catala/compiler/desugared/from_surface.ml
Louis Gesbert fea01cfe4c Add overloaded operators for the common operations
This uses the same disambiguation mechanism put in place for
structures, calling the typer on individual rules on the desugared AST
to propagate types, in order to resolve ambiguous operators like `+`
to their strongly typed counterparts (`+!`, `+.`, `+$`, `+@`, `+$`) in
the translation to scopelang.

The patch includes some normalisation of the definition of all the
operators, and classifies them based on their typing policy instead of
their arity. It also adds a little more flexibility:
- a couple new operators, like `-` on date and duration
- optional type annotation on some aggregation constructions

The `Shared_ast` lib is also lightly restructured, with the `Expr`
module split into `Type`, `Operator` and `Expr`.
2022-12-13 11:55:24 +01:00

1334 lines
50 KiB
OCaml

(* This file is part of the Catala compiler, a specification language for tax
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
Nicolas Chataing <nicolas.chataing@ens.fr> Denis Merigoux
<denis.merigoux@inria.fr>
Licensed under the Apache License, Version 2.0 (the "License"); you may not
use this file except in compliance with the License. You may obtain a copy of
the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under
the License. *)
open Catala_utils
module S = Surface.Ast
module SurfacePrint = Surface.Print
open Shared_ast
module Runtime = Runtime_ocaml.Runtime
(** Translation from {!module: Surface.Ast} to {!module: Desugaring.Ast}.
- Removes syntactic sugars
- Separate code from legislation *)
(** {1 Translating expressions} *)
(* Resolves the operator kinds into the expected operator operand types *)
let translate_binop : Surface.Ast.binop -> Pos.t -> Ast.expr boxed =
fun op pos ->
let e op tys =
Expr.eop op (List.map (Marked.mark pos) tys) (Untyped { pos })
in
match op with
| S.And -> e And [TLit TBool; TLit TBool]
| S.Or -> e Or [TLit TBool; TLit TBool]
| S.Xor -> e Xor [TLit TBool; TLit TBool]
| S.Add k ->
e Add
(match k with
| S.KPoly -> [TAny; TAny]
| S.KInt -> [TLit TInt; TLit TInt]
| S.KDec -> [TLit TRat; TLit TRat]
| S.KMoney -> [TLit TMoney; TLit TMoney]
| S.KDate -> [TLit TDate; TLit TDuration]
| S.KDuration -> [TLit TDuration; TLit TDuration])
| S.Sub k ->
e Sub
(match k with
| S.KPoly -> [TAny; TAny]
| S.KInt -> [TLit TInt; TLit TInt]
| S.KDec -> [TLit TRat; TLit TRat]
| S.KMoney -> [TLit TMoney; TLit TMoney]
| S.KDate -> [TLit TDate; TLit TDate]
| S.KDuration -> [TLit TDuration; TLit TDuration])
| S.Mult k ->
e Mult
(match k with
| S.KPoly -> [TAny; TAny]
| S.KInt -> [TLit TInt; TLit TInt]
| S.KDec -> [TLit TRat; TLit TRat]
| S.KMoney -> [TLit TMoney; TLit TRat]
| S.KDate -> Errors.raise_spanned_error pos "Invalid operator"
| S.KDuration -> [TLit TDuration; TLit TInt])
| S.Div k ->
e Div
(match k with
| S.KPoly -> [TAny; TAny]
| S.KInt -> [TLit TInt; TLit TInt]
| S.KDec -> [TLit TRat; TLit TRat]
| S.KMoney -> [TLit TMoney; TLit TMoney]
| S.KDate -> Errors.raise_spanned_error pos "Invalid operator"
| S.KDuration -> [TLit TDuration; TLit TDuration])
| S.Lt k | S.Lte k | S.Gt k | S.Gte k ->
e
(match op with
| S.Lt _ -> Lt
| S.Lte _ -> Lte
| S.Gt _ -> Gt
| S.Gte _ -> Gte
| _ -> assert false)
(match k with
| S.KPoly -> [TAny; TAny]
| S.KInt -> [TLit TInt; TLit TInt]
| S.KDec -> [TLit TRat; TLit TRat]
| S.KMoney -> [TLit TMoney; TLit TMoney]
| S.KDate -> [TLit TDate; TLit TDate]
| S.KDuration -> [TLit TDuration; TLit TDuration])
| S.Eq ->
e Eq [TAny; TAny]
(* This is a truly polymorphic operator, not an overload *)
| S.Neq -> assert false (* desugared already *)
| S.Concat -> e Concat [TArray (TAny, pos); TArray (TAny, pos)]
let translate_unop (op : Surface.Ast.unop) pos : Ast.expr boxed =
let e op ty = Expr.eop op [Marked.mark pos ty] (Untyped { pos }) in
match op with
| S.Not -> e Not (TLit TBool)
| S.Minus k ->
e Minus
(match k with
| S.KPoly -> TAny
| S.KInt -> TLit TInt
| S.KDec -> TLit TRat
| S.KMoney -> TLit TMoney
| S.KDate -> Errors.raise_spanned_error pos "Invalid operator"
| S.KDuration -> TLit TDuration)
let disambiguate_constructor
(ctxt : Name_resolution.context)
(constructor : (string Marked.pos option * string Marked.pos) list)
(pos : Pos.t) : EnumName.t * EnumConstructor.t =
let enum, constructor =
match constructor with
| [c] -> c
| _ ->
Errors.raise_spanned_error pos
"The deep pattern matching syntactic sugar is not yet supported"
in
let possible_c_uids =
try IdentName.Map.find (Marked.unmark constructor) ctxt.constructor_idmap
with Not_found ->
Errors.raise_spanned_error
(Marked.get_mark constructor)
"The name of this constructor has not been defined before, maybe it is \
a typo?"
in
match enum with
| None ->
if EnumName.Map.cardinal possible_c_uids > 1 then
Errors.raise_spanned_error
(Marked.get_mark constructor)
"This constructor name is ambiguous, it can belong to %a. Disambiguate \
it by prefixing it with the enum name."
