure (%a)" Expr.format e error e
"Assert failure (%a)" Expr.format e
| _ -> error e "Invalid assertion condition %a" Expr.format e)
| EExternal _, _ -> assert false (* todo *)
| _ -> .
let result_level base_vars =
{
value_level with
eval_struct = true;
eval_op = false;
eval_vars = (fun v -> not (Var.Set.mem v base_vars));
}
let interpret_program (prg : ('dcalc, 'm) gexpr program) (scope : ScopeName.t) :
('t, 'm) gexpr * Env.t =
let ctx = prg.decl_ctx in
let all_env, scopes =
Scope.fold_left prg.code_items ~init:(Env.empty, ScopeName.Map.empty)
~f:(fun (env, scopes) item v ->
match item with
| ScopeDef (name, body) ->
let e = Scope.to_expr ctx body (Scope.get_body_mark body) in
let e = Expr.remove_logging_calls (Expr.unbox e) in
( Env.add v (Expr.unbox e) env env,
ScopeName.Map.add name (v, body.scope_body_input_struct) scopes )
| Topdef (_, _, e) -> Env.add v e env env, scopes)
in
let scope_v, _scope_arg_struct = ScopeName.Map.find scope scopes in
let e, env = (Env.find scope_v all_env).base in
log "=====================";
log "%a" (Print.expr ~debug:true ()) e;
log "=====================";
(* let m = Mark.get e in *)
(* let application_arg =
* Expr.estruct scope_arg_struct
* (StructField.Map.map
* (function
* | TArrow (ty_in, ty_out), _ ->
* Expr.make_abs
* [| Var.make "_" |]
* (Bindlib.box EEmptyError, Expr.with_ty m ty_out)
* ty_in (Expr.mark_pos m)
* | ty -> Expr.evar (Var.make "undefined_input") (Expr.with_ty m ty))
* (StructName.Map.find scope_arg_struct ctx.ctx_structs))
* m
* in *)
match e with
| EAbs { binder; _ }, _ ->
let _vars, e = Bindlib.unmbind binder in
let rec get_vars base_vars env = function
| EApp { f = EAbs { binder; _ }, _; args = [arg] }, _ ->
let vars, e = Bindlib.unmbind binder in
let var = vars.(0) in
let base_vars =
match Expr.skip_wrappers arg with
| ELit _, _ -> Var.Set.add var base_vars
| _ -> base_vars
in
let env = Env.add var arg env env in
get_vars base_vars env e
| e -> base_vars, env, e
in
let base_vars, env, e = get_vars Var.Set.empty env e in
lazy_eval ctx env (result_level base_vars) e
| _ -> assert false
let print_value_with_env ctx ppf env expr =
let already_printed = ref Var.Set.empty in
let rec aux env ppf expr =
Print.expr ~debug:true () ppf expr;
Format.pp_print_cut ppf ();
let vars = Var.Set.diff (Expr.free_vars expr) !already_printed in
Var.Set.iter
(fun v ->
let e, env = (Env.find v env).reduced in
let e, env = lazy_eval ctx env (result_level Var.Set.empty) e in
Format.fprintf ppf "@[<hov 2>%a %a =@ %a =@ %a@]@,@," Print.punctuation
"»" Print.var_debug v Expr.format
(fst (lazy_eval ctx env value_level e))
(aux env) e)
vars;
already_printed := Var.Set.union !already_printed vars;
Format.pp_print_cut ppf ()
in
Format.pp_open_vbox ppf 2;
aux env ppf expr;
Format.pp_close_box ppf ()
module V = struct
type t = expr
let compare a b = Expr.compare a b
let hash = function
| EVar v, _ -> Var.hash v
| EAbs { tys; _ }, _ -> Hashtbl.hash tys
| e, _ -> Hashtbl.hash e
let equal a b = Expr.equal a b
let format = Expr.format
end
module E = struct
type hand_side = Lhs of string | Rhs of string
type t = { side : hand_side option; condition : bool }
let compare x y =
match Bool.compare x.condition y.condition with
| 0 ->
Option.compare
(fun x y ->
match x, y with
| Lhs s, Lhs t | Rhs s, Rhs t -> String.compare s t
| Lhs _, Rhs _ -> -1
| Rhs _, Lhs _ -> 1)
x.side y.side
| n -> n
let default = { side = None; condition = false }
end
