unleashed-firmware/lib/FreeRTOS-glue/cmsis_os2.c

2874 lines
67 KiB
C
Raw Normal View History

/* --------------------------------------------------------------------------
* Copyright (c) 2013-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Name: cmsis_os2.c
* Purpose: CMSIS RTOS2 wrapper for FreeRTOS
*
*---------------------------------------------------------------------------*/
#include <string.h>
#include "cmsis_os2.h" // ::CMSIS:RTOS2
#include "cmsis_compiler.h" // Compiler agnostic definitions
#include "os_tick.h" // OS Tick API
#include "FreeRTOS.h" // ARM.FreeRTOS::RTOS:Core
#include "task.h" // ARM.FreeRTOS::RTOS:Core
#include "event_groups.h" // ARM.FreeRTOS::RTOS:Event Groups
#include "semphr.h" // ARM.FreeRTOS::RTOS:Core
#include "timers.h" // ARM.FreeRTOS::RTOS:Timers
#include "freertos_mpool.h" // osMemoryPool definitions
#include "freertos_os2.h" // Configuration check and setup
#include CMSIS_device_header
#ifndef CMSIS_TASK_NOTIFY_INDEX
#define CMSIS_TASK_NOTIFY_INDEX 0
#endif
/*---------------------------------------------------------------------------*/
#ifndef __ARM_ARCH_6M__
#define __ARM_ARCH_6M__ 0
#endif
#ifndef __ARM_ARCH_7M__
#define __ARM_ARCH_7M__ 0
#endif
#ifndef __ARM_ARCH_7EM__
#define __ARM_ARCH_7EM__ 0
#endif
#ifndef __ARM_ARCH_8M_MAIN__
#define __ARM_ARCH_8M_MAIN__ 0
#endif
#ifndef __ARM_ARCH_7A__
#define __ARM_ARCH_7A__ 0
#endif
#if ((__ARM_ARCH_7M__ == 1U) || \
(__ARM_ARCH_7EM__ == 1U) || \
(__ARM_ARCH_8M_MAIN__ == 1U))
#define IS_IRQ_MASKED() ((__get_PRIMASK() != 0U) || (__get_BASEPRI() != 0U))
#elif (__ARM_ARCH_6M__ == 1U)
#define IS_IRQ_MASKED() (__get_PRIMASK() != 0U)
#elif (__ARM_ARCH_7A__ == 1U)
/* CPSR mask bits */
#define CPSR_MASKBIT_I 0x80U
#define IS_IRQ_MASKED() ((__get_CPSR() & CPSR_MASKBIT_I) != 0U)
#else
#define IS_IRQ_MASKED() (__get_PRIMASK() != 0U)
#endif
#if (__ARM_ARCH_7A__ == 1U)
/* CPSR mode bitmasks */
#define CPSR_MODE_USER 0x10U
#define CPSR_MODE_SYSTEM 0x1FU
#define IS_IRQ_MODE() ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM))
#else
#define IS_IRQ_MODE() (__get_IPSR() != 0U)
#endif
/* Limits */
#define MAX_BITS_TASK_NOTIFY 31U
#define MAX_BITS_EVENT_GROUPS 24U
#define THREAD_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_TASK_NOTIFY) - 1U))
#define EVENT_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_EVENT_GROUPS) - 1U))
/* Kernel version and identification string definition (major.minor.rev: mmnnnrrrr dec) */
#define KERNEL_VERSION (((uint32_t)tskKERNEL_VERSION_MAJOR * 10000000UL) | \
((uint32_t)tskKERNEL_VERSION_MINOR * 10000UL) | \
((uint32_t)tskKERNEL_VERSION_BUILD * 1UL))
#define KERNEL_ID ("FreeRTOS " tskKERNEL_VERSION_NUMBER)
/* Timer callback information structure definition */
typedef struct {
osTimerFunc_t func;
void *arg;
} TimerCallback_t;
/* Kernel initialization state */
static osKernelState_t KernelState = osKernelInactive;
/*
Heap region definition used by heap_5 variant
Define configAPPLICATION_ALLOCATED_HEAP as nonzero value in FreeRTOSConfig.h if
heap regions are already defined and vPortDefineHeapRegions is called in application.
Otherwise vPortDefineHeapRegions will be called by osKernelInitialize using
definition configHEAP_5_REGIONS as parameter. Overriding configHEAP_5_REGIONS
is possible by defining it globally or in FreeRTOSConfig.h.
*/
#if defined(USE_FreeRTOS_HEAP_5)
#if (configAPPLICATION_ALLOCATED_HEAP == 0)
/*
FreeRTOS heap is not defined by the application.
Single region of size configTOTAL_HEAP_SIZE (defined in FreeRTOSConfig.h)
is provided by default. Define configHEAP_5_REGIONS to provide custom
HeapRegion_t array.
*/
#define HEAP_5_REGION_SETUP 1
#ifndef configHEAP_5_REGIONS
#define configHEAP_5_REGIONS xHeapRegions
static uint8_t ucHeap[configTOTAL_HEAP_SIZE];
static HeapRegion_t xHeapRegions[] = {
{ ucHeap, configTOTAL_HEAP_SIZE },
{ NULL, 0 }
};
#else
/* Global definition is provided to override default heap array */
extern HeapRegion_t configHEAP_5_REGIONS[];
#endif
#else
/*
The application already defined the array used for the FreeRTOS heap and
called vPortDefineHeapRegions to initialize heap.
*/
#define HEAP_5_REGION_SETUP 0
#endif /* configAPPLICATION_ALLOCATED_HEAP */
#endif /* USE_FreeRTOS_HEAP_5 */
/*
Setup SVC to reset value.
*/
__STATIC_INLINE void SVC_Setup (void) {
#if (__ARM_ARCH_7A__ == 0U)
/* Service Call interrupt might be configured before kernel start */
/* and when its priority is lower or equal to BASEPRI, svc intruction */
/* causes a Hard Fault. */
NVIC_SetPriority (SVCall_IRQn, 0U);
#endif
}
/*
Function macro used to retrieve semaphore count from ISR
*/
#ifndef uxSemaphoreGetCountFromISR
#define uxSemaphoreGetCountFromISR( xSemaphore ) uxQueueMessagesWaitingFromISR( ( QueueHandle_t ) ( xSemaphore ) )
#endif
/*
Determine if CPU executes from interrupt context or if interrupts are masked.
