unleashed-firmware/firmware/targets/f7/furi_hal/furi_hal_nfc.c

822 lines
26 KiB
C
Raw Normal View History

#include <limits.h>
#include <furi_hal_nfc.h>
#include <st25r3916.h>
#include <st25r3916_irq.h>
#include <rfal_rf.h>
#include <furi.h>
#include <lib/digital_signal/digital_signal.h>
#include <furi_hal_spi.h>
#include <furi_hal_gpio.h>
#include <furi_hal_cortex.h>
#include <furi_hal_resources.h>
#define TAG "FuriHalNfc"
static const uint32_t clocks_in_ms = 64 * 1000;
FuriEventFlag* event = NULL;
#define EVENT_FLAG_INTERRUPT (1UL << 0)
#define EVENT_FLAG_STATE_CHANGED (1UL << 1)
#define EVENT_FLAG_STOP (1UL << 2)
#define EVENT_FLAG_ALL (EVENT_FLAG_INTERRUPT | EVENT_FLAG_STATE_CHANGED | EVENT_FLAG_STOP)
#define FURI_HAL_NFC_UID_INCOMPLETE (0x04)
void furi_hal_nfc_init() {
furi_assert(!event);
event = furi_event_flag_alloc();
ReturnCode ret = rfalNfcInitialize();
if(ret == ERR_NONE) {
furi_hal_nfc_start_sleep();
FURI_LOG_I(TAG, "Init OK");
} else {
FURI_LOG_W(TAG, "Init Failed, RFAL returned: %d", ret);
}
}
void furi_hal_nfc_deinit() {
ReturnCode ret = rfalDeinitialize();
if(ret == ERR_NONE) {
FURI_LOG_I(TAG, "Deinit OK");
} else {
FURI_LOG_W(TAG, "Deinit Failed, RFAL returned: %d", ret);
}
if(event) {
furi_event_flag_free(event);
event = NULL;
}
}
bool furi_hal_nfc_is_busy() {
return rfalNfcGetState() != RFAL_NFC_STATE_IDLE;
}
bool furi_hal_nfc_is_init() {
return rfalNfcGetState() != RFAL_NFC_STATE_NOTINIT;
}
void furi_hal_nfc_field_on() {
furi_hal_nfc_exit_sleep();
st25r3916TxRxOn();
}
void furi_hal_nfc_field_off() {
st25r3916TxRxOff();
furi_hal_nfc_start_sleep();
}
void furi_hal_nfc_start_sleep() {
rfalLowPowerModeStart();
}
void furi_hal_nfc_exit_sleep() {
rfalLowPowerModeStop();
}
bool furi_hal_nfc_detect(FuriHalNfcDevData* nfc_data, uint32_t timeout) {
furi_assert(nfc_data);
rfalNfcDevice* dev_list = NULL;
uint8_t dev_cnt = 0;
bool detected = false;
rfalLowPowerModeStop();
rfalNfcState state = rfalNfcGetState();
rfalNfcState state_old = 0;
if(state == RFAL_NFC_STATE_NOTINIT) {
rfalNfcInitialize();
}
rfalNfcDiscoverParam params;
params.compMode = RFAL_COMPLIANCE_MODE_EMV;
params.techs2Find = RFAL_NFC_POLL_TECH_A | RFAL_NFC_POLL_TECH_B | RFAL_NFC_POLL_TECH_F |
RFAL_NFC_POLL_TECH_V | RFAL_NFC_POLL_TECH_AP2P | RFAL_NFC_POLL_TECH_ST25TB;
params.totalDuration = 1000;
params.devLimit = 3;
params.wakeupEnabled = false;
params.wakeupConfigDefault = true;
params.nfcfBR = RFAL_BR_212;
params.ap2pBR = RFAL_BR_424;
params.maxBR = RFAL_BR_KEEP;
params.GBLen = RFAL_NFCDEP_GB_MAX_LEN;
params.notifyCb = NULL;
uint32_t start = DWT->CYCCNT;
rfalNfcDiscover(&params);
while(true) {
rfalNfcWorker();
state = rfalNfcGetState();
if(state != state_old) {
FURI_LOG_T(TAG, "State change %d -> %d", state_old, state);
}
state_old = state;
if(state == RFAL_NFC_STATE_ACTIVATED) {
detected = true;
break;
}
if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
start = DWT->CYCCNT;
continue;
}