module G = Graph.Persistent.Digraph.AbstractLabeled (V) (E)
let op_kind = function
| Op.Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _ | Add_dur_dur
| Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
| Sub_dur_dur ->
`Sum
| Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Div_int_int
| Div_rat_rat | Div_mon_rat | Div_mon_mon | Div_dur_dur ->
`Product
| Round_mon | Round_rat -> `Round
| Map | Filter | Reduce | Fold -> `Fct
| _ -> `Other
module GTopo = Graph.Topological.Make (G)
let to_graph ctx env expr =
let rec aux env g e =
(* lazy_eval ctx env (result_level base_vars) e *)
match Expr.skip_wrappers e with
| ( EApp
{
f = EOp { op = ToRat_int | ToRat_mon | ToMoney_rat; _ }, _;
args = [arg];
},
_ ) ->
aux env g arg
(* we skip conversions *)
| ELit l, _ ->
let v = G.V.create e in
G.add_vertex g v, v
| (EVar var, _) as e ->
let v = G.V.create e in
let g = G.add_vertex g v in
let child, env = (Env.find var env).base in
let g, child_v = aux env g child in
G.add_edge g v child_v, v
| EApp { f = EOp { op = _; _ }, _; args }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let g, children = List.fold_left_map (aux env) g args in
List.fold_left (fun g -> G.add_edge g v) g children, v
| EInj { e; _ }, _ -> aux env g e
| EStruct { fields; _ }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let args = StructField.Map.values fields in
let g, children = List.fold_left_map (aux env) g args in
List.fold_left (fun g -> G.add_edge g v) g children, v
| _ ->
Format.eprintf "%a" Expr.format e;
assert false
in
let base_g, _ = aux env G.empty expr in
base_g
let rec is_const e =
match Expr.skip_wrappers e with
| ELit _, _ -> true
| EInj { e; _ }, _ -> is_const e
| EStruct { fields; _ }, _ ->
StructField.Map.for_all (fun _ e -> is_const e) fields
| EArray el, _ -> List.for_all is_const el
| _ -> false
let program_to_graph
options
(prg : (dcalc, 'm) gexpr program)
(scope : ScopeName.t) : G.t * expr Var.Set.t * Env.t =
let ctx = prg.decl_ctx in
let customize =
Expr.map_marks ~f:(fun m ->
Custom { pos = Expr.mark_pos m; custom = { conditions = [] } })
in
let all_env, scopes =
Scope.fold_left prg.code_items ~init:(Env.empty, ScopeName.Map.empty)
~f:(fun (env, scopes) item v ->
match item with
| ScopeDef (name, body) ->
let e = Scope.to_expr ctx body (Scope.get_body_mark body) in
let e = customize (Expr.unbox e) in
let e = Expr.remove_logging_calls (Expr.unbox e) in
let e = Expr.rename_vars (Expr.unbox e) in
( Env.add (Var.translate v) (Expr.unbox e) env env,
ScopeName.Map.add name (v, body.scope_body_input_struct) scopes )
| Topdef (_, _, e) ->
Env.add (Var.translate v) (Expr.unbox (customize e)) env env, scopes)
in
let scope_v, _scope_arg_struct = ScopeName.Map.find scope scopes in
let e, env = (Env.find (Var.translate scope_v) all_env).base in
let e =
match e with
| EAbs { binder; _ }, _ ->
let _vars, e = Bindlib.unmbind binder in
e
| _ -> assert false
in
let rec get_vars base_vars env = function
| EApp { f = EAbs { binder; _ }, _; args = [arg] }, _ ->
let vars, e = Bindlib.unmbind binder in
let var = vars.(0) in
let base_vars =
if is_const arg then Var.Set.add var base_vars else base_vars
in
let env = Env.add var arg env env in
get_vars base_vars env e
| e -> base_vars, env, e
in
let base_vars, env, e = get_vars Var.Set.empty env e in
let e1, env = lazy_eval ctx env (result_level base_vars) e in
let level =
{
value_level with
eval_struct = false;
eval_op = false;
eval_match = false;
eval_vars = (fun v -> false);
}
in