*/
__STATIC_INLINE uint32_t IRQ_Context (void) {
uint32_t irq;
BaseType_t state;
irq = 0U;
if (IS_IRQ_MODE()) {
/* Called from interrupt context */
irq = 1U;
}
else {
/* Get FreeRTOS scheduler state */
state = xTaskGetSchedulerState();
if (state != taskSCHEDULER_NOT_STARTED) {
/* Scheduler was started */
if (IS_IRQ_MASKED()) {
/* Interrupts are masked */
irq = 1U;
}
}
}
/* Return context, 0: thread context, 1: IRQ context */
return (irq);
}
/* ==== Kernel Management Functions ==== */
/*
Initialize the RTOS Kernel.
*/
osStatus_t osKernelInitialize (void) {
osStatus_t stat;
BaseType_t state;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
state = xTaskGetSchedulerState();
/* Initialize if scheduler not started and not initialized before */
if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelInactive)) {
#if defined(USE_TRACE_EVENT_RECORDER)
/* Initialize the trace macro debugging output channel */
EvrFreeRTOSSetup(0U);
#endif
#if defined(USE_FreeRTOS_HEAP_5) && (HEAP_5_REGION_SETUP == 1)
/* Initialize the memory regions when using heap_5 variant */
vPortDefineHeapRegions (configHEAP_5_REGIONS);
#endif
KernelState = osKernelReady;
stat = osOK;
} else {
stat = osError;
}
}
/* Return execution status */
return (stat);
}
/*
Get RTOS Kernel Information.
*/
osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) {
if (version != NULL) {
/* Version encoding is major.minor.rev: mmnnnrrrr dec */
version->api = KERNEL_VERSION;
version->kernel = KERNEL_VERSION;
}
if ((id_buf != NULL) && (id_size != 0U)) {
/* Buffer for retrieving identification string is provided */
if (id_size > sizeof(KERNEL_ID)) {
id_size = sizeof(KERNEL_ID);
}
/* Copy kernel identification string into provided buffer */
memcpy(id_buf, KERNEL_ID, id_size);
}
/* Return execution status */
return (osOK);
}
/*
Get the current RTOS Kernel state.
*/
osKernelState_t osKernelGetState (void) {
osKernelState_t state;
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_RUNNING:
state = osKernelRunning;
break;
case taskSCHEDULER_SUSPENDED:
state = osKernelLocked;
break;
case taskSCHEDULER_NOT_STARTED:
default:
if (KernelState == osKernelReady) {
/* Ready, osKernelInitialize was already called */
state = osKernelReady;
} else {
/* Not initialized */
state = osKernelInactive;
}
break;
}
/* Return current state */
return (state);
}
/*
Start the RTOS Kernel scheduler.
*/
osStatus_t osKernelStart (void) {
osStatus_t stat;
BaseType_t state;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
state = xTaskGetSchedulerState();
/* Start scheduler if initialized and not started before */
if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelReady)) {
/* Ensure SVC priority is at the reset value */
SVC_Setup();
/* Change state to ensure correct API flow */
KernelState = osKernelRunning;
/* Start the kernel scheduler */
vTaskStartScheduler();
stat = osOK;
} else {
stat = osError;
}
}
/* Return execution status */
return (stat);
}
/*
Lock the RTOS Kernel scheduler.
*/
int32_t osKernelLock (void) {
int32_t lock;
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
lock = 1;
break;
case taskSCHEDULER_RUNNING:
vTaskSuspendAll();
lock = 0;
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return previous lock state */
return (lock);
}
/*
Unlock the RTOS Kernel scheduler.
*/
int32_t osKernelUnlock (void) {
int32_t lock;
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
lock = 1;
if (xTaskResumeAll() != pdTRUE) {
if (xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) {
lock = (int32_t)osError;
}
}
break;
case taskSCHEDULER_RUNNING:
lock = 0;
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return previous lock state */
return (lock);
}
/*
Restore the RTOS Kernel scheduler lock state.
*/
int32_t osKernelRestoreLock (int32_t lock) {
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
case taskSCHEDULER_RUNNING:
if (lock == 1) {
vTaskSuspendAll();
}
else {
if (lock != 0) {
lock = (int32_t)osError;
}
else {
if (xTaskResumeAll() != pdTRUE) {
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
lock = (int32_t)osError;
}
}
}
}
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return new lock state */
return (lock);
}
/*
Get the RTOS kernel tick count.
*/
uint32_t osKernelGetTickCount (void) {
TickType_t ticks;
if (IRQ_Context() != 0U) {
ticks = xTaskGetTickCountFromISR();
} else {
ticks = xTaskGetTickCount();
}
/* Return kernel tick count */
return (ticks);
}
/*
Get the RTOS kernel tick frequency.
*/
uint32_t osKernelGetTickFreq (void) {
/* Return frequency in hertz */
return (configTICK_RATE_HZ);
}
/*
Get the RTOS kernel system timer count.
*/
uint32_t osKernelGetSysTimerCount (void) {
uint32_t irqmask = IS_IRQ_MASKED();
TickType_t ticks;
uint32_t val;
__disable_irq();
ticks = xTaskGetTickCount();
val = OS_Tick_GetCount();
/* Update tick count and timer value when timer overflows */
if (OS_Tick_GetOverflow() != 0U) {
val = OS_Tick_GetCount();
ticks++;
}
val += ticks * OS_Tick_GetInterval();
if (irqmask == 0U) {
__enable_irq();
}
/* Return system timer count */
return (val);
}
/*
Get the RTOS kernel system timer frequency.
*/
uint32_t osKernelGetSysTimerFreq (void) {
/* Return frequency in hertz */
return (configCPU_CLOCK_HZ);
}
/* ==== Thread Management Functions ==== */
/*
Create a thread and add it to Active Threads.
Limitations:
- The memory for control block and stack must be provided in the osThreadAttr_t
structure in order to allocate object statically.
- Attribute osThreadJoinable is not supported, NULL is returned if used.