if(state == RFAL_NFC_STATE_POLL_SELECT) {
rfalNfcSelect(0);
}
if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
rfalNfcDeactivate(true);
FURI_LOG_T(TAG, "Timeout");
break;
}
furi_delay_tick(1);
}
rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
if(detected) {
if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCA) {
nfc_data->type = FuriHalNfcTypeA;
nfc_data->atqa[0] = dev_list[0].dev.nfca.sensRes.anticollisionInfo;
nfc_data->atqa[1] = dev_list[0].dev.nfca.sensRes.platformInfo;
nfc_data->sak = dev_list[0].dev.nfca.selRes.sak;
uint8_t* cuid_start = dev_list[0].nfcid;
if(dev_list[0].nfcidLen == 7) {
cuid_start = &dev_list[0].nfcid[3];
}
nfc_data->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
(cuid_start[3]);
} else if(
dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCB ||
dev_list[0].type == RFAL_NFC_LISTEN_TYPE_ST25TB) {
nfc_data->type = FuriHalNfcTypeB;
} else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCF) {
nfc_data->type = FuriHalNfcTypeF;
} else if(dev_list[0].type == RFAL_NFC_LISTEN_TYPE_NFCV) {
nfc_data->type = FuriHalNfcTypeV;
}
if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_RF) {
nfc_data->interface = FuriHalNfcInterfaceRf;
} else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_ISODEP) {
nfc_data->interface = FuriHalNfcInterfaceIsoDep;
} else if(dev_list[0].rfInterface == RFAL_NFC_INTERFACE_NFCDEP) {
nfc_data->interface = FuriHalNfcInterfaceNfcDep;
}
nfc_data->uid_len = dev_list[0].nfcidLen;
memcpy(nfc_data->uid, dev_list[0].nfcid, nfc_data->uid_len);
}
return detected;
}
bool furi_hal_nfc_activate_nfca(uint32_t timeout, uint32_t* cuid) {
rfalNfcDevice* dev_list;
uint8_t dev_cnt = 0;
rfalLowPowerModeStop();
rfalNfcState state = rfalNfcGetState();
if(state == RFAL_NFC_STATE_NOTINIT) {
rfalNfcInitialize();
}
rfalNfcDiscoverParam params = {
.compMode = RFAL_COMPLIANCE_MODE_NFC,
.techs2Find = RFAL_NFC_POLL_TECH_A,
.totalDuration = 1000,
.devLimit = 3,
.wakeupEnabled = false,
.wakeupConfigDefault = true,
.nfcfBR = RFAL_BR_212,
.ap2pBR = RFAL_BR_424,
.maxBR = RFAL_BR_KEEP,
.GBLen = RFAL_NFCDEP_GB_MAX_LEN,
.notifyCb = NULL,
};
uint32_t start = DWT->CYCCNT;
rfalNfcDiscover(&params);
while(state != RFAL_NFC_STATE_ACTIVATED) {
rfalNfcWorker();
state = rfalNfcGetState();
FURI_LOG_T(TAG, "Current state %d", state);
if(state == RFAL_NFC_STATE_POLL_ACTIVATION) {
start = DWT->CYCCNT;
continue;
}
if(state == RFAL_NFC_STATE_POLL_SELECT) {
rfalNfcSelect(0);
}
if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
rfalNfcDeactivate(true);
FURI_LOG_T(TAG, "Timeout");
return false;
}
furi_thread_yield();
}
rfalNfcGetDevicesFound(&dev_list, &dev_cnt);
// Take first device and set cuid
if(cuid) {
uint8_t* cuid_start = dev_list[0].nfcid;
if(dev_list[0].nfcidLen == 7) {
cuid_start = &dev_list[0].nfcid[3];
}
*cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
(cuid_start[3]);
FURI_LOG_T(TAG, "Activated tag with cuid: %lX", *cuid);
}
return true;