let rec aux parent (g, var_vertices, env0) e =
let e, env0 = lazy_eval ctx env0 level e in
let m = Mark.get e in
let (Custom { custom = { conditions; _ }; _ }) = m in
let g, var_vertices, env0 =
(* add conditions *)
if not options.with_conditions then g, var_vertices, env0
else
match parent with
| None -> g, var_vertices, env0
| Some parent ->
List.fold_left
(fun (g, var_vertices, env0) (econd, env) ->
let (g, var_vertices, env), vcond =
aux (Some parent) (g, var_vertices, env) econd
in
( G.add_edge_e g
(G.E.create parent { side = None; condition = true } vcond),
var_vertices,
Env.join env0 env ))
(g, var_vertices, env0) conditions
in
let e = Mark.set m (Expr.skip_wrappers e) in
match e with
| ( EApp
{
f = EOp { op = ToRat_int | ToRat_mon | ToMoney_rat; _ }, _;
args = [arg];
},
_ ) ->
aux parent (g, var_vertices, env0) (Mark.set m arg)
(* we skip conversions *)
| ELit l, _ ->
let v = G.V.create e in
(G.add_vertex g v, var_vertices, env0), v
| EVar var, _ -> (
try (g, var_vertices, env0), Var.Map.find var var_vertices
with Not_found -> (
try
let child, env = (Env.find var env0).base in
let m = Mark.get child in
let v = G.V.create (Mark.set m e) in
let g = G.add_vertex g v in
let (g, var_vertices, env), child_v =
aux (Some v) (g, var_vertices, Env.join env0 env) child
in
let var_vertices =
(* Duplicates non-base constant var nodes *)
if Var.Set.mem var base_vars then var_vertices
else
let rec is_lit v =
match G.V.label v with
| ELit _, _ -> true
| EVar var, _ when not (Var.Set.mem var base_vars) -> (
match G.succ g v with [v] -> is_lit v | _ -> false)
| _ -> false
in
if is_lit child_v then var_vertices
(* This duplicates constant var nodes *)
else Var.Map.add var v var_vertices
in
(G.add_edge g v child_v, var_vertices, env), v
with Not_found ->
Message.emit_warning "VAR NOT FOUND: %a" Print.var var;
let v = G.V.create e in
let g = G.add_vertex g v in
(g, var_vertices, env), v))
| ( EApp
{
f = EOp { op = Map | Filter | Reduce | Fold; _ }, _;
args = _ :: args;
},
_ ) ->
(* First argument (which is a function) is ignored *)
let v = G.V.create e in
let g = G.add_vertex g v in
let (g, var_vertices, env), children =
List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
in
( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
v )
| EApp { f = EOp { op; _ }, _; args = [lhs; rhs] }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let (g, var_vertices, env), lhs =
aux (Some v) (g, var_vertices, env0) lhs
in
let (g, var_vertices, env), rhs =
aux (Some v) (g, var_vertices, env) rhs
in
let lhs_label, rhs_label =
match op with
| Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _ | Add_dur_dur
->
Some (E.Lhs ""), Some (E.Rhs "")
| Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
| Sub_dur_dur ->
Some (E.Lhs ""), Some (E.Rhs "")
| Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int ->
Some (E.Lhs ""), Some (E.Rhs "")
| Div_int_int | Div_rat_rat | Div_mon_rat | Div_mon_mon | Div_dur_dur ->
Some (E.Lhs ""), Some (E.Rhs "")
| _ -> None, None
in
let g =
G.add_edge_e g
(G.E.create v { side = lhs_label; condition = false } lhs)
in
let g =
G.add_edge_e g
(G.E.create v { side = rhs_label; condition = false } rhs)
in
(g, var_vertices, env), v
| EApp { f = EOp { op = _; _ }, _; args }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let (g, var_vertices, env), children =
List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
in
( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
v )