(Format.pp_print_list
~pp_sep:(fun fmt () -> Format.fprintf fmt " or ")
(fun fmt (s_name, _) ->
Format.fprintf fmt "%a" EnumName.format_t s_name))
(EnumName.Map.bindings possible_c_uids);
EnumName.Map.choose possible_c_uids
| Some enum -> (
try
(* The path is fully qualified *)
let e_uid = Name_resolution.get_enum ctxt enum in
try
let c_uid = EnumName.Map.find e_uid possible_c_uids in
e_uid, c_uid
with Not_found ->
Errors.raise_spanned_error pos "Enum %s does not contain case %s"
(Marked.unmark enum)
(Marked.unmark constructor)
with Not_found ->
Errors.raise_spanned_error (Marked.get_mark enum)
"Enum %s has not been defined before" (Marked.unmark enum))
let int100 = Runtime.integer_of_int 100
let rat100 = Runtime.decimal_of_integer int100
let aggregate_typ pos = function
| None -> TAny
| Some S.Integer -> TLit TInt
| Some S.Decimal -> TLit TRat
| Some S.Money -> TLit TMoney
| Some S.Duration -> TLit TDuration
| Some S.Date -> TLit TDate
| Some pred_typ ->
Errors.raise_spanned_error pos
"It is impossible to compute this aggregation of two values of type %a"
SurfacePrint.format_primitive_typ pred_typ
(** Usage: [translate_expr scope ctxt naked_expr]
Translates [expr] into its desugared equivalent. [scope] is used to
disambiguate the scope and subscopes variables than occur in the expression *)
let rec translate_expr
(scope : ScopeName.t)
(inside_definition_of : Ast.ScopeDef.t Marked.pos option)
(ctxt : Name_resolution.context)
(expr : Surface.Ast.expression Marked.pos) : Ast.expr boxed =
let scope_ctxt = ScopeName.Map.find scope ctxt.scopes in
let rec_helper = translate_expr scope inside_definition_of ctxt in
let pos = Marked.get_mark expr in
let emark = Untyped { pos } in
match Marked.unmark expr with
| Binop
( (Surface.Ast.And, _pos_op),
( TestMatchCase (e1_sub, ((constructors, Some binding), pos_pattern)),
_pos_e1 ),
e2 ) ->
(* This sugar corresponds to [e is P x && e'] and should desugar to [match e
with P x -> e' | _ -> false] *)
let enum_uid, c_uid =
disambiguate_constructor ctxt constructors pos_pattern
in
let cases =
EnumConstructor.Map.mapi
(fun c_uid' tau ->
if EnumConstructor.compare c_uid c_uid' <> 0 then
let nop_var = Var.make "_" in
Expr.make_abs [| nop_var |]
(Expr.elit (LBool false) emark)
[tau] pos
else
let ctxt, binding_var =
Name_resolution.add_def_local_var ctxt (Marked.unmark binding)
in
let e2 = translate_expr scope inside_definition_of ctxt e2 in
Expr.make_abs [| binding_var |] e2 [tau] pos)
(EnumName.Map.find enum_uid ctxt.enums)
in
Expr.ematch
(translate_expr scope inside_definition_of ctxt e1_sub)
enum_uid cases emark
| IfThenElse (e_if, e_then, e_else) ->
Expr.eifthenelse (rec_helper e_if) (rec_helper e_then) (rec_helper e_else)
emark
| Binop ((S.Neq, posn), e1, e2) ->
(* Neq is just sugar *)
rec_helper (Unop ((S.Not, posn), (Binop ((S.Eq, posn), e1, e2), posn)), pos)
| Binop ((op, pos), e1, e2) ->
let op_term = translate_binop op pos in
Expr.eapp op_term [rec_helper e1; rec_helper e2] emark
| Unop ((op, pos), e) ->
let op_term = translate_unop op pos in
Expr.eapp op_term [rec_helper e] emark
| Literal l ->
let lit =
match l with
| LNumber ((Int i, _), None) -> LInt (Runtime.integer_of_string i)
| LNumber ((Int i, _), Some (Percent, _)) ->
LRat Runtime.(Oper.o_div_rat_rat (decimal_of_string i) rat100)
| LNumber ((Dec (i, f), _), None) ->
LRat Runtime.(decimal_of_string (i ^ "." ^ f))
| LNumber ((Dec (i, f), _), Some (Percent, _)) ->
LRat
Runtime.(Oper.o_div_rat_rat (decimal_of_string (i ^ "." ^ f)) rat100)
| LBool b -> LBool b
| LMoneyAmount i ->
LMoney
Runtime.(
money_of_cents_integer
(Oper.o_add_int_int
(Oper.o_mult_int_int
(integer_of_string i.money_amount_units)
int100)
(integer_of_string i.money_amount_cents)))
| LNumber ((Int i, _), Some (Year, _)) ->
LDuration (Runtime.duration_of_numbers (int_of_string i) 0 0)
| LNumber ((Int i, _), Some (Month, _)) ->
LDuration (Runtime.duration_of_numbers 0 (int_of_string i) 0)
| LNumber ((Int i, _), Some (Day, _)) ->
LDuration (Runtime.duration_of_numbers 0 0 (int_of_string i))
| LNumber ((Dec (_, _), _), Some ((Year | Month | Day), _)) ->
Errors.raise_spanned_error pos
"Impossible to specify decimal amounts of days, months or years"
| LDate date ->
if date.literal_date_month > 12 then
Errors.raise_spanned_error pos
"There is an error in this date: the month number is bigger than 12";
if date.literal_date_day > 31 then
Errors.raise_spanned_error pos
"There is an error in this date: the day number is bigger than 31";
LDate
(try
Runtime.date_of_numbers date.literal_date_year
date.literal_date_month date.literal_date_day
with Runtime.ImpossibleDate ->
Errors.raise_spanned_error pos
"There is an error in this date, it does not correspond to a \
correct calendar day")
in
Expr.elit lit emark
| Ident x -> (
(* first we check whether this is a local var, then we resort to scope-wide
variables *)
match IdentName.Map.find_opt x ctxt.local_var_idmap with
| None -> (
match IdentName.Map.find_opt x scope_ctxt.var_idmap with
| Some (ScopeVar uid) ->
(* If the referenced variable has states, then here are the rules to
desambiguate. In general, only the last state can be referenced.