*/
osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) {
const char *name;
uint32_t stack;
TaskHandle_t hTask;
UBaseType_t prio;
int32_t mem;
hTask = NULL;
if ((IRQ_Context() == 0U) && (func != NULL)) {
stack = configMINIMAL_STACK_SIZE;
prio = (UBaseType_t)osPriorityNormal;
name = NULL;
mem = -1;
if (attr != NULL) {
if (attr->name != NULL) {
name = attr->name;
}
if (attr->priority != osPriorityNone) {
prio = (UBaseType_t)attr->priority;
}
if ((prio < osPriorityIdle) || (prio > osPriorityISR) || ((attr->attr_bits & osThreadJoinable) == osThreadJoinable)) {
/* Invalid priority or unsupported osThreadJoinable attribute used */
return (NULL);
}
if (attr->stack_size > 0U) {
/* In FreeRTOS stack is not in bytes, but in sizeof(StackType_t) which is 4 on ARM ports. */
/* Stack size should be therefore 4 byte aligned in order to avoid division caused side effects */
stack = attr->stack_size / sizeof(StackType_t);
}
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTask_t)) &&
(attr->stack_mem != NULL) && (attr->stack_size > 0U)) {
/* The memory for control block and stack is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) && (attr->stack_mem == NULL)) {
/* Control block and stack memory will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hTask = xTaskCreateStatic ((TaskFunction_t)func, name, stack, argument, prio, (StackType_t *)attr->stack_mem,
(StaticTask_t *)attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if (xTaskCreate ((TaskFunction_t)func, name, (configSTACK_DEPTH_TYPE)stack, argument, prio, &hTask) != pdPASS) {
hTask = NULL;
}
#endif
}
}
}
/* Return thread ID */
return ((osThreadId_t)hTask);
}
/*
Get name of a thread.
*/
const char *osThreadGetName (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
const char *name;
if ((IRQ_Context() != 0U) || (hTask == NULL)) {
name = NULL;
} else {
name = pcTaskGetName (hTask);
}
/* Return name as null-terminated string */
return (name);
}
/*
Return the thread ID of the current running thread.
*/
osThreadId_t osThreadGetId (void) {
osThreadId_t id;
id = (osThreadId_t)xTaskGetCurrentTaskHandle();
/* Return thread ID */
return (id);
}
/*
Get current thread state of a thread.
*/
osThreadState_t osThreadGetState (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osThreadState_t state;
if ((IRQ_Context() != 0U) || (hTask == NULL)) {
state = osThreadError;
}
else {
switch (eTaskGetState (hTask)) {
case eRunning: state = osThreadRunning; break;
case eReady: state = osThreadReady; break;
case eBlocked:
case eSuspended: state = osThreadBlocked; break;
case eDeleted: state = osThreadTerminated; break;
case eInvalid:
default: state = osThreadError; break;
}
}
/* Return current thread state */
return (state);
}
/*
Get available stack space of a thread based on stack watermark recording during execution.
*/
uint32_t osThreadGetStackSpace (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
uint32_t sz;
if ((IRQ_Context() != 0U) || (hTask == NULL)) {
sz = 0U;
} else {
sz = (uint32_t)(uxTaskGetStackHighWaterMark(hTask) * sizeof(StackType_t));
}
/* Return remaining stack space in bytes */
return (sz);
}
/*
Change priority of a thread.
*/
osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if ((hTask == NULL) || (priority < osPriorityIdle) || (priority > osPriorityISR)) {
stat = osErrorParameter;
}
else {
stat = osOK;
vTaskPrioritySet (hTask, (UBaseType_t)priority);
}
/* Return execution status */
return (stat);
}
/*
Get current priority of a thread.
*/
osPriority_t osThreadGetPriority (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osPriority_t prio;
if ((IRQ_Context() != 0U) || (hTask == NULL)) {
prio = osPriorityError;
} else {
prio = (osPriority_t)((int32_t)uxTaskPriorityGet (hTask));
}
/* Return current thread priority */
return (prio);
}
/*
Pass control to next thread that is in state READY.
*/
osStatus_t osThreadYield (void) {
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
} else {
stat = osOK;
taskYIELD();
}
/* Return execution status */
return (stat);
}
#if (configUSE_OS2_THREAD_SUSPEND_RESUME == 1)
/*
Suspend execution of a thread.
*/
osStatus_t osThreadSuspend (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTask == NULL) {
stat = osErrorParameter;
}
else {
stat = osOK;
vTaskSuspend (hTask);
}
/* Return execution status */
return (stat);
}
/*
Resume execution of a thread.
*/
osStatus_t osThreadResume (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTask == NULL) {
stat = osErrorParameter;
}
else {
stat = osOK;
vTaskResume (hTask);
}
/* Return execution status */
return (stat);
}
#endif /* (configUSE_OS2_THREAD_SUSPEND_RESUME == 1) */
/*
Terminate execution of current running thread.
*/
__NO_RETURN void osThreadExit (void) {
#ifndef USE_FreeRTOS_HEAP_1
vTaskDelete (NULL);
#endif
for (;;);
}
/*
Terminate execution of a thread.
*/
osStatus_t osThreadTerminate (osThreadId_t thread_id) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
eTaskState tstate;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTask == NULL) {
stat = osErrorParameter;
}
else {
tstate = eTaskGetState (hTask);
if (tstate != eDeleted) {
stat = osOK;
vTaskDelete (hTask);
} else {
stat = osErrorResource;
}
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
/*
Get number of active threads.
*/
uint32_t osThreadGetCount (void) {
uint32_t count;
if (IRQ_Context() != 0U) {
count = 0U;
} else {
count = uxTaskGetNumberOfTasks();
}
/* Return number of active threads */
return (count);
}
#if (configUSE_OS2_THREAD_ENUMERATE == 1)
/*
Enumerate active threads.
*/
uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items) {
uint32_t i, count;
TaskStatus_t *task;
if ((IRQ_Context() != 0U) || (thread_array == NULL) || (array_items == 0U)) {
count = 0U;
} else {
vTaskSuspendAll();
/* Allocate memory on heap to temporarily store TaskStatus_t information */
count = uxTaskGetNumberOfTasks();
task = pvPortMalloc (count * sizeof(TaskStatus_t));
if (task != NULL) {
/* Retrieve task status information */
count = uxTaskGetSystemState (task, count, NULL);
/* Copy handles from task status array into provided thread array */
for (i = 0U; (i < count) && (i < array_items); i++) {
thread_array[i] = (osThreadId_t)task[i].xHandle;
}
count = i;
}
(void)xTaskResumeAll();
vPortFree (task);
}
/* Return number of enumerated threads */
return (count);
}
#endif /* (configUSE_OS2_THREAD_ENUMERATE == 1) */
/* ==== Thread Flags Functions ==== */
#if (configUSE_OS2_THREAD_FLAGS == 1)
/*
Set the specified Thread Flags of a thread.