| EInj { e; _ }, _ -> aux parent (g, var_vertices, env0) e
| EStruct { fields; _ }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let args = StructField.Map.values fields in
let (g, var_vertices, env), children =
List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
in
( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
v )
| EArray elts, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let (g, var_vertices, env), children =
List.fold_left_map (aux (Some v)) (g, var_vertices, env0) elts
in
( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
v )
| EAbs _, _ ->
(g, var_vertices, env), G.V.create e (* (testing -> ignored) *)
| EMatch { name; e; cases }, _ -> aux parent (g, var_vertices, env0) e
| EStructAccess { e; field; _ }, _ ->
let v = G.V.create e in
let g = G.add_vertex g v in
let (g, var_vertices, env), child =
aux (Some v) (g, var_vertices, env0) e
in
(G.add_edge g v child, var_vertices, env), v
| _ ->
Format.eprintf "%a" Expr.format e;
assert false
in
let (g, vmap, env), _ = aux None (G.empty, Var.Map.empty, env) e in
log "BASE: @[<v>%a@]"
(Format.pp_print_list Print.var)
(Var.Set.elements base_vars);
g, base_vars, env
let reverse_graph g =
G.fold_edges_e
(fun e g ->
G.add_edge_e (G.remove_edge_e g e)
(G.E.create (G.E.dst e) (G.E.label e) (G.E.src e)))
g g
let subst_by v1 e2 e =
let rec f = function
| EVar v, m when Var.equal v v1 -> Expr.box e2
| e -> Expr.map ~f e
in
Expr.unbox (f e)
let map_vertices f g =
G.fold_vertex
(fun v g ->
let v' = G.V.create (f v) in
let g =
G.fold_pred_e
(fun e g -> G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v'))
g v g
in
let g =
G.fold_succ_e
(fun e g -> G.add_edge_e g (G.E.create v' (G.E.label e) (G.E.dst e)))
g v g
in
G.remove_vertex g v)
g g
let rec graph_cleanup options g base_vars =
(* let _g =
* let module GCtr = Graph.Contraction.Make (G) in
* GCtr.contract
* (fun e ->
* G.E.label e = None
* &&
* match G.V.label (G.E.src e), G.V.label (G.E.dst e) with
* | (EVar _, _), (EVar _, _) -> true
* | ( (EApp { f = EOp { op = op1; _ }, _; args = [_; _] }, _),
* (EApp { f = EOp { op = op2; _ }, _; args = [_; _] }, _) ) -> (
* match op_kind op1, op_kind op2 with
* | `Sum, `Sum -> true
* | `Prod, `Prod -> true
* | _ -> false)
* | _ -> false)
* g
* in *)
let module GTop = Graph.Topological.Make (G) in
let module VMap = Map.Make (struct
include G.V
let format ppf v = V.format ppf (G.V.label v)
end) in
let g, vmap =
(* Remove separate nodes for variable literal values *)
G.fold_vertex
(fun v (g, vmap) ->
match G.V.label v with
(* | (ELit _, _), [EVar _, _] -> G.remove_vertex g v *)
| ELit _, m ->
( G.remove_vertex g v,
(* Forward position of the deleted literal to its parent *)
List.fold_left
(fun vmap v ->
let out =
G.succ_e g v
|> List.filter (fun e -> not (G.E.label e).condition)
in
match out with [_] -> VMap.add v m vmap | _ -> vmap)
vmap (G.pred g v) )
| _, _ -> g, vmap)
g (g, VMap.empty)
in
let g =
map_vertices
(fun v ->
match VMap.find_opt v vmap with
| Some m -> Mark.set m (G.V.label v)
| None -> G.V.label v)
g
in
let g =
(* Merge intermediate operations *)
let g = reverse_graph g in
GTop.fold (* Variables -> result order *)
(fun v g ->
let succ = G.succ g v in
match G.V.label v, succ, List.map G.V.label succ with
| (EApp { f = EOp _, _; _ }, _), [v2], [(EApp { f = EOp _, _; _ }, _)]
->
let g =
List.fold_left
(fun g e ->
G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
g (G.pred_e g v)
in
G.remove_vertex g v
| _ -> g)
g g