Except if defining a state of the same variable, then it references
the previous state in the chain. *)
let x_sig = ScopeVar.Map.find uid ctxt.var_typs in
let x_state =
match x_sig.var_sig_states_list with
| [] -> None
| states -> (
match inside_definition_of with
| Some (Var (x'_uid, sx'), _) when ScopeVar.compare uid x'_uid = 0
-> (
match sx' with
| None ->
failwith
"inconsistent state: inside a definition of a variable with \
no state but variable has states"
| Some inside_def_state ->
if StateName.compare inside_def_state (List.hd states) = 0 then
Errors.raise_spanned_error pos
"It is impossible to refer to the variable you are \
defining when defining its first state."
else
(* Tricky: we have to retrieve in the list the previous state
with respect to the state that we are defining. *)
let correct_state = ref None in
ignore
(List.fold_left
(fun previous_state state ->
if StateName.equal inside_def_state state then
correct_state := previous_state;
Some state)
None states);
!correct_state)
| _ ->
(* we take the last state in the chain *)
Some (List.hd (List.rev states)))
in
Expr.elocation (DesugaredScopeVar ((uid, pos), x_state)) emark
| Some (SubScope _) | None ->
Name_resolution.raise_unknown_identifier
"for a local or scope-wide variable" (x, pos))
| Some uid ->
Expr.make_var uid emark
(* the whole box thing is to accomodate for this case *))
| Dotted (e, c, x) -> (
match Marked.unmark e with
| Ident y when Name_resolution.is_subscope_uid scope ctxt y ->
(* In this case, y.x is a subscope variable *)
let subscope_uid, subscope_real_uid =
match IdentName.Map.find y scope_ctxt.var_idmap with
| SubScope (sub, sc) -> sub, sc
| ScopeVar _ -> assert false
in
let subscope_var_uid =
Name_resolution.get_var_uid subscope_real_uid ctxt x
in
Expr.elocation
(SubScopeVar
(subscope_real_uid, (subscope_uid, pos), (subscope_var_uid, pos)))
emark
| _ ->
(* In this case e.x is the struct field x access of expression e *)
let e = translate_expr scope inside_definition_of ctxt e in
let str =
Option.map
(fun c ->
try Name_resolution.get_struct ctxt c
with Not_found ->
Errors.raise_spanned_error (Marked.get_mark c)
"Structure %s was not declared" (Marked.unmark c))
c
in
Expr.edstructaccess e (Marked.unmark x) str emark)
| FunCall (f, arg) -> Expr.eapp (rec_helper f) [rec_helper arg] emark
| ScopeCall (sc_name, fields) ->
let called_scope = Name_resolution.get_scope ctxt sc_name in
let scope_def = ScopeName.Map.find called_scope ctxt.scopes in
let in_struct =
List.fold_left
(fun acc (fld_id, e) ->
let var =
match
IdentName.Map.find_opt (Marked.unmark fld_id) scope_def.var_idmap
with
| Some (ScopeVar v) -> v
| Some (SubScope _) | None ->
Errors.raise_multispanned_error
[
None, Marked.get_mark fld_id;
( Some
(Format.asprintf "Scope %a declared here"
ScopeName.format_t called_scope),
Marked.get_mark (ScopeName.get_info called_scope) );
]
"Scope %a has no input variable %a" ScopeName.format_t
called_scope Print.lit_style (Marked.unmark fld_id)
in
ScopeVar.Map.update var
(function
| None -> Some (rec_helper e)
| Some _ ->
Errors.raise_spanned_error (Marked.get_mark fld_id)
"Duplicate definition of scope input variable '%a'"
ScopeVar.format_t var)
acc)
ScopeVar.Map.empty fields
in
Expr.escopecall called_scope in_struct emark
| LetIn (x, e1, e2) ->
let ctxt, v = Name_resolution.add_def_local_var ctxt (Marked.unmark x) in
let tau = TAny, Marked.get_mark x in
(* This type will be resolved in Scopelang.Desambiguation *)
let fn =
Expr.make_abs [| v |]
(translate_expr scope inside_definition_of ctxt e2)
[tau] pos
in
Expr.eapp fn [rec_helper e1] emark
| StructLit (s_name, fields) ->
let s_uid =
match IdentName.Map.find_opt (Marked.unmark s_name) ctxt.typedefs with
| Some (Name_resolution.TStruct s_uid) -> s_uid
| _ ->
Errors.raise_spanned_error (Marked.get_mark s_name)
"This identifier should refer to a struct name"
in
let s_fields =
List.fold_left
(fun s_fields (f_name, f_e) ->
let f_uid =
try
StructName.Map.find s_uid
(IdentName.Map.find (Marked.unmark f_name) ctxt.field_idmap)
with Not_found ->
Errors.raise_spanned_error (Marked.get_mark f_name)
"This identifier should refer to a field of struct %s"
(Marked.unmark s_name)
in
(match StructField.Map.find_opt f_uid s_fields with
| None -> ()
| Some e_field ->
Errors.raise_multispanned_error
[None, Marked.get_mark f_e; None, Expr.pos e_field]
"The field %a has been defined twice:" StructField.format_t f_uid);
let f_e = translate_expr scope inside_definition_of ctxt f_e in
StructField.Map.add f_uid f_e s_fields)
StructField.Map.empty fields
in
let expected_s_fields = StructName.Map.find s_uid ctxt.structs in
StructField.Map.iter
(fun expected_f _ ->
if not (StructField.Map.mem expected_f s_fields) then
Errors.raise_spanned_error pos
"Missing field for structure %a: \"%a\"" StructName.format_t s_uid
StructField.format_t expected_f)
expected_s_fields;
Expr.estruct s_uid s_fields emark
| EnumInject (enum, (constructor, pos_constructor), payload) -> (
let possible_c_uids =
try IdentName.Map.find constructor ctxt.constructor_idmap
with Not_found ->
Errors.raise_spanned_error pos_constructor
"The name of this constructor has not been defined before, maybe it \
is a typo?"
in
let mark_constructor = Untyped { pos = pos_constructor } in
match enum with
| None ->
if
(* No constructor name was specified *)
EnumName.Map.cardinal possible_c_uids > 1
then
Errors.raise_spanned_error pos_constructor
"This constructor name is ambiguous, it can belong to %a. \
Desambiguate it by prefixing it with the enum name."