}
bool furi_hal_nfc_listen(
uint8_t* uid,
uint8_t uid_len,
uint8_t* atqa,
uint8_t sak,
bool activate_after_sak,
uint32_t timeout) {
rfalNfcState state = rfalNfcGetState();
if(state == RFAL_NFC_STATE_NOTINIT) {
rfalNfcInitialize();
} else if(state >= RFAL_NFC_STATE_ACTIVATED) {
rfalNfcDeactivate(false);
}
rfalLowPowerModeStop();
rfalNfcDiscoverParam params = {
.techs2Find = RFAL_NFC_LISTEN_TECH_A,
.totalDuration = 1000,
.devLimit = 1,
.wakeupEnabled = false,
.wakeupConfigDefault = true,
.nfcfBR = RFAL_BR_212,
.ap2pBR = RFAL_BR_424,
.maxBR = RFAL_BR_KEEP,
.GBLen = RFAL_NFCDEP_GB_MAX_LEN,
.notifyCb = NULL,
.activate_after_sak = activate_after_sak,
};
if(FURI_BIT(sak, 5)) {
params.compMode = RFAL_COMPLIANCE_MODE_EMV;
} else {
params.compMode = RFAL_COMPLIANCE_MODE_NFC;
}
params.lmConfigPA.nfcidLen = uid_len;
memcpy(params.lmConfigPA.nfcid, uid, uid_len);
params.lmConfigPA.SENS_RES[0] = atqa[0];
params.lmConfigPA.SENS_RES[1] = atqa[1];
params.lmConfigPA.SEL_RES = sak;
rfalNfcDiscover(&params);
// Disable EMD suppression.
st25r3916ModifyRegister(ST25R3916_REG_EMD_SUP_CONF, ST25R3916_REG_EMD_SUP_CONF_emd_emv, 0);
uint32_t start = DWT->CYCCNT;
while(state != RFAL_NFC_STATE_ACTIVATED) {
rfalNfcWorker();
state = rfalNfcGetState();
if(DWT->CYCCNT - start > timeout * clocks_in_ms) {
rfalNfcDeactivate(true);
return false;
}
furi_delay_tick(1);
}
return true;
}
static void furi_hal_nfc_read_fifo(uint8_t* data, uint16_t* bits) {
uint8_t fifo_status[2];
uint8_t rx_buff[64];
st25r3916ReadMultipleRegisters(
ST25R3916_REG_FIFO_STATUS1, fifo_status, ST25R3916_FIFO_STATUS_LEN);
uint16_t rx_bytes =
((((uint16_t)fifo_status[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
<< 8);
rx_bytes |= (((uint16_t)fifo_status[0]) & 0x00FFU);
st25r3916ReadFifo(rx_buff, rx_bytes);
memcpy(data, rx_buff, rx_bytes);
*bits = rx_bytes * 8;
}
void furi_hal_nfc_listen_sleep() {
st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SLEEP);
}
void furi_hal_nfc_stop_cmd() {
st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
}
bool furi_hal_nfc_listen_rx(FuriHalNfcTxRxContext* tx_rx, uint32_t timeout_ms) {
furi_assert(tx_rx);
// Wait for interrupts
uint32_t start = furi_get_tick();
bool data_received = false;
while(true) {
if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
st25r3916CheckForReceivedInterrupts();
if(st25r3916GetInterrupt(ST25R3916_IRQ_MASK_RXE)) {
furi_hal_nfc_read_fifo(tx_rx->rx_data, &tx_rx->rx_bits);
data_received = true;
if(tx_rx->sniff_rx) {
tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
}
break;
}
continue;
}
if(furi_get_tick() - start > timeout_ms) {
2022-07-12 17:56:56 +03:00
FURI_LOG_T(TAG, "Interrupt waiting timeout");
furi_delay_tick(1);
break;
}
}
return data_received;
}
void furi_hal_nfc_listen_start(FuriHalNfcDevData* nfc_data) {
furi_assert(nfc_data);
furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
// Clear interrupts
st25r3916ClearInterrupts();
// Mask all interrupts
