mirror of
https://github.com/Chia-Network/chia-blockchain.git
synced 2024-11-24 16:26:02 +03:00
305 lines
12 KiB
Python
305 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import sys
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from statistics import stdev
|
|
from time import process_time as clock
|
|
from typing import Any, Callable, Dict, List, Optional, TextIO, Tuple, Type, Union
|
|
|
|
import click
|
|
|
|
from benchmarks.utils import EnumType, get_commit_hash, rand_bytes, rand_full_block, rand_hash
|
|
from chia.types.blockchain_format.sized_bytes import bytes32
|
|
from chia.types.full_block import FullBlock
|
|
from chia.util.ints import uint8, uint64
|
|
from chia.util.streamable import Streamable, streamable
|
|
|
|
# to run this benchmark:
|
|
# python -m benchmarks.streamable
|
|
|
|
_version = 1
|
|
|
|
|
|
@streamable
|
|
@dataclass(frozen=True)
|
|
class BenchmarkInner(Streamable):
|
|
a: str
|
|
|
|
|
|
@streamable
|
|
@dataclass(frozen=True)
|
|
class BenchmarkMiddle(Streamable):
|
|
a: uint64
|
|
b: List[bytes32]
|
|
c: Tuple[str, bool, uint8, List[bytes]]
|
|
d: Tuple[BenchmarkInner, BenchmarkInner]
|
|
e: BenchmarkInner
|
|
|
|
|
|
@streamable
|
|
@dataclass(frozen=True)
|
|
class BenchmarkClass(Streamable):
|
|
a: Optional[BenchmarkMiddle]
|
|
b: Optional[BenchmarkMiddle]
|
|
c: BenchmarkMiddle
|
|
d: List[BenchmarkMiddle]
|
|
e: Tuple[BenchmarkMiddle, BenchmarkMiddle, BenchmarkMiddle]
|
|
|
|
|
|
def get_random_inner() -> BenchmarkInner:
|
|
return BenchmarkInner(rand_bytes(20).hex())
|
|
|
|
|
|
def get_random_middle() -> BenchmarkMiddle:
|
|
a: uint64 = uint64(10)
|
|
b: List[bytes32] = [rand_hash() for _ in range(a)]
|
|
c: Tuple[str, bool, uint8, List[bytes]] = ("benchmark", False, uint8(1), [rand_bytes(a) for _ in range(a)])
|
|
d: Tuple[BenchmarkInner, BenchmarkInner] = (get_random_inner(), get_random_inner())
|
|
e: BenchmarkInner = get_random_inner()
|
|
return BenchmarkMiddle(a, b, c, d, e)
|
|
|
|
|
|
def get_random_benchmark_object() -> BenchmarkClass:
|
|
a: Optional[BenchmarkMiddle] = None
|
|
b: Optional[BenchmarkMiddle] = get_random_middle()
|
|
c: BenchmarkMiddle = get_random_middle()
|
|
d: List[BenchmarkMiddle] = [get_random_middle() for _ in range(5)]
|
|
e: Tuple[BenchmarkMiddle, BenchmarkMiddle, BenchmarkMiddle] = (
|
|
get_random_middle(),
|
|
get_random_middle(),
|
|
get_random_middle(),
|
|
)
|
|
return BenchmarkClass(a, b, c, d, e)
|
|
|
|
|
|
def print_row(
|
|
*,
|
|
mode: str,
|
|
us_per_iteration: Union[str, float],
|
|
stdev_us_per_iteration: Union[str, float],
|
|
avg_iterations: Union[str, int],
|
|
stdev_iterations: Union[str, float],
|
|
end: str = "\n",
|
|
) -> None:
|
|
mode = "{:<10}".format(f"{mode}")
|
|
us_per_iteration = "{:<12}".format(f"{us_per_iteration}")
|
|
stdev_us_per_iteration = "{:>20}".format(f"{stdev_us_per_iteration}")
|
|
avg_iterations = "{:>18}".format(f"{avg_iterations}")
|
|
stdev_iterations = "{:>22}".format(f"{stdev_iterations}")
|
|
print(f"{mode} | {us_per_iteration} | {stdev_us_per_iteration} | {avg_iterations} | {stdev_iterations}", end=end)
|
|
|
|
|
|
@dataclass
|
|
class BenchmarkResults:
|
|
us_per_iteration: float
|
|
stdev_us_per_iteration: float
|
|
avg_iterations: int
|
|
stdev_iterations: float
|
|
|
|
|
|
def print_results(mode: str, bench_result: BenchmarkResults, final: bool) -> None:
|
|
print_row(
|
|
mode=mode,
|
|
us_per_iteration=bench_result.us_per_iteration,
|
|
stdev_us_per_iteration=bench_result.stdev_us_per_iteration,
|
|
avg_iterations=bench_result.avg_iterations,
|
|
stdev_iterations=bench_result.stdev_iterations,
|
|
end="\n" if final else "\r",
|
|
)