(Format.pp_print_list
~pp_sep:(fun fmt () -> Format.fprintf fmt " or ")
(fun fmt (s_name, _) ->
Format.fprintf fmt "%a" EnumName.format_t s_name))
(EnumName.Map.bindings possible_c_uids)
else
let e_uid, c_uid = EnumName.Map.choose possible_c_uids in
let payload =
Option.map (translate_expr scope inside_definition_of ctxt) payload
in
Expr.einj
(match payload with
| Some e' -> e'
| None -> Expr.elit LUnit mark_constructor)
c_uid e_uid emark
| Some enum -> (
try
(* The path has been fully qualified *)
let e_uid = Name_resolution.get_enum ctxt enum in
try
let c_uid = EnumName.Map.find e_uid possible_c_uids in
let payload =
Option.map (translate_expr scope inside_definition_of ctxt) payload
in
Expr.einj
(match payload with
| Some e' -> e'
| None -> Expr.elit LUnit mark_constructor)
c_uid e_uid emark
with Not_found ->
Errors.raise_spanned_error pos "Enum %s does not contain case %s"
(Marked.unmark enum) constructor
with Not_found ->
Errors.raise_spanned_error (Marked.get_mark enum)
"Enum %s has not been defined before" (Marked.unmark enum)))
| MatchWith (e1, (cases, _cases_pos)) ->
let e1 = translate_expr scope inside_definition_of ctxt e1 in
let cases_d, e_uid =
disambiguate_match_and_build_expression scope inside_definition_of ctxt
cases
in
Expr.ematch e1 e_uid cases_d emark
| TestMatchCase (e1, pattern) ->
(match snd (Marked.unmark pattern) with
| None -> ()
| Some binding ->
Errors.format_spanned_warning (Marked.get_mark binding)
"This binding will be ignored (remove it to suppress warning)");
let enum_uid, c_uid =
disambiguate_constructor ctxt
(fst (Marked.unmark pattern))
(Marked.get_mark pattern)
in
let cases =
EnumConstructor.Map.mapi
(fun c_uid' tau ->
let nop_var = Var.make "_" in
Expr.make_abs [| nop_var |]
(Expr.elit (LBool (EnumConstructor.compare c_uid c_uid' = 0)) emark)
[tau] pos)
(EnumName.Map.find enum_uid ctxt.enums)
in
Expr.ematch
(translate_expr scope inside_definition_of ctxt e1)
enum_uid cases emark
| ArrayLit es -> Expr.earray (List.map rec_helper es) emark
| CollectionOp
( (((Surface.Ast.Filter | Surface.Ast.Map) as op'), _pos_op'),
param',
collection,
predicate ) ->
let collection = rec_helper collection in
let ctxt, param =
Name_resolution.add_def_local_var ctxt (Marked.unmark param')
in
let f_pred =
Expr.make_abs [| param |]
(translate_expr scope inside_definition_of ctxt predicate)
[TAny, pos]
pos
in
Expr.eapp
(Expr.eop
(match op' with
| Surface.Ast.Map -> Map
| Surface.Ast.Filter -> Filter
| _ -> assert false (* should not happen *))
[TAny, pos; TAny, pos]
emark)
[f_pred; collection] emark
| CollectionOp
( ( Surface.Ast.Aggregate
(Surface.Ast.AggregateArgExtremum (max_or_min, pred_typ, init)),
pos_op' ),
param',
collection,
predicate ) ->
let init = rec_helper init in
let collection = rec_helper collection in
let ctxt, param =
Name_resolution.add_def_local_var ctxt (Marked.unmark param')
in
let op_ty = aggregate_typ pos pred_typ in
let cmp_op = if max_or_min then Op.Gt else Op.Lt in
let f_pred =
Expr.make_abs [| param |]
(translate_expr scope inside_definition_of ctxt predicate)
[TAny, pos]
pos
in
let acc_var = Var.make "acc" in
let acc_var_e = Expr.make_var acc_var emark in
let item_var = Var.make "item" in
let item_var_e = Expr.make_var item_var (Marked.get_mark collection) in
let fold_body =
Expr.eifthenelse
(Expr.eapp
(Expr.eop cmp_op
[op_ty, pos_op'; op_ty, pos_op']
(Untyped { pos = pos_op' }))
[
Expr.eapp f_pred [acc_var_e] emark;
Expr.eapp f_pred [item_var_e] emark;
]
emark)
acc_var_e item_var_e emark
in
let fold_f =
Expr.make_abs [| acc_var; item_var |] fold_body [TAny, pos; TAny, pos] pos
in
Expr.eapp
(Expr.eop Fold [TAny, pos_op'; TAny, pos_op'; TAny, pos_op'] emark)
[fold_f; init; collection] emark
| CollectionOp (op', param', collection, predicate) ->
let ctxt, param =
Name_resolution.add_def_local_var ctxt (Marked.unmark param')
in
let collection = rec_helper collection in
let mark = Untyped { pos = Marked.get_mark op' } in
let init =
match Marked.unmark op' with
| Surface.Ast.Map | Surface.Ast.Filter
| Surface.Ast.Aggregate (Surface.Ast.AggregateArgExtremum _) ->
assert false (* should not happen *)
| Surface.Ast.Exists -> Expr.elit (LBool false) mark
| Surface.Ast.Forall -> Expr.elit (LBool true) mark
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Integer) ->
Expr.elit (LInt (Runtime.integer_of_int 0)) mark
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Decimal) ->
Expr.elit (LRat (Runtime.decimal_of_string "0")) mark
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Money) ->
Expr.elit
(LMoney (Runtime.money_of_cents_integer (Runtime.integer_of_int 0)))
mark
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Duration) ->
Expr.elit (LDuration (Runtime.duration_of_numbers 0 0 0)) mark
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum t) ->
Errors.raise_spanned_error pos
"It is impossible to sum two values of type %a together"
SurfacePrint.format_primitive_typ t
| Surface.Ast.Aggregate (Surface.Ast.AggregateExtremum (_, _, init)) ->
rec_helper init
| Surface.Ast.Aggregate Surface.Ast.AggregateCount ->
Expr.elit (LInt (Runtime.integer_of_int 0)) mark
in
let acc_var = Var.make "acc" in
let acc =
Expr.make_var acc_var (Untyped { pos = Marked.get_mark param' })
in
let f_body =
let make_body op =
Expr.eapp (translate_binop op pos)
[acc; translate_expr scope inside_definition_of ctxt predicate]
emark
in
let make_extr_body cmp_op typ =