st25r3916DisableInterrupts(ST25R3916_IRQ_MASK_ALL);
// RESET
st25r3916ExecuteCommand(ST25R3916_CMD_STOP);
// Setup registers
st25r3916WriteRegister(
ST25R3916_REG_OP_CONTROL,
ST25R3916_REG_OP_CONTROL_en | ST25R3916_REG_OP_CONTROL_rx_en |
ST25R3916_REG_OP_CONTROL_en_fd_auto_efd);
st25r3916WriteRegister(
ST25R3916_REG_MODE,
ST25R3916_REG_MODE_targ_targ | ST25R3916_REG_MODE_om3 | ST25R3916_REG_MODE_om0);
st25r3916WriteRegister(
ST25R3916_REG_PASSIVE_TARGET,
ST25R3916_REG_PASSIVE_TARGET_fdel_2 | ST25R3916_REG_PASSIVE_TARGET_fdel_0 |
ST25R3916_REG_PASSIVE_TARGET_d_ac_ap2p | ST25R3916_REG_PASSIVE_TARGET_d_212_424_1r);
st25r3916WriteRegister(ST25R3916_REG_MASK_RX_TIMER, 0x02);
// Mask interrupts
uint32_t clear_irq_mask =
(ST25R3916_IRQ_MASK_RXE | ST25R3916_IRQ_MASK_RXE_PTA | ST25R3916_IRQ_MASK_WU_A_X |
ST25R3916_IRQ_MASK_WU_A);
st25r3916EnableInterrupts(clear_irq_mask);
// Set 4 or 7 bytes UID
if(nfc_data->uid_len == 4) {
st25r3916ChangeRegisterBits(
ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_4bytes);
} else {
st25r3916ChangeRegisterBits(
ST25R3916_REG_AUX, ST25R3916_REG_AUX_nfc_id_mask, ST25R3916_REG_AUX_nfc_id_7bytes);
}
// Write PT Memory
uint8_t pt_memory[15] = {};
memcpy(pt_memory, nfc_data->uid, nfc_data->uid_len);
pt_memory[10] = nfc_data->atqa[0];
pt_memory[11] = nfc_data->atqa[1];
if(nfc_data->uid_len == 4) {
pt_memory[12] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
} else {
pt_memory[12] = FURI_HAL_NFC_UID_INCOMPLETE;
}
pt_memory[13] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
pt_memory[14] = nfc_data->sak & ~FURI_HAL_NFC_UID_INCOMPLETE;
st25r3916WritePTMem(pt_memory, sizeof(pt_memory));
// Go to sense
st25r3916ExecuteCommand(ST25R3916_CMD_GOTO_SENSE);
}
void rfal_interrupt_callback_handler() {
furi_event_flag_set(event, EVENT_FLAG_INTERRUPT);
}
void rfal_state_changed_callback(void* context) {
UNUSED(context);
furi_event_flag_set(event, EVENT_FLAG_STATE_CHANGED);
}
void furi_hal_nfc_stop() {
if(event) {
furi_event_flag_set(event, EVENT_FLAG_STOP);
}
}
bool furi_hal_nfc_emulate_nfca(
uint8_t* uid,
uint8_t uid_len,
uint8_t* atqa,
uint8_t sak,
FuriHalNfcEmulateCallback callback,
void* context,
uint32_t timeout) {
rfalSetUpperLayerCallback(rfal_interrupt_callback_handler);
rfal_set_state_changed_callback(rfal_state_changed_callback);
rfalLmConfPA config;
config.nfcidLen = uid_len;
memcpy(config.nfcid, uid, uid_len);
memcpy(config.SENS_RES, atqa, RFAL_LM_SENS_RES_LEN);
config.SEL_RES = sak;
uint8_t buff_rx[256];
uint16_t buff_rx_size = 256;
uint16_t buff_rx_len = 0;