|> reverse_graph
in
let g, substs =
(* Remove intermediate variables *)
GTop.fold (* Result -> variables order *)
(fun v (g, substs) ->
let succ_e = G.succ_e g v in
if List.exists (fun ed -> (G.E.label ed).condition) succ_e then
g, substs
else
let succ = List.map G.E.dst succ_e in
match G.V.label v, succ, List.map G.V.label succ with
| (EVar var1, m1), [v2], [(EVar var2, m2)]
when not (Var.Set.mem var1 base_vars) ->
let g =
List.fold_left
(fun g e ->
G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
g (G.pred_e g v)
in
( G.remove_vertex g v,
fun e -> subst_by var1 (EVar var2, m2) (substs e) )
| (EVar var1, m1), [v2], [((EApp _, _) as e2)]
when not (Var.Set.mem var1 base_vars) -> (
let pred_e = G.pred_e g v in
match pred_e, List.map (fun e -> G.V.label (G.E.src e)) pred_e with
| [pred_e], [(EApp _, _)]
when G.E.src pred_e |> G.out_degree g <= options.merge_level ->
(* Arbitrary heuristics: don't merge if the child node already has
> level parents *)
let g =
G.add_edge_e g
(G.E.create (G.E.src pred_e) (G.E.label pred_e) v2)
in
G.remove_vertex g v, fun e -> subst_by var1 e2 (substs e)
| _ -> g, substs)
| _ -> g, substs)
g (g, G.V.label)
in
let g = map_vertices substs g in
let g =
(* Merge intermediate operations (again) *)
let g = reverse_graph g in
GTop.fold (* Variables -> result order *)
(fun v g ->
let succ = G.succ g v in
match G.V.label v, succ, List.map G.V.label succ with
| (EApp { f = EOp _, _; _ }, _), [v2], [(EApp { f = EOp _, _; _ }, _)]
->
let g =
List.fold_left
(fun g e ->
G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
g (G.pred_e g v)
in
G.remove_vertex g v
| _ -> g)
g g
|> reverse_graph
in
let g =
let module EMap = Map.Make (struct
type t = expr
let compare = Expr.compare
let format = Expr.format
end) in
(* Merge duplicate nodes *)
let emap =
G.fold_vertex
(fun v expr_map ->
let e = G.V.label v in
EMap.update e
(function None -> Some [v] | Some l -> Some (v :: l))
expr_map)
g EMap.empty
in
EMap.fold
(fun expr vs g ->
match vs with
| [] | [_] -> g
| v0 :: vn ->
let e_in =
List.map (G.pred_e g) vs
|> List.flatten
|> List.map (fun e -> G.E.create (G.E.src e) (G.E.label e) v0)
|> List.sort_uniq G.E.compare
in
let e_out =
List.map (G.succ_e g) vs
|> List.flatten
|> List.map (fun e -> G.E.create v0 (G.E.label e) (G.E.dst e))
|> List.sort_uniq G.E.compare
in
let g = List.fold_left G.remove_vertex g vn in
let g = List.fold_left G.remove_edge_e g (G.succ_e g v0) in
let g = List.fold_left G.remove_edge_e g (G.pred_e g v0) in
let g = List.fold_left G.add_edge_e g e_in in
let g = List.fold_left G.add_edge_e g e_out in
g)
emap g
in
g
let expr_to_dot_label0 :
type a.
Cli.backend_lang ->
decl_ctx ->
Env.t ->
Format.formatter ->
(a, 't) gexpr ->
unit =
fun lang ctx env ->
let xlang ~en ?(pl = en) ~fr () =
match lang with Cli.Fr -> fr | Cli.En -> en | Cli.Pl -> pl
in
let rec aux_value : type a t. Format.formatter -> (a, t) gexpr -> unit =
fun ppf e -> Print.UserFacing.value ~fallback lang ppf e
and fallback : type a t. Format.formatter -> (a, t) gexpr -> unit =
fun ppf e ->
let module E = Print.ExprGen (struct
let var ppf v = String.format ppf (Bindlib.name_of v)
let lit = Print.UserFacing.lit lang
let operator : type x. Format.formatter -> x operator -> unit =
fun ppf o ->
let open Op in
let str =
match o with
| Eq_int_int | Eq_rat_rat | Eq_mon_mon | Eq_dur_dur | Eq_dat_dat | Eq
->
"="
| Minus_int | Minus_rat | Minus_mon | Minus_dur | Minus -> "-"
| ToRat_int | ToRat_mon | ToRat -> ""