let tmp_var = Var.make "tmp" in
let tmp =
Expr.make_var tmp_var (Untyped { pos = Marked.get_mark param' })
in
Expr.make_let_in tmp_var (TAny, pos)
(translate_expr scope inside_definition_of ctxt predicate)
(Expr.eifthenelse
(Expr.eapp
(Expr.eop cmp_op [typ, pos; typ, pos] mark)
[acc; tmp] emark)
acc tmp emark)
pos
in
match Marked.unmark op' with
| Surface.Ast.Map | Surface.Ast.Filter
| Surface.Ast.Aggregate (Surface.Ast.AggregateArgExtremum _) ->
assert false (* should not happen *)
| Surface.Ast.Exists -> make_body Or
| Surface.Ast.Forall -> make_body And
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Integer) ->
make_body (Add KInt)
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Decimal) ->
make_body (Add KDec)
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Money) ->
make_body (Add KMoney)
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum Surface.Ast.Duration) ->
make_body (Add KDuration)
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum _) ->
assert false (* should not happen *)
| Surface.Ast.Aggregate (Surface.Ast.AggregateExtremum (max_or_min, t, _))
->
let typ = aggregate_typ pos t in
let cmp_op = if max_or_min then Op.Gt else Op.Lt in
make_extr_body cmp_op typ
| Surface.Ast.Aggregate Surface.Ast.AggregateCount ->
let predicate =
translate_expr scope inside_definition_of ctxt predicate
in
Expr.eifthenelse predicate
(Expr.eapp
(Expr.eop Add [TLit TInt, pos; TLit TInt, pos] mark)
[
acc;
Expr.elit
(LInt (Runtime.integer_of_int 1))
(Marked.get_mark predicate);
]
emark)
acc emark
in
let f =
let make_f t =
Expr.eabs
(Expr.bind [| acc_var; param |] f_body)
[
t, Marked.get_mark op';
TAny, pos
(* we put any here because the type of the elements of the arrays is
not always the type of the accumulator; for instance in
AggregateCount. *);
]
emark
in
match Marked.unmark op' with
| Surface.Ast.Map | Surface.Ast.Filter
| Surface.Ast.Aggregate (Surface.Ast.AggregateArgExtremum _) ->
assert false (* should not happen *)
| Surface.Ast.Exists -> make_f (TLit TBool)
| Surface.Ast.Forall -> make_f (TLit TBool)
| Surface.Ast.Aggregate (Surface.Ast.AggregateSum k) ->
make_f (aggregate_typ pos (Some k))
| Surface.Ast.Aggregate (Surface.Ast.AggregateExtremum (_, k, _)) ->
make_f (aggregate_typ pos k)
| Surface.Ast.Aggregate Surface.Ast.AggregateCount -> make_f (TLit TInt)
in
Expr.eapp
(Expr.eop Fold [TAny, pos; TAny, pos; TAny, pos] mark)
[f; init; collection] emark
| MemCollection (member, collection) ->
let param_var = Var.make "collection_member" in
let param = Expr.make_var param_var emark in
let collection = rec_helper collection in
let init = Expr.elit (LBool false) emark in
let acc_var = Var.make "acc" in
let acc = Expr.make_var acc_var emark in
let f_body =
let member = translate_expr scope inside_definition_of ctxt member in
Expr.eapp
(Expr.eop Or [TLit TBool, pos; TLit TBool, pos] emark)
[
Expr.eapp
(Expr.eop Eq [TAny, pos; TAny, pos] emark)
[member; param] emark;
acc;
]
emark
in
let f =
Expr.eabs
(Expr.bind [| acc_var; param_var |] f_body)
[TLit TBool, pos; TAny, pos]
emark
in
Expr.eapp
(Expr.eop Fold [TAny, pos; TAny, pos; TAny, pos] emark)
[f; init; collection] emark
| Builtin IntToDec -> Expr.eop IntToRat [TLit TInt, pos] emark
| Builtin MoneyToDec -> Expr.eop MoneyToRat [TLit TMoney, pos] emark
| Builtin DecToMoney -> Expr.eop RatToMoney [TLit TRat, pos] emark
| Builtin Cardinal -> Expr.eop Length [TArray (TAny, pos), pos] emark
| Builtin GetDay -> Expr.eop GetDay [TLit TDate, pos] emark
| Builtin GetMonth -> Expr.eop GetMonth [TLit TDate, pos] emark
| Builtin GetYear -> Expr.eop GetYear [TLit TDate, pos] emark
| Builtin FirstDayOfMonth -> Expr.eop FirstDayOfMonth [TLit TDate, pos] emark
| Builtin LastDayOfMonth -> Expr.eop LastDayOfMonth [TLit TDate, pos] emark
| Builtin RoundMoney -> Expr.eop RoundMoney [TLit TMoney, pos] emark
| Builtin RoundDecimal -> Expr.eop RoundDecimal [TLit TRat, pos] emark
and disambiguate_match_and_build_expression
(scope : ScopeName.t)
(inside_definition_of : Ast.ScopeDef.t Marked.pos option)
(ctxt : Name_resolution.context)
(cases : Surface.Ast.match_case Marked.pos list) :
Ast.expr boxed EnumConstructor.Map.t * EnumName.t =
let create_var = function
| None -> ctxt, Var.make "_"
| Some param ->
let ctxt, param_var = Name_resolution.add_def_local_var ctxt param in
ctxt, param_var
in
let bind_case_body
(c_uid : EnumConstructor.t)
(e_uid : EnumName.t)
(ctxt : Name_resolution.context)
case_body
e_binder =
Expr.eabs e_binder
[
EnumConstructor.Map.find c_uid
(EnumName.Map.find e_uid ctxt.Name_resolution.enums);
]
(Marked.get_mark case_body)
in
let bind_match_cases (cases_d, e_uid, curr_index) (case, case_pos) =
match case with
| Surface.Ast.MatchCase case ->
let constructor, binding =
Marked.unmark case.Surface.Ast.match_case_pattern
in
let e_uid', c_uid =
disambiguate_constructor ctxt constructor
(Marked.get_mark case.Surface.Ast.match_case_pattern)
in
let e_uid =
match e_uid with
| None -> e_uid'
| Some e_uid ->
if e_uid = e_uid' then e_uid
else
Errors.raise_spanned_error
(Marked.get_mark case.Surface.Ast.match_case_pattern)
"This case matches a constructor of enumeration %a but previous \
case were matching constructors of enumeration %a"
EnumName.format_t e_uid EnumName.format_t e_uid'
in
(match EnumConstructor.Map.find_opt c_uid cases_d with
| None -> ()
| Some e_case ->
Errors.raise_multispanned_error