nfc: NTAG21x complete emulation (#1313) * nfc: Refactor Mifare Ultralight feature flags Unify them in both reader and emulator to make handling easier * nfc: Refactor MFUL PWD_AUTH and add AUTHLIM counter * nfc: Add MFUL EV1 VCSL command emulation * nfc: Enforce message size check in MFUL emulation Also fix READ_CNT byte order, but it's not fully working * nfc: Add MFUL auth counter serialization Also fill counter on successful read from tag * nfc: Fix MFUL INCR_CNT emulation * nfc: Fix MFUL READ_CNT emulation * nfc: Refactor MFUL emulation and implement full write support * nfc: Fix Mifare Ultralight serialization * nfc: Add MFUL OTP/CC handling * nfc: Make sure MF0UL21 dynamic lock byte 3 also reads 0xBD * nfc: Small MFUL refactor and fix CFGLCK behavior * WIP: nfc: MFUL read support with ASCII mirror and auth roll-over This is too complex and I don't like it * nfc: Simplify MFUL read emulation, fix mirror range check * nfc: Implement MFUL auth and ASCII mirror for FAST_READ * nfc: Fix MFUL read roll-over with AUTH0 set * nfc: Implement MFUL read counter increment * nfc: Align ASCII mirror to NTAG21x behavior * nfc: Handle invalid command in MFUL emulation * nfc: Fix MFUL static lock check * nfc: Refactor MFUL emulation to use cached config pages * nfc: Refactor MFUL auth counter to count up instead of down * nfc: Add missing NULL check * WIP: nfc: Various MFUL emulation behavior tweaks * WIP: nfc: More MFUL emulation behavior adjustments * nfc: Match AUTHLIM emulation to NTAG21x behavior * nfc: Fix MFUL dynamic lock emulation * nfc: Fix typo in MFUL read counters * nfc: Fix typo in MFUL FAST_READ emulation * nfc: Increase emulation TX buffer size Enough space for if someone requests FAST_READ of all pages of an NTAG * nfc: Fix MFUL negative verification counter overflow * nfc: Change auth counter kv name * nfc: Fix NTAG I2C FAST_READ emulation * nfc: Fix NTAG21x config reload behavior Co-authored-by: あく <alleteam@gmail.com>
2022-06-21 18:04:35 +03:00
uint8_t buff_tx[1040];
uint16_t buff_tx_len = 0;
uint32_t data_type = FURI_HAL_NFC_TXRX_DEFAULT;
rfalLowPowerModeStop();
if(rfalListenStart(
RFAL_LM_MASK_NFCA,
&config,
NULL,
NULL,
buff_rx,
rfalConvBytesToBits(buff_rx_size),
&buff_rx_len)) {
rfalListenStop();
FURI_LOG_E(TAG, "Failed to start listen mode");
return false;
}
while(true) {
buff_rx_len = 0;
buff_tx_len = 0;
uint32_t flag = furi_event_flag_wait(event, EVENT_FLAG_ALL, FuriFlagWaitAny, timeout);
if(flag == (unsigned)FuriFlagErrorTimeout || flag == EVENT_FLAG_STOP) {
break;
}
bool data_received = false;
buff_rx_len = 0;
rfalWorker();
rfalLmState state = rfalListenGetState(&data_received, NULL);
if(data_received) {
rfalTransceiveBlockingRx();
if(nfca_emulation_handler(buff_rx, buff_rx_len, buff_tx, &buff_tx_len)) {
if(rfalListenSleepStart(
RFAL_LM_STATE_SLEEP_A,
buff_rx,
rfalConvBytesToBits(buff_rx_size),
&buff_rx_len)) {
FURI_LOG_E(TAG, "Failed to enter sleep mode");
break;
} else {
continue;
}
}
if(buff_tx_len) {
ReturnCode ret = rfalTransceiveBitsBlockingTx(
buff_tx,
buff_tx_len,
buff_rx,
rfalConvBytesToBits(buff_rx_size),
&buff_rx_len,
data_type,
RFAL_FWT_NONE);
if(ret) {
FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
break;
}
continue;
}
if((state == RFAL_LM_STATE_ACTIVE_A || state == RFAL_LM_STATE_ACTIVE_Ax)) {
if(callback) {