|
|
|
|
|
|
# The strings in this Enum are by purpose. See benchmark.utils.EnumType.
|
|
class Data(str, Enum):
|
|
all = "all"
|
|
benchmark = "benchmark"
|
|
full_block = "full_block"
|
|
|
|
|
|
# The strings in this Enum are by purpose. See benchmark.utils.EnumType.
|
|
class Mode(str, Enum):
|
|
all = "all"
|
|
creation = "creation"
|
|
to_bytes = "to_bytes"
|
|
from_bytes = "from_bytes"
|
|
to_json = "to_json"
|
|
from_json = "from_json"
|
|
|
|
|
|
def to_bytes(obj: Any) -> bytes:
|
|
return bytes(obj)
|
|
|
|
|
|
@dataclass
|
|
class ModeParameter:
|
|
conversion_cb: Callable[[Any], Any]
|
|
preparation_cb: Optional[Callable[[Any], Any]] = None
|
|
|
|
|
|
@dataclass
|
|
class BenchmarkParameter:
|
|
data_class: Type[Any]
|
|
object_creation_cb: Callable[[], Any]
|
|
mode_parameter: Dict[Mode, Optional[ModeParameter]]
|
|
|
|
|
|
benchmark_parameter: Dict[Data, BenchmarkParameter] = {
|
|
Data.benchmark: BenchmarkParameter(
|
|
BenchmarkClass,
|
|
get_random_benchmark_object,
|
|
{
|
|
Mode.creation: None,
|
|
Mode.to_bytes: ModeParameter(to_bytes),
|
|
Mode.from_bytes: ModeParameter(BenchmarkClass.from_bytes, to_bytes),
|
|
Mode.to_json: ModeParameter(BenchmarkClass.to_json_dict),
|
|
Mode.from_json: ModeParameter(BenchmarkClass.from_json_dict, BenchmarkClass.to_json_dict),
|
|
},
|
|
),
|
|
Data.full_block: BenchmarkParameter(
|
|
FullBlock,
|
|
rand_full_block,
|
|
{
|
|
Mode.creation: None,
|
|
Mode.to_bytes: ModeParameter(to_bytes),
|
|
Mode.from_bytes: ModeParameter(FullBlock.from_bytes, to_bytes),
|
|
Mode.to_json: ModeParameter(FullBlock.to_json_dict),
|
|
Mode.from_json: ModeParameter(FullBlock.from_json_dict, FullBlock.to_json_dict),
|
|
},
|
|
),
|
|
}
|
|
|
|
|
|
def run_for_ms(cb: Callable[[], Any], ms_to_run: int = 100) -> List[int]:
|
|
us_iteration_results: List[int] = []
|
|
start = clock()
|
|
while int((clock() - start) * 1000) < ms_to_run:
|
|
start_iteration = clock()
|
|
cb()
|
|
stop_iteration = clock()
|
|
us_iteration_results.append(int((stop_iteration - start_iteration) * 1000 * 1000))
|
|
return us_iteration_results
|
|
|
|
|
|
def calc_stdev_percent(iterations: List[int], avg: float) -> float:
|
|
deviation = 0 if len(iterations) < 2 else int(stdev(iterations) * 100) / 100
|
|
return int((deviation / avg * 100) * 100) / 100
|
|
|
|
|
|
def pop_data(key: str, *, old: Dict[str, Any], new: Dict[str, Any]) -> Tuple[Any, Any]:
|
|
if key not in old:
|
|
sys.exit(f"{key} missing in old")
|
|
if key not in new:
|
|
sys.exit(f"{key} missing in new")
|
|
return old.pop(key), new.pop(key)
|
|
|
|
|
|
def print_compare_row(c0: str, c1: Union[str, float], c2: Union[str, float], c3: Union[str, float]) -> None:
|
|
c0 = "{:<12}".format(f"{c0}")
|
|
c1 = "{:<16}".format(f"{c1}")
|
|
c2 = "{:<16}".format(f"{c2}")
|
|
c3 = "{:<12}".format(f"{c3}")
|
|
print(f"{c0} | {c1} | {c2} | {c3}")
|
|
|
|
|
|
def compare_results(
|
|
old: Dict[str, Dict[str, Dict[str, Union[float, int]]]], new: Dict[str, Dict[str, Dict[str, Union[float, int]]]]
|
|
) -> None:
|
|
old_version, new_version = pop_data("version", old=old, new=new)
|
|
if old_version != new_version:
|
|
sys.exit(f"version missmatch: old: {old_version} vs new: {new_version}")
|
|
old_commit_hash, new_commit_hash = pop_data("commit_hash", old=old, new=new)
|
|
for data, modes in new.items():
|
|
if data not in old:
|
|
continue
|
|
print(f"\ncompare: {data}, old: {old_commit_hash}, new: {new_commit_hash}")
|
|
print_compare_row("mode", "µs/iteration old", "µs/iteration new", "diff %")
|
|
for mode, results in modes.items():
|
|
if mode not in old[data]:
|
|
continue
|
|
old_us, new_us = pop_data("us_per_iteration", old=old[data][mode], new=results)
|
|
print_compare_row(mode, old_us, new_us, int((new_us - old_us) / old_us * 10000) / 100)