[None, Marked.get_mark case.match_case_expr; None, Expr.pos e_case]
"The constructor %a has been matched twice:" EnumConstructor.format_t
c_uid);
let ctxt, param_var = create_var (Option.map Marked.unmark binding) in
let case_body =
translate_expr scope inside_definition_of ctxt
case.Surface.Ast.match_case_expr
in
let e_binder = Expr.bind [| param_var |] case_body in
let case_expr = bind_case_body c_uid e_uid ctxt case_body e_binder in
( EnumConstructor.Map.add c_uid case_expr cases_d,
Some e_uid,
curr_index + 1 )
| Surface.Ast.WildCard match_case_expr -> (
let nb_cases = List.length cases in
let raise_wildcard_not_last_case_err () =
Errors.raise_multispanned_error
[
Some "Not ending wildcard:", case_pos;
( Some "Next reachable case:",
curr_index + 1 |> List.nth cases |> Marked.get_mark );
]
"Wildcard must be the last match case"
in
match e_uid with
| None ->
if 1 = nb_cases then
Errors.raise_spanned_error case_pos
"Couldn't infer the enumeration name from lonely wildcard \
(wildcard cannot be used as single match case)"
else raise_wildcard_not_last_case_err ()
| Some e_uid ->
if curr_index < nb_cases - 1 then raise_wildcard_not_last_case_err ();
let missing_constructors =
EnumName.Map.find e_uid ctxt.Name_resolution.enums
|> EnumConstructor.Map.filter_map (fun c_uid _ ->
match EnumConstructor.Map.find_opt c_uid cases_d with
| Some _ -> None
| None -> Some c_uid)
in
if EnumConstructor.Map.is_empty missing_constructors then
Errors.format_spanned_warning case_pos
"Unreachable match case, all constructors of the enumeration %a \
are already specified"
EnumName.format_t e_uid;
(* The current used strategy is to replace the wildcard branch:
match foo with
| Case1 x -> x
| _ -> 1
with:
let wildcard_payload = 1 in
match foo with
| Case1 x -> x
| Case2 -> wildcard_payload
...
| CaseN -> wildcard_payload *)
(* Creates the wildcard payload *)
let ctxt, payload_var = create_var None in
let case_body =
translate_expr scope inside_definition_of ctxt match_case_expr
in
let e_binder = Expr.bind [| payload_var |] case_body in
(* For each missing cases, binds the wildcard payload. *)
EnumConstructor.Map.fold
(fun c_uid _ (cases_d, e_uid_opt, curr_index) ->
let case_expr =
bind_case_body c_uid e_uid ctxt case_body e_binder
in
( EnumConstructor.Map.add c_uid case_expr cases_d,
e_uid_opt,
curr_index + 1 ))
missing_constructors
(cases_d, Some e_uid, curr_index))
in
let naked_expr, e_name, _ =
List.fold_left bind_match_cases (EnumConstructor.Map.empty, None, 0) cases
in
naked_expr, Option.get e_name
[@@ocamlformat "wrap-comments=false"]
(** {1 Translating scope definitions} *)
(** A scope use can be annotated with a pervasive precondition, in which case
this precondition has to be appended to the justifications of each
definition in the subscope use. This is what this function does. *)
let merge_conditions
(precond : Ast.expr boxed option)
(cond : Ast.expr boxed option)
(default_pos : Pos.t) : Ast.expr boxed =
match precond, cond with
| Some precond, Some cond ->
let op_term =
Expr.eop And
[TLit TBool, default_pos; TLit TBool, default_pos]
(Marked.get_mark cond)
in
Expr.eapp op_term [precond; cond] (Marked.get_mark cond)
| Some precond, None -> Marked.unmark precond, Untyped { pos = default_pos }
| None, Some cond -> cond
| None, None -> Expr.elit (LBool true) (Untyped { pos = default_pos })
(** Translates a surface definition into condition into a desugared {!type:
Ast.rule} *)
let process_default
(ctxt : Name_resolution.context)
(scope : ScopeName.t)
(def_key : Ast.ScopeDef.t Marked.pos)
(rule_id : RuleName.t)
(param_uid : Ast.expr Var.t Marked.pos option)
(precond : Ast.expr boxed option)
(exception_situation : Ast.exception_situation)
(label_situation : Ast.label_situation)
(just : Surface.Ast.expression Marked.pos option)
(cons : Surface.Ast.expression Marked.pos) : Ast.rule =
let just =
match just with
| Some just -> Some (translate_expr scope (Some def_key) ctxt just)
| None -> None
in
let just = merge_conditions precond just (Marked.get_mark def_key) in
let cons = translate_expr scope (Some def_key) ctxt cons in
{
rule_just = just;
rule_cons = cons;
rule_parameter =
(let def_key_typ =
Name_resolution.get_def_typ ctxt (Marked.unmark def_key)
in
match Marked.unmark def_key_typ, param_uid with
| TArrow (t_in, _), Some param_uid -> Some (Marked.unmark param_uid, t_in)
| TArrow _, None ->
Errors.raise_spanned_error (Expr.pos cons)
"This definition has a function type but the parameter is missing"
| _, Some _ ->
Errors.raise_spanned_error (Expr.pos cons)
"This definition has a parameter but its type is not a function"
| _ -> None);
rule_exception = exception_situation;
rule_id;
rule_label = label_situation;
}
(** Wrapper around {!val: process_default} that performs some name
disambiguation *)
let process_def
(precond : Ast.expr boxed option)
(scope_uid : ScopeName.t)
(ctxt : Name_resolution.context)
(prgm : Ast.program)
(def : Surface.Ast.definition) : Ast.program =
let scope : Ast.scope = ScopeName.Map.find scope_uid prgm.program_scopes in
let scope_ctxt = ScopeName.Map.find scope_uid ctxt.scopes in
let def_key =
Name_resolution.get_def_key
(Marked.unmark def.definition_name)
def.definition_state scope_uid ctxt
(Marked.get_mark def.definition_name)
in
let scope_def_ctxt =
Ast.ScopeDefMap.find def_key scope_ctxt.scope_defs_contexts
in
(* We add to the name resolution context the name of the parameter variable *)
let param_uid, new_ctxt =