| ToMoney_rat | ToMoney -> ""
| Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _
| Add_dur_dur | Add ->
"+"
| Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
| Sub_dur_dur | Sub ->
"-"
| Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Mult ->
"×"
| Div_int_int | Div_rat_rat | Div_mon_mon | Div_mon_rat | Div_dur_dur
| Div ->
"/"
| Lt_int_int | Lt_rat_rat | Lt_mon_mon | Lt_dur_dur | Lt_dat_dat | Lt
->
"<"
| Lte_int_int | Lte_rat_rat | Lte_mon_mon | Lte_dur_dur | Lte_dat_dat
| Lte ->
"<="
| Gt_int_int | Gt_rat_rat | Gt_mon_mon | Gt_dur_dur | Gt_dat_dat | Gt
->
">"
| Gte_int_int | Gte_rat_rat | Gte_mon_mon | Gte_dur_dur | Gte_dat_dat
| Gte ->
">="
| Concat -> "++"
| Not -> xlang () ~en:"not" ~fr:"non"
| Length -> xlang () ~en:"length" ~fr:"nombre"
| GetDay -> xlang () ~en:"day_of_month" ~fr:"jour_du_mois"
| GetMonth -> xlang () ~en:"month" ~fr:"mois"
| GetYear -> xlang () ~en:"year" ~fr:"année"
| FirstDayOfMonth ->
xlang () ~en:"first_day_of_month" ~fr:"premier_jour_du_mois"
| LastDayOfMonth ->
xlang () ~en:"last_day_of_month" ~fr:"dernier_jour_du_mois"
| Round_rat | Round_mon | Round -> xlang () ~en:"round" ~fr:"arrondi"
| Log _ -> xlang () ~en:"Log" ~fr:"Journal"
| And -> xlang () ~en:"and" ~fr:"et"
| Or -> xlang () ~en:"or" ~fr:"ou"
| Xor -> xlang () ~en:"xor" ~fr:"ou bien"
| Map -> xlang () ~en:"on_every" ~fr:"pour_chaque"
| Reduce -> xlang () ~en:"reduce" ~fr:"réunion"
| Filter -> xlang () ~en:"filter" ~fr:"filtre"
| Fold -> xlang () ~en:"fold" ~fr:"pliage"
| HandleDefault -> ""
| HandleDefaultOpt -> ""
| ToClosureEnv -> ""
| FromClosureEnv -> ""
in
Format.pp_print_string ppf str
let pre_map = Expr.skip_wrappers
let bypass : type a t. Format.formatter -> (a, t) gexpr -> bool =
fun ppf e ->
match Mark.remove e with
| ELit _ | EArray _ | ETuple _ | EStruct _ | EInj _ | EEmptyError
| EAbs _ | EExternal _ ->
aux_value ppf e;
true
| EMatch { e; cases; _ } ->
let cases =
List.map
(function
| cons, (EAbs { binder; _ }, _) ->
cons, snd (Bindlib.unmbind binder)
| cons, e -> cons, e)
(EnumConstructor.Map.bindings cases)
in
if
List.for_all
(function _, (ELit (LBool _), _) -> true | _ -> false)
cases
then (
let cases =
List.filter_map
(function c, (ELit (LBool true), _) -> Some c | _ -> None)
cases
in
Format.fprintf ppf "%a @<1>%s @[<hov>%a@]" aux_value e ""
(Format.pp_print_list
~pp_sep:(fun ppf () ->
Format.fprintf ppf " %t@ " (fun ppf -> operator ppf Or))
EnumConstructor.format)
cases;
true)
else false
| _ -> false
end) in
E.expr ppf e
in
aux_value
let rec expr_to_dot_label lang ctx env ppf e =
let print_expr = expr_to_dot_label lang ctx env in
let e = Expr.skip_wrappers e in
match e with
| EVar v, _ ->
let e, _ = lazy_eval ctx env value_level e in
Format.fprintf ppf "%a = %a" String.format (Bindlib.name_of v)
(expr_to_dot_label0 lang ctx env)
e
| EStruct { name; fields }, _ ->
let pr ppf =
Format.fprintf ppf "{ %a | { { %a } | { %a }}}" StructName.format name
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
(fun ppf fld ->
StructField.format ppf fld;
Format.pp_print_string ppf "\\l"))
(StructField.Map.keys fields)
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
(fun ppf -> function
| ((EVar _ | ELit _ | EInj { e = (EVar _ | ELit _), _; _ }), _) as
e ->
print_expr ppf e;
Format.pp_print_string ppf "\\l"
| _ -> Format.pp_print_string ppf "\\l"))
(StructField.Map.values fields)
in
Format.pp_print_string ppf (Message.unformat pr)
| EArray elts, _ ->
let pr ppf =