callback(buff_rx, buff_rx_len, buff_tx, &buff_tx_len, &data_type, context);
}
if(!rfalIsExtFieldOn()) {
break;
}
if(buff_tx_len) {
if(buff_tx_len == UINT16_MAX) buff_tx_len = 0;
ReturnCode ret = rfalTransceiveBitsBlockingTx(
buff_tx,
buff_tx_len,
buff_rx,
rfalConvBytesToBits(buff_rx_size),
&buff_rx_len,
data_type,
RFAL_FWT_NONE);
if(ret) {
FURI_LOG_E(TAG, "Tranceive failed with status %d", ret);
continue;
}
} else {
break;
}
}
}
}
rfalListenStop();
return true;
}
static bool furi_hal_nfc_transparent_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
furi_assert(tx_rx->nfca_signal);
bool ret = false;
// Start transparent mode
st25r3916ExecuteCommand(ST25R3916_CMD_TRANSPARENT_MODE);
// Reconfigure gpio for Transparent mode
furi_hal_spi_bus_handle_deinit(&furi_hal_spi_bus_handle_nfc);
// Send signal
FURI_CRITICAL_ENTER();
nfca_signal_encode(tx_rx->nfca_signal, tx_rx->tx_data, tx_rx->tx_bits, tx_rx->tx_parity);
digital_signal_send(tx_rx->nfca_signal->tx_signal, &gpio_spi_r_mosi);
FURI_CRITICAL_EXIT();
furi_hal_gpio_write(&gpio_spi_r_mosi, false);
// Configure gpio back to SPI and exit transparent
furi_hal_spi_bus_handle_init(&furi_hal_spi_bus_handle_nfc);
st25r3916ExecuteCommand(ST25R3916_CMD_UNMASK_RECEIVE_DATA);
// Manually wait for interrupt
furi_hal_gpio_init(&gpio_nfc_irq_rfid_pull, GpioModeInput, GpioPullDown, GpioSpeedVeryHigh);
st25r3916ClearAndEnableInterrupts(ST25R3916_IRQ_MASK_RXE);
if(tx_rx->sniff_tx) {
tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, false, tx_rx->sniff_context);
}
uint32_t irq = 0;
uint8_t rxe = 0;
uint32_t start = DWT->CYCCNT;
while(true) {
if(!rfalIsExtFieldOn()) {
return false;
}
if(furi_hal_gpio_read(&gpio_nfc_irq_rfid_pull) == true) {
st25r3916ReadRegister(ST25R3916_REG_IRQ_MAIN, &rxe);
if(rxe & (1 << 4)) {
irq = 1;
break;
}
}
uint32_t timeout = DWT->CYCCNT - start;
if(timeout / furi_hal_cortex_instructions_per_microsecond() > timeout_ms * 1000) {
FURI_LOG_D(TAG, "Interrupt waiting timeout");
break;
}
}
if(irq) {
uint8_t fifo_stat[2];
st25r3916ReadMultipleRegisters(
ST25R3916_REG_FIFO_STATUS1, fifo_stat, ST25R3916_FIFO_STATUS_LEN);
uint16_t len =
((((uint16_t)fifo_stat[1] & ST25R3916_REG_FIFO_STATUS2_fifo_b_mask) >>
ST25R3916_REG_FIFO_STATUS2_fifo_b_shift)
<< RFAL_BITS_IN_BYTE);
len |= (((uint16_t)fifo_stat[0]) & 0x00FFU);
uint8_t rx[100];
st25r3916ReadFifo(rx, len);
tx_rx->rx_bits = len * 8;
memcpy(tx_rx->rx_data, rx, len);
if(tx_rx->sniff_rx) {
tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, false, tx_rx->sniff_context);
}
ret = true;
} else {
FURI_LOG_E(TAG, "Timeout error");
ret = false;
}
st25r3916ClearInterrupts();
return ret;
}
static uint32_t furi_hal_nfc_tx_rx_get_flag(FuriHalNfcTxRxType type) {
uint32_t flags = 0;
if(type == FuriHalNfcTxRxTypeRxNoCrc) {
flags = RFAL_TXRX_FLAGS_CRC_RX_KEEP;
} else if(type == FuriHalNfcTxRxTypeRxKeepPar) {
flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
RFAL_TXRX_FLAGS_PAR_RX_KEEP;