*/
uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) {
TaskHandle_t hTask = (TaskHandle_t)thread_id;
uint32_t rflags;
BaseType_t yield;
if ((hTask == NULL) || ((flags & THREAD_FLAGS_INVALID_BITS) != 0U)) {
rflags = (uint32_t)osErrorParameter;
}
else {
rflags = (uint32_t)osError;
if (IRQ_Context() != 0U) {
yield = pdFALSE;
(void)xTaskNotifyIndexedFromISR (hTask, CMSIS_TASK_NOTIFY_INDEX, flags, eSetBits, &yield);
(void)xTaskNotifyAndQueryIndexedFromISR (hTask, CMSIS_TASK_NOTIFY_INDEX, 0, eNoAction, &rflags, NULL);
portYIELD_FROM_ISR (yield);
}
else {
(void)xTaskNotifyIndexed (hTask, CMSIS_TASK_NOTIFY_INDEX, flags, eSetBits);
(void)xTaskNotifyAndQueryIndexed (hTask, CMSIS_TASK_NOTIFY_INDEX, 0, eNoAction, &rflags);
}
}
/* Return flags after setting */
return (rflags);
}
/*
Clear the specified Thread Flags of current running thread.
*/
uint32_t osThreadFlagsClear (uint32_t flags) {
TaskHandle_t hTask;
uint32_t rflags, cflags;
if (IRQ_Context() != 0U) {
rflags = (uint32_t)osErrorISR;
}
else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) {
rflags = (uint32_t)osErrorParameter;
}
else {
hTask = xTaskGetCurrentTaskHandle();
if (xTaskNotifyAndQueryIndexed (hTask, CMSIS_TASK_NOTIFY_INDEX, 0, eNoAction, &cflags) == pdPASS) {
rflags = cflags;
cflags &= ~flags;
if (xTaskNotifyIndexed (hTask, CMSIS_TASK_NOTIFY_INDEX, cflags, eSetValueWithOverwrite) != pdPASS) {
rflags = (uint32_t)osError;
}
}
else {
rflags = (uint32_t)osError;
}
}
/* Return flags before clearing */
return (rflags);
}
/*
Get the current Thread Flags of current running thread.
*/
uint32_t osThreadFlagsGet (void) {
TaskHandle_t hTask;
uint32_t rflags;
if (IRQ_Context() != 0U) {
rflags = (uint32_t)osErrorISR;
}
else {
hTask = xTaskGetCurrentTaskHandle();
if (xTaskNotifyAndQueryIndexed (hTask, CMSIS_TASK_NOTIFY_INDEX, 0, eNoAction, &rflags) != pdPASS) {
rflags = (uint32_t)osError;
}
}
/* Return current flags */
return (rflags);
}
/*
Wait for one or more Thread Flags of the current running thread to become signaled.
*/
uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout) {
uint32_t rflags, nval;
uint32_t clear;
TickType_t t0, td, tout;
BaseType_t rval;
if (IRQ_Context() != 0U) {
rflags = (uint32_t)osErrorISR;
}
else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) {
rflags = (uint32_t)osErrorParameter;
}
else {
if ((options & osFlagsNoClear) == osFlagsNoClear) {
clear = 0U;
} else {
clear = flags;
}
rflags = 0U;
tout = timeout;
t0 = xTaskGetTickCount();
do {
rval = xTaskNotifyWaitIndexed (CMSIS_TASK_NOTIFY_INDEX, 0, clear, &nval, tout);
if (rval == pdPASS) {
rflags &= flags;
rflags |= nval;
if ((options & osFlagsWaitAll) == osFlagsWaitAll) {
if ((flags & rflags) == flags) {
break;
} else {
if (timeout == 0U) {
rflags = (uint32_t)osErrorResource;
break;
}
}
}
else {
if ((flags & rflags) != 0) {
break;
} else {
if (timeout == 0U) {
rflags = (uint32_t)osErrorResource;
break;
}
}
}
/* Update timeout */
td = xTaskGetTickCount() - t0;
if (td > timeout) {
tout = 0;
} else {
tout = timeout - td;
}
}
else {
if (timeout == 0) {
rflags = (uint32_t)osErrorResource;
} else {
rflags = (uint32_t)osErrorTimeout;
}
}
}
while (rval != pdFAIL);
}
/* Return flags before clearing */
return (rflags);
}
#endif /* (configUSE_OS2_THREAD_FLAGS == 1) */
/* ==== Generic Wait Functions ==== */
/*
Wait for Timeout (Time Delay).
*/
osStatus_t osDelay (uint32_t ticks) {
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
stat = osOK;
if (ticks != 0U) {
vTaskDelay(ticks);
}
}
/* Return execution status */
return (stat);
}
/*
Wait until specified time.
*/
osStatus_t osDelayUntil (uint32_t ticks) {
TickType_t tcnt, delay;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
stat = osOK;
tcnt = xTaskGetTickCount();
/* Determine remaining number of ticks to delay */
delay = (TickType_t)ticks - tcnt;
/* Check if target tick has not expired */
if((delay != 0U) && (0 == (delay >> (8 * sizeof(TickType_t) - 1)))) {
if (xTaskDelayUntil (&tcnt, delay) == pdFALSE) {
/* Did not delay */
stat = osError;
}
}
else
{
/* No delay or already expired */
stat = osErrorParameter;
}
}
/* Return execution status */
return (stat);
}
/* ==== Timer Management Functions ==== */
#if (configUSE_OS2_TIMER == 1)
static void TimerCallback (TimerHandle_t hTimer) {
TimerCallback_t *callb;
/* Retrieve pointer to callback function and argument */
callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer);
/* Remove dynamic allocation flag */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
if (callb != NULL) {
callb->func (callb->arg);
}
}
/*
Create and Initialize a timer.