Format.fprintf ppf "{ %a }"
(Format.pp_print_list
~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
(fun ppf -> function
| ((EVar _ | ELit _), _) as e -> print_expr ppf e
| _ -> Format.pp_print_string ppf ""))
elts
in
Format.pp_print_string ppf (Message.unformat pr)
| e -> Format.fprintf ppf "%a@," (expr_to_dot_label0 lang ctx env) e
let to_dot lang ppf ctx env base_vars g ~base_src_url =
let module GPr = Graph.Graphviz.Dot (struct
include G
let print_expr env ctx lang ppf e =
let out_funs = Format.pp_get_formatter_out_functions ppf () in
Format.pp_set_formatter_out_functions ppf
{
out_funs with
Format.out_newline = (fun () -> out_funs.out_string "\\l" 0 2);
};
expr_to_dot_label env ctx lang ppf e;
Format.pp_print_flush ppf ();
Format.pp_set_formatter_out_functions ppf out_funs
let graph_attributes _ = [ (* `Rankdir `LeftToRight *) ]
let default_vertex_attributes _ = []
let vertex_label v =
let print_expr = print_expr lang ctx env in
match G.V.label v with
| (EVar v, _) as e ->
Format.asprintf "%a = %a" String.format (Bindlib.name_of v) print_expr
(fst (lazy_eval ctx env value_level e))
| e -> Format.asprintf "%a" print_expr e
let vertex_name v = Printf.sprintf "x%03d" (G.V.hash v)
let vertex_attributes v =
let e = V.label v in
let pos = Expr.pos e in
let loc_text =
Re.replace_string
Re.(compile (char '\n'))
~by:"&#10;"
(String.concat "\n» " (List.rev (Pos.get_law_info pos)) ^ "\n")
in
`Label (vertex_label v (* ^ "\n" ^ loc_text *))
:: `Comment loc_text
(* :: `Url
* ("http://localhost:8080/fr/examples/housing-benefits#"
* ^ Re.(
* replace_string
* (compile
* (seq [char '/'; rep1 (diff any (char '/')); str "/../"]))
* ~by:"/" (Pos.get_file pos))
* ^ "-"
* ^ string_of_int (Pos.get_start_line pos)) *)
:: `Url
(base_src_url
^ "/"
^ Pos.get_file pos
^ "#L"
^ string_of_int (Pos.get_start_line pos))
:: `Fontname "DejaVu Sans Mono"
::
(match G.V.label v with
| EVar var, _ ->
if Var.Set.mem var base_vars then
[`Style `Filled; `Fillcolor 0xffaa55; `Shape `Box]
else if
List.exists (fun e -> not (G.E.label e).condition) (G.succ_e g v)
then
(* non-constants *)
[`Style `Filled; `Fillcolor 0xffee99; `Shape `Box]
else (* Constants *)
[`Style `Filled; `Fillcolor 0x77aaff; `Shape `Note]
| EStruct _, _ | EArray _, _ -> [`Shape `Record]
| EApp { f = EOp { op; _ }, _; _ }, _ -> (
match op_kind op with
| `Sum | `Product | _ -> [`Shape `Box] (* | _ -> [] *))
| _ -> [])
let get_subgraph v =
match G.V.label v with
| EVar var, _ -> (
if Var.Set.mem var base_vars then
Some
{
Graph.Graphviz.DotAttributes.sg_name = "inputs";
sg_attributes = [];
sg_parent = None;
}
else
match List.map G.V.label (G.succ g v) with
(* | [] | [ELit _, _] ->
* Some
* {
* Graph.Graphviz.DotAttributes.sg_name = "constants";
* sg_attributes = [`Shape `Box];
* sg_parent = None;
* } *)
| _ -> None)
| _ -> None
let default_edge_attributes _ = []
let edge_attributes e =
match E.label e with
| { condition = true; _ } ->
[`Style `Dashed; `Penwidth 5.; `Color 0xff7700; `Arrowhead `Odot]
| { side = Some (Lhs s | Rhs s); _ } ->
[ (* `Label s; `Color 0xbb7700 *) ]
| _ -> []
end) in
GPr.fprint_graph ppf (reverse_graph g)
(* -- Plugin registration -- *)
let options =
let open Cmdliner in
let conditions =
Arg.(
value
& flag
& info ["conditions"]
~doc:
"Include boolean conditions used to choose the specific formula \
nodes (with dashed lines) in the resulting graph. Without this, \
only the nodes contributing to the actual calculation are shown.")