} else if(type == FuriHalNfcTxRxTypeRaw) {
flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
} else if(type == FuriHalNfcTxRxTypeRxRaw) {
flags = RFAL_TXRX_FLAGS_CRC_TX_MANUAL | RFAL_TXRX_FLAGS_CRC_RX_KEEP |
RFAL_TXRX_FLAGS_PAR_RX_KEEP | RFAL_TXRX_FLAGS_PAR_TX_NONE;
}
return flags;
}
static uint16_t furi_hal_nfc_data_and_parity_to_bitstream(
uint8_t* data,
uint16_t len,
uint8_t* parity,
uint8_t* out) {
furi_assert(data);
furi_assert(out);
uint8_t next_par_bit = 0;
uint16_t curr_bit_pos = 0;
for(uint16_t i = 0; i < len; i++) {
next_par_bit = FURI_BIT(parity[i / 8], 7 - (i % 8));
if(curr_bit_pos % 8 == 0) {
out[curr_bit_pos / 8] = data[i];
curr_bit_pos += 8;
out[curr_bit_pos / 8] = next_par_bit;
curr_bit_pos++;
} else {
out[curr_bit_pos / 8] |= data[i] << (curr_bit_pos % 8);
out[curr_bit_pos / 8 + 1] = data[i] >> (8 - curr_bit_pos % 8);
out[curr_bit_pos / 8 + 1] |= next_par_bit << (curr_bit_pos % 8);
curr_bit_pos += 9;
}
}
return curr_bit_pos;
}
uint16_t furi_hal_nfc_bitstream_to_data_and_parity(
uint8_t* in_buff,
uint16_t in_buff_bits,
uint8_t* out_data,
uint8_t* out_parity) {
if(in_buff_bits < 8) {
out_data[0] = in_buff[0];
return in_buff_bits;
}
if(in_buff_bits % 9 != 0) {
return 0;
}
uint8_t curr_byte = 0;
uint16_t bit_processed = 0;
memset(out_parity, 0, in_buff_bits / 9);
while(bit_processed < in_buff_bits) {
out_data[curr_byte] = in_buff[bit_processed / 8] >> (bit_processed % 8);
out_data[curr_byte] |= in_buff[bit_processed / 8 + 1] << (8 - bit_processed % 8);
out_parity[curr_byte / 8] |= FURI_BIT(in_buff[bit_processed / 8 + 1], bit_processed % 8)
<< (7 - curr_byte % 8);
bit_processed += 9;
curr_byte++;
}
return curr_byte * 8;
}
bool furi_hal_nfc_tx_rx(FuriHalNfcTxRxContext* tx_rx, uint16_t timeout_ms) {
furi_assert(tx_rx);
ReturnCode ret;
rfalNfcState state = RFAL_NFC_STATE_ACTIVATED;
uint8_t temp_tx_buff[FURI_HAL_NFC_DATA_BUFF_SIZE] = {};
uint16_t temp_tx_bits = 0;
uint8_t* temp_rx_buff = NULL;
uint16_t* temp_rx_bits = NULL;
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTransparent) {
return furi_hal_nfc_transparent_tx_rx(tx_rx, timeout_ms);
}
// Prepare data for FIFO if necessary
uint32_t flags = furi_hal_nfc_tx_rx_get_flag(tx_rx->tx_rx_type);
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw) {
temp_tx_bits = furi_hal_nfc_data_and_parity_to_bitstream(
tx_rx->tx_data, tx_rx->tx_bits / 8, tx_rx->tx_parity, temp_tx_buff);
ret = rfalNfcDataExchangeCustomStart(
temp_tx_buff, temp_tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
} else {
ret = rfalNfcDataExchangeCustomStart(
tx_rx->tx_data, tx_rx->tx_bits, &temp_rx_buff, &temp_rx_bits, RFAL_FWT_NONE, flags);
}
if(ret != ERR_NONE) {
FURI_LOG_E(TAG, "Failed to start data exchange");
return false;
}
if(tx_rx->sniff_tx) {
bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_TX_MANUAL);
tx_rx->sniff_tx(tx_rx->tx_data, tx_rx->tx_bits, crc_dropped, tx_rx->sniff_context);
}
uint32_t start = DWT->CYCCNT;