*/
osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) {
const char *name;
TimerHandle_t hTimer;
TimerCallback_t *callb;
UBaseType_t reload;
int32_t mem;
uint32_t callb_dyn;
hTimer = NULL;
if ((IRQ_Context() == 0U) && (func != NULL)) {
callb = NULL;
callb_dyn = 0U;
#if (configSUPPORT_STATIC_ALLOCATION == 1)
/* Static memory allocation is available: check if memory for control block */
/* is provided and if it also contains space for callback and its argument */
if ((attr != NULL) && (attr->cb_mem != NULL)) {
if (attr->cb_size >= (sizeof(StaticTimer_t) + sizeof(TimerCallback_t))) {
callb = (TimerCallback_t *)((uint32_t)attr->cb_mem + sizeof(StaticTimer_t));
}
}
#endif
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
/* Dynamic memory allocation is available: if memory for callback and */
/* its argument is not provided, allocate it from dynamic memory pool */
if (callb == NULL) {
callb = (TimerCallback_t *)pvPortMalloc (sizeof(TimerCallback_t));
if (callb != NULL) {
/* Callback memory was allocated from dynamic pool, set flag */
callb_dyn = 1U;
}
}
#endif
if (callb != NULL) {
callb->func = func;
callb->arg = argument;
if (type == osTimerOnce) {
reload = pdFALSE;
} else {
reload = pdTRUE;
}
mem = -1;
name = NULL;
if (attr != NULL) {
if (attr->name != NULL) {
name = attr->name;
}
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTimer_t))) {
/* The memory for control block is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
/* Store callback memory dynamic allocation flag */
callb = (TimerCallback_t *)((uint32_t)callb | callb_dyn);
/*
TimerCallback function is always provided as a callback and is used to call application
specified function with its argument both stored in structure callb.
*/
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hTimer = xTimerCreateStatic (name, 1, reload, callb, TimerCallback, (StaticTimer_t *)attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hTimer = xTimerCreate (name, 1, reload, callb, TimerCallback);
#endif
}
}
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if ((hTimer == NULL) && (callb != NULL) && (callb_dyn == 1U)) {
/* Failed to create a timer, release allocated resources */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
vPortFree (callb);
}
#endif
}
}
/* Return timer ID */
return ((osTimerId_t)hTimer);
}
/*
Get name of a timer.
*/
const char *osTimerGetName (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
const char *p;
if ((IRQ_Context() != 0U) || (hTimer == NULL)) {
p = NULL;
} else {
p = pcTimerGetName (hTimer);
}
/* Return name as null-terminated string */
return (p);
}
/*
Start or restart a timer.
*/
osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
if (xTimerChangePeriod (hTimer, ticks, 0) == pdPASS) {
stat = osOK;
} else {
stat = osErrorResource;
}
}
/* Return execution status */
return (stat);
}
/*
Stop a timer.
*/
osStatus_t osTimerStop (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
if (xTimerIsTimerActive (hTimer) == pdFALSE) {
stat = osErrorResource;
}
else {
if (xTimerStop (hTimer, 0) == pdPASS) {
stat = osOK;
} else {
stat = osError;
}
}
}
/* Return execution status */
return (stat);
}
/*
Check if a timer is running.
*/
uint32_t osTimerIsRunning (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
uint32_t running;
if ((IRQ_Context() != 0U) || (hTimer == NULL)) {
running = 0U;
} else {
running = (uint32_t)xTimerIsTimerActive (hTimer);
}
/* Return 0: not running, 1: running */
return (running);
}
/*
Delete a timer.
*/
osStatus_t osTimerDelete (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
TimerCallback_t *callb;
#endif
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer);
#endif
if (xTimerDelete (hTimer, 0) == pdPASS) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if ((uint32_t)callb & 1U) {
/* Callback memory was allocated from dynamic pool, clear flag */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
/* Return allocated memory to dynamic pool */
vPortFree (callb);
}
#endif
stat = osOK;
} else {
stat = osErrorResource;
}
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
#endif /* (configUSE_OS2_TIMER == 1) */
/* ==== Event Flags Management Functions ==== */
/*
Create and Initialize an Event Flags object.
Limitations:
- Event flags are limited to 24 bits.
*/
osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr) {
EventGroupHandle_t hEventGroup;
int32_t mem;
hEventGroup = NULL;
if (IRQ_Context() == 0U) {
mem = -1;
if (attr != NULL) {
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticEventGroup_t))) {
/* The memory for control block is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hEventGroup = xEventGroupCreateStatic (attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hEventGroup = xEventGroupCreate();
#endif
}
}
}
/* Return event flags ID */
return ((osEventFlagsId_t)hEventGroup);
}
/*
Set the specified Event Flags.
Limitations:
- Event flags are limited to 24 bits.
*/
uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags) {
EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id;
uint32_t rflags;
BaseType_t yield;
if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) {
rflags = (uint32_t)osErrorParameter;
}
else if (IRQ_Context() != 0U) {
#if (configUSE_OS2_EVENTFLAGS_FROM_ISR == 0)
(void)yield;
/* Enable timers and xTimerPendFunctionCall function to support osEventFlagsSet from ISR */
rflags = (uint32_t)osErrorResource;
#else
yield = pdFALSE;
if (xEventGroupSetBitsFromISR (hEventGroup, (EventBits_t)flags, &yield) == pdFAIL) {
rflags = (uint32_t)osErrorResource;
} else {
rflags = flags;
portYIELD_FROM_ISR (yield);
}
#endif
}
else {
rflags = xEventGroupSetBits (hEventGroup, (EventBits_t)flags);
}
/* Return event flags after setting */
return (rflags);
}
/*
Clear the specified Event Flags.
Limitations:
- Event flags are limited to 24 bits.
*/
uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags) {
EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id;
uint32_t rflags;
if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) {
rflags = (uint32_t)osErrorParameter;
}
else if (IRQ_Context() != 0U) {
#if (configUSE_OS2_EVENTFLAGS_FROM_ISR == 0)
/* Enable timers and xTimerPendFunctionCall function to support osEventFlagsSet from ISR */
rflags = (uint32_t)osErrorResource;
#else
rflags = xEventGroupGetBitsFromISR (hEventGroup);
if (xEventGroupClearBitsFromISR (hEventGroup, (EventBits_t)flags) == pdFAIL) {
rflags = (uint32_t)osErrorResource;
}
else {
/* xEventGroupClearBitsFromISR only registers clear operation in the timer command queue. */
/* Yield is required here otherwise clear operation might not execute in the right order. */
/* See https://github.com/FreeRTOS/FreeRTOS-Kernel/issues/93 for more info. */
portYIELD_FROM_ISR (pdTRUE);
}
#endif
}
else {
rflags = xEventGroupClearBits (hEventGroup, (EventBits_t)flags);
}
/* Return event flags before clearing */
return (rflags);
}
/*
Get the current Event Flags.