in
let no_cleanup =
Arg.(
value
& flag
& info ["no-cleanup"]
~doc:
"Disable automatic cleanup of intermediate computation nodes. Very \
verbose but sometimes useful for debugging.")
in
let merge_level =
Arg.(
value
& opt int 2
& info ["merge-level"]
~doc:
"Determines an internal threshold to the heuristics for merging \
intermediate nodes with as many parents. Higher means more \
aggressive merges.")
in
let format =
let mkinfo s =
( `Convert s,
Arg.info [s]
~doc:
(Printf.sprintf
"Outputs a compiled $(b,.%s) file instead of a $(b,.dot) file \
(requires $(i,graphviz) to be installed)."
s) )
in
Arg.(
value
& vflag `Dot
[
( `Dot,
info ["dot"]
~doc:"Output the graph in dot format (this is the default)" );
mkinfo "svg";
mkinfo "png";
mkinfo "pdf";
])
in
let show =
Arg.(
value
& opt ~vopt:(Some "xdot") (some string) None
& info ["show"]
~doc:"Opens the resulting graph in the given command immediately.")
in
let base_src_url =
Arg.(
value
& opt string "https://github.com/CatalaLang/catala/blob/master"
& info ["url-base"] ~docv:"URL"
~doc:
"Base URL that can be used to browse the Catala code. Nodes will \
link to $(i,URL)/relative/filename.catala_xx#LNN where NN is the \
line number in the file")
in
let f with_conditions no_cleanup merge_level format show output base_src_url =
{
with_conditions;
with_cleanup = not no_cleanup;
merge_level;
format;
show;
output;
base_src_url;
}
in
Term.(
const f
$ conditions
$ no_cleanup
$ merge_level
$ format
$ show
$ Cli.Flags.output
$ base_src_url)
let run link_modules optimize ex_scope explain_options global_options =
Interpreter.load_runtime_modules link_modules;
let prg, ctx, _ =
Driver.Passes.dcalc global_options ~link_modules ~optimize
~check_invariants:false
in
let scope = Driver.Commands.get_scope_uid ctx ex_scope in
(* let result_expr, env = interpret_program prg scope in *)
let g, base_vars, env = program_to_graph explain_options prg scope in
log "Base variables detected: @[<hov>%a@]"
(Format.pp_print_list Print.var)
(Var.Set.elements base_vars);
let g =
if explain_options.with_cleanup then
graph_cleanup explain_options g base_vars
else g
in
let lang = Driver.get_lang global_options global_options.Cli.input_file in
let dot_content =
to_dot lang Format.str_formatter prg.decl_ctx env base_vars g
~base_src_url:explain_options.base_src_url;
Format.flush_str_formatter ()
|> Re.(replace_string (compile (seq [bow; str "comment="])) ~by:"tooltip=")
in
let with_dot_file =
match explain_options with
| { format = `Convert _; _ } | { show = Some _; output = None; _ } ->
File.with_temp_file "catala-explain" "dot" ~contents:dot_content
| { output; _ } ->
let _, with_out = Driver.Commands.get_output global_options output in
with_out (fun oc -> output_string oc dot_content);
fun f -> f (Option.value ~default:"-" output)
in
with_dot_file
@@ fun dotfile ->
(match explain_options.format with
| `Convert fmt ->
let _, with_out =
Driver.Commands.get_output global_options explain_options.output
in
with_out (fun oc ->
output_string oc (File.process_out "dot" ["-T" ^ fmt; dotfile]))
| `Dot -> ());
match explain_options.show with
| None -> ()
| Some cmd ->
raise (Cli.Exit_with (Sys.command (cmd ^ " " ^ Filename.quote dotfile)))
let term =
let open Cmdliner.Term in
const run
$ Cli.Flags.link_modules
$ Cli.Flags.optimize
$ Cli.Flags.ex_scope
$ options
let () =
Driver.Plugin.register "explain" term
~doc:
"Generates a graph of the formulas that are used for a given execution \
of a scope"
~man:
[
`P
"This command requires a given scope with no inputs (i.e. a test \
scope). A partial/lazy evaluation will recursively take place to \
explain intermediate formulas that take place in the computation, \
from the inputs (specified in the test scope) to the final outputs. \
The output is a graph, in .dot format (graphviz) by default (see \
$(b,--svg) and $(b,--show) for other options)";
]