while(state != RFAL_NFC_STATE_DATAEXCHANGE_DONE) {
rfalNfcWorker();
state = rfalNfcGetState();
ret = rfalNfcDataExchangeGetStatus();
if(ret == ERR_BUSY) {
if(DWT->CYCCNT - start > timeout_ms * clocks_in_ms) {
FURI_LOG_D(TAG, "Timeout during data exchange");
return false;
}
continue;
} else {
start = DWT->CYCCNT;
}
furi_delay_tick(1);
}
if(tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRaw ||
tx_rx->tx_rx_type == FuriHalNfcTxRxTypeRxRaw) {
tx_rx->rx_bits = furi_hal_nfc_bitstream_to_data_and_parity(
temp_rx_buff, *temp_rx_bits, tx_rx->rx_data, tx_rx->rx_parity);
} else {
memcpy(tx_rx->rx_data, temp_rx_buff, MIN(*temp_rx_bits / 8, FURI_HAL_NFC_DATA_BUFF_SIZE));
tx_rx->rx_bits = *temp_rx_bits;
}
if(tx_rx->sniff_rx) {
bool crc_dropped = !(flags & RFAL_TXRX_FLAGS_CRC_RX_KEEP);
tx_rx->sniff_rx(tx_rx->rx_data, tx_rx->rx_bits, crc_dropped, tx_rx->sniff_context);
}
return true;
}
bool furi_hal_nfc_tx_rx_full(FuriHalNfcTxRxContext* tx_rx) {
uint16_t part_len_bytes;
if(!furi_hal_nfc_tx_rx(tx_rx, 1000)) {
return false;
}
while(tx_rx->rx_bits && tx_rx->rx_data[0] == 0xAF) {
FuriHalNfcTxRxContext tmp = *tx_rx;
tmp.tx_data[0] = 0xAF;
tmp.tx_bits = 8;
if(!furi_hal_nfc_tx_rx(&tmp, 1000)) {
return false;
}
part_len_bytes = tmp.rx_bits / 8;
if(part_len_bytes > FURI_HAL_NFC_DATA_BUFF_SIZE - tx_rx->rx_bits / 8) {
FURI_LOG_W(TAG, "Overrun rx buf");
return false;
}
if(part_len_bytes == 0) {
FURI_LOG_W(TAG, "Empty 0xAF response");
return false;
}
memcpy(tx_rx->rx_data + tx_rx->rx_bits / 8, tmp.rx_data + 1, part_len_bytes - 1);
tx_rx->rx_data[0] = tmp.rx_data[0];
tx_rx->rx_bits += 8 * (part_len_bytes - 1);
}
return true;
}
void furi_hal_nfc_sleep() {
rfalNfcDeactivate(false);
rfalLowPowerModeStart();
}
FuriHalNfcReturn
furi_hal_nfc_ll_set_mode(FuriHalNfcMode mode, FuriHalNfcBitrate txBR, FuriHalNfcBitrate rxBR) {
return rfalSetMode((rfalMode)mode, (rfalBitRate)txBR, (rfalBitRate)rxBR);
}
void furi_hal_nfc_ll_set_error_handling(FuriHalNfcErrorHandling eHandling) {
rfalSetErrorHandling((rfalEHandling)eHandling);
}
void furi_hal_nfc_ll_set_guard_time(uint32_t cycles) {
rfalSetGT(cycles);
}
void furi_hal_nfc_ll_set_fdt_listen(uint32_t cycles) {
rfalSetFDTListen(cycles);
}
void furi_hal_nfc_ll_set_fdt_poll(uint32_t FDTPoll) {
rfalSetFDTPoll(FDTPoll);
}
void furi_hal_nfc_ll_txrx_on() {
st25r3916TxRxOn();
}
void furi_hal_nfc_ll_txrx_off() {
st25r3916TxRxOff();
}
FuriHalNfcReturn furi_hal_nfc_ll_txrx(
uint8_t* txBuf,
uint16_t txBufLen,
uint8_t* rxBuf,
uint16_t rxBufLen,
uint16_t* actLen,
uint32_t flags,
uint32_t fwt) {
return rfalTransceiveBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
}
FuriHalNfcReturn furi_hal_nfc_ll_txrx_bits(
uint8_t* txBuf,
uint16_t txBufLen,
uint8_t* rxBuf,
uint16_t rxBufLen,
uint16_t* actLen,
uint32_t flags,
uint32_t fwt) {
return rfalTransceiveBitsBlockingTxRx(txBuf, txBufLen, rxBuf, rxBufLen, actLen, flags, fwt);
}
void furi_hal_nfc_ll_poll() {
rfalWorker();
}