Limitations:
- Event flags are limited to 24 bits.
*/
uint32_t osEventFlagsGet (osEventFlagsId_t ef_id) {
EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id;
uint32_t rflags;
if (ef_id == NULL) {
rflags = 0U;
}
else if (IRQ_Context() != 0U) {
rflags = xEventGroupGetBitsFromISR (hEventGroup);
}
else {
rflags = xEventGroupGetBits (hEventGroup);
}
/* Return current event flags */
return (rflags);
}
/*
Wait for one or more Event Flags to become signaled.
Limitations:
- Event flags are limited to 24 bits.
- osEventFlagsWait cannot be called from an ISR.
*/
uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout) {
EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id;
BaseType_t wait_all;
BaseType_t exit_clr;
uint32_t rflags;
if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) {
rflags = (uint32_t)osErrorParameter;
}
else if (IRQ_Context() != 0U) {
rflags = (uint32_t)osErrorISR;
}
else {
if (options & osFlagsWaitAll) {
wait_all = pdTRUE;
} else {
wait_all = pdFAIL;
}
if (options & osFlagsNoClear) {
exit_clr = pdFAIL;
} else {
exit_clr = pdTRUE;
}
rflags = xEventGroupWaitBits (hEventGroup, (EventBits_t)flags, exit_clr, wait_all, (TickType_t)timeout);
if (options & osFlagsWaitAll) {
if ((flags & rflags) != flags) {
if (timeout > 0U) {
rflags = (uint32_t)osErrorTimeout;
} else {
rflags = (uint32_t)osErrorResource;
}
}
}
else {
if ((flags & rflags) == 0U) {
if (timeout > 0U) {
rflags = (uint32_t)osErrorTimeout;
} else {
rflags = (uint32_t)osErrorResource;
}
}
}
}
/* Return event flags before clearing */
return (rflags);
}
/*
Delete an Event Flags object.
*/
osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id) {
EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hEventGroup == NULL) {
stat = osErrorParameter;
}
else {
stat = osOK;
vEventGroupDelete (hEventGroup);
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
/* ==== Mutex Management Functions ==== */
#if (configUSE_OS2_MUTEX == 1)
/*
Create and Initialize a Mutex object.
Limitations:
- Priority inherit protocol is used by default, osMutexPrioInherit attribute is ignored.
- Robust mutex is not supported, NULL is returned if used.
*/
osMutexId_t osMutexNew (const osMutexAttr_t *attr) {
SemaphoreHandle_t hMutex;
uint32_t type;
uint32_t rmtx;
int32_t mem;
hMutex = NULL;
if (IRQ_Context() == 0U) {
if (attr != NULL) {
type = attr->attr_bits;
} else {
type = 0U;
}
if ((type & osMutexRecursive) == osMutexRecursive) {
rmtx = 1U;
} else {
rmtx = 0U;
}
if ((type & osMutexRobust) != osMutexRobust) {
mem = -1;
if (attr != NULL) {
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) {
/* The memory for control block is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
if (rmtx != 0U) {
#if (configUSE_RECURSIVE_MUTEXES == 1)
hMutex = xSemaphoreCreateRecursiveMutexStatic (attr->cb_mem);
#endif
}
else {
hMutex = xSemaphoreCreateMutexStatic (attr->cb_mem);
}
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if (rmtx != 0U) {
#if (configUSE_RECURSIVE_MUTEXES == 1)
hMutex = xSemaphoreCreateRecursiveMutex ();
#endif
} else {
hMutex = xSemaphoreCreateMutex ();
}
#endif
}
}
#if (configQUEUE_REGISTRY_SIZE > 0)
if (hMutex != NULL) {
if ((attr != NULL) && (attr->name != NULL)) {
/* Only non-NULL name objects are added to the Queue Registry */
vQueueAddToRegistry (hMutex, attr->name);
}
}
#endif
if ((hMutex != NULL) && (rmtx != 0U)) {
/* Set LSB as 'recursive mutex flag' */
hMutex = (SemaphoreHandle_t)((uint32_t)hMutex | 1U);
}
}
}
/* Return mutex ID */
return ((osMutexId_t)hMutex);
}
/*
Acquire a Mutex or timeout if it is locked.
*/
osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout) {
SemaphoreHandle_t hMutex;
osStatus_t stat;
uint32_t rmtx;
hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U);
/* Extract recursive mutex flag */
rmtx = (uint32_t)mutex_id & 1U;
stat = osOK;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hMutex == NULL) {
stat = osErrorParameter;
}
else {
if (rmtx != 0U) {
#if (configUSE_RECURSIVE_MUTEXES == 1)
if (xSemaphoreTakeRecursive (hMutex, timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
#endif
}
else {
if (xSemaphoreTake (hMutex, timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Release a Mutex that was acquired by osMutexAcquire.
*/
osStatus_t osMutexRelease (osMutexId_t mutex_id) {
SemaphoreHandle_t hMutex;
osStatus_t stat;
uint32_t rmtx;
hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U);
/* Extract recursive mutex flag */
rmtx = (uint32_t)mutex_id & 1U;
stat = osOK;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hMutex == NULL) {
stat = osErrorParameter;
}
else {
if (rmtx != 0U) {
#if (configUSE_RECURSIVE_MUTEXES == 1)
if (xSemaphoreGiveRecursive (hMutex) != pdPASS) {
stat = osErrorResource;
}
#endif
}
else {
if (xSemaphoreGive (hMutex) != pdPASS) {
stat = osErrorResource;
}
}
}
/* Return execution status */
return (stat);
}
/*
Get Thread which owns a Mutex object.