|
|
|
|
|
|
@click.command()
|
|
@click.option("-d", "--data", default=Data.all, type=EnumType(Data))
|
|
@click.option("-m", "--mode", default=Mode.all, type=EnumType(Mode))
|
|
@click.option("-r", "--runs", default=100, help="Number of benchmark runs to average results")
|
|
@click.option("-t", "--ms", default=50, help="Milliseconds per run")
|
|
@click.option("--live/--no-live", default=False, help="Print live results (slower)")
|
|
@click.option("-o", "--output", type=click.File("w"), help="Write the results to a file")
|
|
@click.option("-c", "--compare", type=click.File("r"), help="Compare to the results from a file")
|
|
def run(data: Data, mode: Mode, runs: int, ms: int, live: bool, output: TextIO, compare: TextIO) -> None:
|
|
results: Dict[Data, Dict[Mode, List[List[int]]]] = {}
|
|
bench_results: Dict[str, Any] = {"version": _version, "commit_hash": get_commit_hash()}
|
|
for current_data, parameter in benchmark_parameter.items():
|
|
if data == Data.all or current_data == data:
|
|
results[current_data] = {}
|
|
bench_results[current_data] = {}
|
|
print(
|
|
f"\nbenchmarks: {mode.name}, data: {parameter.data_class.__name__} runs: {runs}, ms/run: {ms}, "
|
|
f"commit_hash: {bench_results['commit_hash']}"
|
|
)
|
|
print_row(
|
|
mode="mode",
|
|
us_per_iteration="µs/iteration",
|
|
stdev_us_per_iteration="stdev µs/iteration %",
|
|
avg_iterations="avg iterations/run",
|
|
stdev_iterations="stdev iterations/run %",
|
|
)
|
|
for current_mode, current_mode_parameter in parameter.mode_parameter.items():
|
|
results[current_data][current_mode] = []
|
|
if mode == Mode.all or current_mode == mode:
|
|
us_iteration_results: List[int]
|
|
all_results: List[List[int]] = results[current_data][current_mode]
|
|
obj = parameter.object_creation_cb()
|
|
|
|
def get_bench_results() -> BenchmarkResults:
|
|
all_runtimes: List[int] = [x for inner in all_results for x in inner]
|
|
total_iterations: int = len(all_runtimes)
|
|
total_elapsed_us: int = sum(all_runtimes)
|
|
avg_iterations: float = total_iterations / len(all_results)
|
|
stdev_iterations: float = calc_stdev_percent([len(x) for x in all_results], avg_iterations)
|
|
us_per_iteration: float = total_elapsed_us / total_iterations
|
|
stdev_us_per_iteration: float = calc_stdev_percent(
|
|
all_runtimes, total_elapsed_us / total_iterations
|
|
)
|
|
return BenchmarkResults(
|
|
int(us_per_iteration * 100) / 100,
|
|
stdev_us_per_iteration,
|
|
int(avg_iterations),
|
|
stdev_iterations,
|
|
)
|
|
|
|
current_run: int = 0
|
|
while current_run < runs:
|
|
current_run += 1
|
|
|
|
if current_mode == Mode.creation:
|
|
cls = type(obj)
|
|
us_iteration_results = run_for_ms(lambda: cls(**obj.__dict__), ms)
|
|
else:
|
|
assert current_mode_parameter is not None
|
|
conversion_cb = current_mode_parameter.conversion_cb
|
|
assert conversion_cb is not None
|
|
prepared_obj = parameter.object_creation_cb()
|
|
if current_mode_parameter.preparation_cb is not None:
|
|
prepared_obj = current_mode_parameter.preparation_cb(obj)
|
|
us_iteration_results = run_for_ms(lambda: conversion_cb(prepared_obj), ms)
|
|
all_results.append(us_iteration_results)
|
|
if live:
|
|
print_results(current_mode.name, get_bench_results(), False)
|
|
assert current_run == runs
|
|
bench_result = get_bench_results()
|
|
bench_results[current_data][current_mode] = bench_result.__dict__
|
|
print_results(current_mode.name, bench_result, True)
|
|
json_output = json.dumps(bench_results)
|
|
if output:
|
|
output.write(json_output)
|
|
if compare:
|
|
compare_results(json.load(compare), json.loads(json_output))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run() # pylint: disable = no-value-for-parameter
|