match def.definition_parameter with
| None -> None, ctxt
| Some param ->
let ctxt, param_var =
Name_resolution.add_def_local_var ctxt (Marked.unmark param)
in
Some (Marked.same_mark_as param_var param), ctxt
in
let scope_updated =
let scope_def = Ast.ScopeDefMap.find def_key scope.scope_defs in
let rule_name = def.definition_id in
let label_situation =
match def.definition_label with
| Some (label_str, label_pos) ->
Ast.ExplicitlyLabeled
(IdentName.Map.find label_str scope_def_ctxt.label_idmap, label_pos)
| None -> Ast.Unlabeled
in
let exception_situation =
match def.Surface.Ast.definition_exception_to with
| NotAnException -> Ast.BaseCase
| UnlabeledException -> (
match scope_def_ctxt.default_exception_rulename with
| None | Some (Name_resolution.Ambiguous _) ->
(* This should have been caught previously by
check_unlabeled_exception *)
assert false (* should not happen *)
| Some (Name_resolution.Unique (name, pos)) ->
ExceptionToRule (name, pos))
| ExceptionToLabel label_str -> (
try
let label_id =
IdentName.Map.find (Marked.unmark label_str)
scope_def_ctxt.label_idmap
in
ExceptionToLabel (label_id, Marked.get_mark label_str)
with Not_found ->
Errors.raise_spanned_error
(Marked.get_mark label_str)
"Unknown label for the scope variable %a: \"%s\""
Ast.ScopeDef.format_t def_key (Marked.unmark label_str))
in
let scope_def =
{
scope_def with
scope_def_rules =
RuleName.Map.add rule_name
(process_default new_ctxt scope_uid
(def_key, Marked.get_mark def.definition_name)
rule_name param_uid precond exception_situation label_situation
def.definition_condition def.definition_expr)
scope_def.scope_def_rules;
}
in
{
scope with
scope_defs = Ast.ScopeDefMap.add def_key scope_def scope.scope_defs;
}
in
{
prgm with
program_scopes =
ScopeName.Map.add scope_uid scope_updated prgm.program_scopes;
}
(** Translates a {!type: Surface.Ast.rule} from the surface language *)
let process_rule
(precond : Ast.expr boxed option)
(scope : ScopeName.t)
(ctxt : Name_resolution.context)
(prgm : Ast.program)
(rule : Surface.Ast.rule) : Ast.program =
let def = Surface.Ast.rule_to_def rule in
process_def precond scope ctxt prgm def
(** Translates assertions *)
let process_assert
(precond : Ast.expr boxed option)
(scope_uid : ScopeName.t)
(ctxt : Name_resolution.context)
(prgm : Ast.program)
(ass : Surface.Ast.assertion) : Ast.program =
let scope : Ast.scope = ScopeName.Map.find scope_uid prgm.program_scopes in
let ass =
translate_expr scope_uid None ctxt
(match ass.Surface.Ast.assertion_condition with
| None -> ass.Surface.Ast.assertion_content
| Some cond ->
( Surface.Ast.IfThenElse
( cond,
ass.Surface.Ast.assertion_content,
Marked.same_mark_as (Surface.Ast.Literal (Surface.Ast.LBool true))
cond ),
Marked.get_mark cond ))
in
let ass =
match precond with
| Some precond ->
Expr.eifthenelse precond ass
(Expr.elit (LBool true) (Marked.get_mark precond))
(Marked.get_mark precond)
| None -> ass
in
let new_scope =
{ scope with scope_assertions = ass :: scope.scope_assertions }
in
{
prgm with
program_scopes = ScopeName.Map.add scope_uid new_scope prgm.program_scopes;
}
(** Translates a surface definition, rule or assertion *)
let process_scope_use_item
(precond : Surface.Ast.expression Marked.pos option)
(scope : ScopeName.t)
(ctxt : Name_resolution.context)
(prgm : Ast.program)
(item : Surface.Ast.scope_use_item Marked.pos) : Ast.program =
let precond = Option.map (translate_expr scope None ctxt) precond in
match Marked.unmark item with
| Surface.Ast.Rule rule -> process_rule precond scope ctxt prgm rule
| Surface.Ast.Definition def -> process_def precond scope ctxt prgm def
| Surface.Ast.Assertion ass -> process_assert precond scope ctxt prgm ass
| _ -> prgm
(** {1 Translating top-level items} *)
(* If this is an unlabeled exception, ensures that it has a unique default
definition *)
let check_unlabeled_exception
(scope : ScopeName.t)
(ctxt : Name_resolution.context)
(item : Surface.Ast.scope_use_item Marked.pos) : unit =
let scope_ctxt = ScopeName.Map.find scope ctxt.scopes in
match Marked.unmark item with
| Surface.Ast.Rule _ | Surface.Ast.Definition _ -> (
let def_key, exception_to =
match Marked.unmark item with
| Surface.Ast.Rule rule ->
( Name_resolution.get_def_key
(Marked.unmark rule.rule_name)
rule.rule_state scope ctxt
(Marked.get_mark rule.rule_name),
rule.rule_exception_to )
| Surface.Ast.Definition def ->
( Name_resolution.get_def_key
(Marked.unmark def.definition_name)
def.definition_state scope ctxt
(Marked.get_mark def.definition_name),
def.definition_exception_to )
| _ -> assert false
(* should not happen *)
in
let scope_def_ctxt =
Ast.ScopeDefMap.find def_key scope_ctxt.scope_defs_contexts
in
match exception_to with
| Surface.Ast.NotAnException | Surface.Ast.ExceptionToLabel _ -> ()
(* If this is an unlabeled exception, we check that it has a unique default
definition *)
| Surface.Ast.UnlabeledException -> (
match scope_def_ctxt.default_exception_rulename with
| None ->
Errors.raise_spanned_error (Marked.get_mark item)
"This exception does not have a corresponding definition"
| Some (Ambiguous pos) ->
Errors.raise_multispanned_error
([Some "Ambiguous exception", Marked.get_mark item]
@ List.map (fun p -> Some "Candidate definition", p) pos)
"This exception can refer to several definitions. Try using labels \
to disambiguate"
| Some (Unique _) -> ()))
| _ -> ()
(** Translates a surface scope use, which is a bunch of definitions *)