*/
osThreadId_t osMutexGetOwner (osMutexId_t mutex_id) {
SemaphoreHandle_t hMutex;
osThreadId_t owner;
hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U);
if ((IRQ_Context() != 0U) || (hMutex == NULL)) {
owner = NULL;
} else {
owner = (osThreadId_t)xSemaphoreGetMutexHolder (hMutex);
}
/* Return owner thread ID */
return (owner);
}
/*
Delete a Mutex object.
*/
osStatus_t osMutexDelete (osMutexId_t mutex_id) {
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
SemaphoreHandle_t hMutex;
hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U);
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hMutex == NULL) {
stat = osErrorParameter;
}
else {
#if (configQUEUE_REGISTRY_SIZE > 0)
vQueueUnregisterQueue (hMutex);
#endif
stat = osOK;
vSemaphoreDelete (hMutex);
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
#endif /* (configUSE_OS2_MUTEX == 1) */
/* ==== Semaphore Management Functions ==== */
/*
Create and Initialize a Semaphore object.
*/
osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr) {
SemaphoreHandle_t hSemaphore;
int32_t mem;
hSemaphore = NULL;
if ((IRQ_Context() == 0U) && (max_count > 0U) && (initial_count <= max_count)) {
mem = -1;
if (attr != NULL) {
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) {
/* The memory for control block is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem != -1) {
if (max_count == 1U) {
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hSemaphore = xSemaphoreCreateBinaryStatic ((StaticSemaphore_t *)attr->cb_mem);
#endif
}
else {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hSemaphore = xSemaphoreCreateBinary();
#endif
}
if ((hSemaphore != NULL) && (initial_count != 0U)) {
if (xSemaphoreGive (hSemaphore) != pdPASS) {
vSemaphoreDelete (hSemaphore);
hSemaphore = NULL;
}
}
}
else {
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hSemaphore = xSemaphoreCreateCountingStatic (max_count, initial_count, (StaticSemaphore_t *)attr->cb_mem);
#endif
}
else {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hSemaphore = xSemaphoreCreateCounting (max_count, initial_count);
#endif
}
}
#if (configQUEUE_REGISTRY_SIZE > 0)
if (hSemaphore != NULL) {
if ((attr != NULL) && (attr->name != NULL)) {
/* Only non-NULL name objects are added to the Queue Registry */
vQueueAddToRegistry (hSemaphore, attr->name);
}
}
#endif
}
}
/* Return semaphore ID */
return ((osSemaphoreId_t)hSemaphore);
}
/*
Acquire a Semaphore token or timeout if no tokens are available.
*/
osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout) {
SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id;
osStatus_t stat;
BaseType_t yield;
stat = osOK;
if (hSemaphore == NULL) {
stat = osErrorParameter;
}
else if (IRQ_Context() != 0U) {
if (timeout != 0U) {
stat = osErrorParameter;
}
else {
yield = pdFALSE;
if (xSemaphoreTakeFromISR (hSemaphore, &yield) != pdPASS) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
}
else {
if (xSemaphoreTake (hSemaphore, (TickType_t)timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
/* Return execution status */
return (stat);
}
/*
Release a Semaphore token up to the initial maximum count.
*/
osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id) {
SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id;
osStatus_t stat;
BaseType_t yield;
stat = osOK;
if (hSemaphore == NULL) {
stat = osErrorParameter;
}
else if (IRQ_Context() != 0U) {
yield = pdFALSE;
if (xSemaphoreGiveFromISR (hSemaphore, &yield) != pdTRUE) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
else {
if (xSemaphoreGive (hSemaphore) != pdPASS) {
stat = osErrorResource;
}
}
/* Return execution status */
return (stat);
}
/*
Get current Semaphore token count.
*/
uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id) {
SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id;
uint32_t count;
if (hSemaphore == NULL) {
count = 0U;
}
else if (IRQ_Context() != 0U) {
count = (uint32_t)uxSemaphoreGetCountFromISR (hSemaphore);
} else {
count = (uint32_t)uxSemaphoreGetCount (hSemaphore);
}
/* Return number of tokens */
return (count);
}
/*
Delete a Semaphore object.
*/
osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id) {
SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hSemaphore == NULL) {
stat = osErrorParameter;
}
else {
#if (configQUEUE_REGISTRY_SIZE > 0)
vQueueUnregisterQueue (hSemaphore);
#endif
stat = osOK;
vSemaphoreDelete (hSemaphore);
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
/* ==== Message Queue Management Functions ==== */
/*
Create and Initialize a Message Queue object.
Limitations:
- The memory for control block and and message data must be provided in the
osThreadAttr_t structure in order to allocate object statically.
*/
osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr) {
QueueHandle_t hQueue;
int32_t mem;
hQueue = NULL;
if ((IRQ_Context() == 0U) && (msg_count > 0U) && (msg_size > 0U)) {
mem = -1;
if (attr != NULL) {
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticQueue_t)) &&
(attr->mq_mem != NULL) && (attr->mq_size >= (msg_count * msg_size))) {
/* The memory for control block and message data is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) &&
(attr->mq_mem == NULL) && (attr->mq_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hQueue = xQueueCreateStatic (msg_count, msg_size, attr->mq_mem, attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hQueue = xQueueCreate (msg_count, msg_size);
#endif
}
}
#if (configQUEUE_REGISTRY_SIZE > 0)
if (hQueue != NULL) {
if ((attr != NULL) && (attr->name != NULL)) {
/* Only non-NULL name objects are added to the Queue Registry */
vQueueAddToRegistry (hQueue, attr->name);
}
}
#endif
}
/* Return message queue ID */
return ((osMessageQueueId_t)hQueue);
}
/*
Put a Message into a Queue or timeout if Queue is full.
Limitations:
- Message priority is ignored
*/
osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
BaseType_t yield;
(void)msg_prio; /* Message priority is ignored */
stat = osOK;
if (IRQ_Context() != 0U) {
if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) {
stat = osErrorParameter;
}
else {
yield = pdFALSE;
if (xQueueSendToBackFromISR (hQueue, msg_ptr, &yield) != pdTRUE) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
}
else {
if ((hQueue == NULL) || (msg_ptr == NULL)) {
stat = osErrorParameter;
}
else {
if (xQueueSendToBack (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Get a Message from a Queue or timeout if Queue is empty.