let process_scope_use
(ctxt : Name_resolution.context)
(prgm : Ast.program)
(use : Surface.Ast.scope_use) : Ast.program =
let scope_uid = Name_resolution.get_scope ctxt use.scope_use_name in
(* Make sure the scope exists *)
let prgm =
match ScopeName.Map.find_opt scope_uid prgm.program_scopes with
| Some _ -> prgm
| None -> assert false
(* should not happen *)
in
let precond = use.scope_use_condition in
List.iter (check_unlabeled_exception scope_uid ctxt) use.scope_use_items;
List.fold_left
(process_scope_use_item precond scope_uid ctxt)
prgm use.scope_use_items
let attribute_to_io (attr : Surface.Ast.scope_decl_context_io) : Ast.io =
{
Ast.io_output = attr.scope_decl_context_io_output;
Ast.io_input =
Marked.map_under_mark
(fun io ->
match io with
| Surface.Ast.Input -> Ast.OnlyInput
| Surface.Ast.Internal -> Ast.NoInput
| Surface.Ast.Context -> Ast.Reentrant)
attr.scope_decl_context_io_input;
}
let init_scope_defs
(ctxt : Name_resolution.context)
(scope_idmap : Name_resolution.scope_var_or_subscope IdentName.Map.t) :
Ast.scope_def Ast.ScopeDefMap.t =
(* Initializing the definitions of all scopes and subscope vars, with no rules
yet inside *)
let add_def _ v scope_def_map =
match v with
| Name_resolution.ScopeVar v -> (
let v_sig = ScopeVar.Map.find v ctxt.Name_resolution.var_typs in
match v_sig.var_sig_states_list with
| [] ->
let def_key = Ast.ScopeDef.Var (v, None) in
Ast.ScopeDefMap.add def_key
{
Ast.scope_def_rules = RuleName.Map.empty;
Ast.scope_def_typ = v_sig.var_sig_typ;
Ast.scope_def_is_condition = v_sig.var_sig_is_condition;
Ast.scope_def_io = attribute_to_io v_sig.var_sig_io;
}
scope_def_map
| states ->
let scope_def, _ =
List.fold_left
(fun (acc, i) state ->
let def_key = Ast.ScopeDef.Var (v, Some state) in
let def =
{
Ast.scope_def_rules = RuleName.Map.empty;
Ast.scope_def_typ = v_sig.var_sig_typ;
Ast.scope_def_is_condition = v_sig.var_sig_is_condition;
Ast.scope_def_io =
(* The first state should have the input I/O of the original
variable, and the last state should have the output I/O
of the original variable. All intermediate states shall
have "internal" I/O.*)
(let original_io = attribute_to_io v_sig.var_sig_io in
let io_input =
if i = 0 then original_io.io_input
else
Ast.NoInput, Marked.get_mark (StateName.get_info state)
in
let io_output =
if i = List.length states - 1 then original_io.io_output
else false, Marked.get_mark (StateName.get_info state)
in
{ io_input; io_output });
}
in
Ast.ScopeDefMap.add def_key def acc, i + 1)
(scope_def_map, 0) states
in
scope_def)
| Name_resolution.SubScope (v0, subscope_uid) ->
let sub_scope_def =
ScopeName.Map.find subscope_uid ctxt.Name_resolution.scopes
in
IdentName.Map.fold
(fun _ v scope_def_map ->
match v with
| Name_resolution.SubScope _ -> scope_def_map
| Name_resolution.ScopeVar v ->
(* TODO: shouldn't we ignore internal variables too at this point
? *)
let v_sig = ScopeVar.Map.find v ctxt.Name_resolution.var_typs in
let def_key =
Ast.ScopeDef.SubScopeVar
(v0, v, Marked.get_mark (ScopeVar.get_info v))
in
Ast.ScopeDefMap.add def_key
{
Ast.scope_def_rules = RuleName.Map.empty;
Ast.scope_def_typ = v_sig.var_sig_typ;
Ast.scope_def_is_condition = v_sig.var_sig_is_condition;
Ast.scope_def_io = attribute_to_io v_sig.var_sig_io;
}
scope_def_map)
sub_scope_def.Name_resolution.var_idmap scope_def_map
in
IdentName.Map.fold add_def scope_idmap Ast.ScopeDefMap.empty
(** Main function of this module *)
let translate_program
(ctxt : Name_resolution.context)
(prgm : Surface.Ast.program) : Ast.program =
let empty_prgm =
let program_scopes =
ScopeName.Map.mapi
(fun s_uid s_context ->
let scope_vars =
IdentName.Map.fold
(fun _ v acc ->
match v with
| Name_resolution.SubScope _ -> acc
| Name_resolution.ScopeVar v -> (
let v_sig = ScopeVar.Map.find v ctxt.var_typs in
match v_sig.var_sig_states_list with
| [] -> ScopeVar.Map.add v Ast.WholeVar acc
| states -> ScopeVar.Map.add v (Ast.States states) acc))
s_context.Name_resolution.var_idmap ScopeVar.Map.empty
in
let scope_sub_scopes =
IdentName.Map.fold
(fun _ v acc ->
match v with
| Name_resolution.ScopeVar _ -> acc
| Name_resolution.SubScope (sub_var, sub_scope) ->
SubScopeName.Map.add sub_var sub_scope acc)
s_context.Name_resolution.var_idmap SubScopeName.Map.empty
in
{
Ast.scope_vars;
scope_sub_scopes;
scope_defs = init_scope_defs ctxt s_context.var_idmap;
scope_assertions = [];
scope_meta_assertions = [];
scope_uid = s_uid;
})
ctxt.Name_resolution.scopes
in
{
Ast.program_ctx =
{
ctx_structs = ctxt.Name_resolution.structs;
ctx_enums = ctxt.Name_resolution.enums;
ctx_scopes =
IdentName.Map.fold
(fun _ def acc ->
match def with
| Name_resolution.TScope (scope, scope_out_struct) ->
ScopeName.Map.add scope scope_out_struct acc
| _ -> acc)
ctxt.Name_resolution.typedefs ScopeName.Map.empty;
ctx_struct_fields = ctxt.Name_resolution.field_idmap;
};
Ast.program_scopes;
}
in
let rec processer_structure
(prgm : Ast.program)
(item : Surface.Ast.law_structure) : Ast.program =
match item with
| LawHeading (_, children) ->
List.fold_left
(fun prgm child -> processer_structure prgm child)
prgm children
| CodeBlock (block, _, _) ->
List.fold_left
(fun prgm item ->
match Marked.unmark item with
| Surface.Ast.ScopeUse use -> process_scope_use ctxt prgm use
| _ -> prgm)
prgm block
| LawInclude _ | LawText _ -> prgm
in
List.fold_left processer_structure empty_prgm prgm.program_items