Limitations:
- Message priority is ignored
*/
osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
BaseType_t yield;
(void)msg_prio; /* Message priority is ignored */
stat = osOK;
if (IRQ_Context() != 0U) {
if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) {
stat = osErrorParameter;
}
else {
yield = pdFALSE;
if (xQueueReceiveFromISR (hQueue, msg_ptr, &yield) != pdPASS) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
}
else {
if ((hQueue == NULL) || (msg_ptr == NULL)) {
stat = osErrorParameter;
}
else {
if (xQueueReceive (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Get maximum number of messages in a Message Queue.
*/
uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t capacity;
if (mq == NULL) {
capacity = 0U;
} else {
/* capacity = pxQueue->uxLength */
capacity = mq->uxDummy4[1];
}
/* Return maximum number of messages */
return (capacity);
}
/*
Get maximum message size in a Message Queue.
*/
uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t size;
if (mq == NULL) {
size = 0U;
} else {
/* size = pxQueue->uxItemSize */
size = mq->uxDummy4[2];
}
/* Return maximum message size */
return (size);
}
/*
Get number of queued messages in a Message Queue.
*/
uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
UBaseType_t count;
if (hQueue == NULL) {
count = 0U;
}
else if (IRQ_Context() != 0U) {
count = uxQueueMessagesWaitingFromISR (hQueue);
}
else {
count = uxQueueMessagesWaiting (hQueue);
}
/* Return number of queued messages */
return ((uint32_t)count);
}
/*
Get number of available slots for messages in a Message Queue.
*/
uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t space;
uint32_t isrm;
if (mq == NULL) {
space = 0U;
}
else if (IRQ_Context() != 0U) {
isrm = taskENTER_CRITICAL_FROM_ISR();
/* space = pxQueue->uxLength - pxQueue->uxMessagesWaiting; */
space = mq->uxDummy4[1] - mq->uxDummy4[0];
taskEXIT_CRITICAL_FROM_ISR(isrm);
}
else {
space = (uint32_t)uxQueueSpacesAvailable ((QueueHandle_t)mq);
}
/* Return number of available slots */
return (space);
}
/*
Reset a Message Queue to initial empty state.
*/
osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hQueue == NULL) {
stat = osErrorParameter;
}
else {
stat = osOK;
(void)xQueueReset (hQueue);
}
/* Return execution status */
return (stat);
}
/*
Delete a Message Queue object.
*/
osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hQueue == NULL) {
stat = osErrorParameter;
}
else {
#if (configQUEUE_REGISTRY_SIZE > 0)
vQueueUnregisterQueue (hQueue);
#endif
stat = osOK;
vQueueDelete (hQueue);
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
/* ==== Memory Pool Management Functions ==== */
#ifdef FREERTOS_MPOOL_H_
/* Static memory pool functions */
static void FreeBlock (MemPool_t *mp, void *block);
static void *AllocBlock (MemPool_t *mp);
static void *CreateBlock (MemPool_t *mp);
/*
Create and Initialize a Memory Pool object.
*/
osMemoryPoolId_t osMemoryPoolNew (uint32_t block_count, uint32_t block_size, const osMemoryPoolAttr_t *attr) {
MemPool_t *mp;
const char *name;
int32_t mem_cb, mem_mp;
uint32_t sz;
if (IRQ_Context() != 0U) {
mp = NULL;
}
else if ((block_count == 0U) || (block_size == 0U)) {
mp = NULL;
}
else {
mp = NULL;
sz = MEMPOOL_ARR_SIZE (block_count, block_size);
name = NULL;
mem_cb = -1;
mem_mp = -1;
if (attr != NULL) {
if (attr->name != NULL) {
name = attr->name;
}
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(MemPool_t))) {
/* Static control block is provided */
mem_cb = 1;
}
else if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Allocate control block memory on heap */
mem_cb = 0;
}
if ((attr->mp_mem == NULL) && (attr->mp_size == 0U)) {
/* Allocate memory array on heap */
mem_mp = 0;
}
else {
if (attr->mp_mem != NULL) {
/* Check if array is 4-byte aligned */
if (((uint32_t)attr->mp_mem & 3U) == 0U) {
/* Check if array big enough */
if (attr->mp_size >= sz) {
/* Static memory pool array is provided */
mem_mp = 1;
}
}
}
}
}
else {
/* Attributes not provided, allocate memory on heap */
mem_cb = 0;
mem_mp = 0;
}
if (mem_cb == 0) {
mp = pvPortMalloc (sizeof(MemPool_t));
} else {
mp = attr->cb_mem;
}
if (mp != NULL) {
/* Create a semaphore (max count == initial count == block_count) */
#if (configSUPPORT_STATIC_ALLOCATION == 1)
mp->sem = xSemaphoreCreateCountingStatic (block_count, block_count, &mp->mem_sem);
#elif (configSUPPORT_DYNAMIC_ALLOCATION == 1)
mp->sem = xSemaphoreCreateCounting (block_count, block_count);
#else
mp->sem = NULL;
#endif
if (mp->sem != NULL) {
/* Setup memory array */
if (mem_mp == 0) {
mp->mem_arr = pvPortMalloc (sz);
} else {
mp->mem_arr = attr->mp_mem;
}
}
}
if ((mp != NULL) && (mp->mem_arr != NULL)) {
/* Memory pool can be created */
mp->head = NULL;
mp->mem_sz = sz;
mp->name = name;
mp->bl_sz = block_size;
mp->bl_cnt = block_count;
mp->n = 0U;
/* Set heap allocated memory flags */
mp->status = MPOOL_STATUS;
if (mem_cb == 0) {
/* Control block on heap */
mp->status |= 1U;
}
if (mem_mp == 0) {
/* Memory array on heap */
mp->status |= 2U;
}
}
else {
/* Memory pool cannot be created, release allocated resources */
if ((mem_cb == 0) && (mp != NULL)) {
/* Free control block memory */
vPortFree (mp);
}
mp = NULL;
}
}
/* Return memory pool ID */
return (mp);
}
/*
Get name of a Memory Pool object.
*/
const char *osMemoryPoolGetName (osMemoryPoolId_t mp_id) {
MemPool_t *mp = (osMemoryPoolId_t)mp_id;
const char *p;
if (IRQ_Context() != 0U) {
p = NULL;
}
else if (mp_id == NULL) {
p = NULL;
}
else {
p = mp->name;
}
/* Return name as null-terminated string */
return (p);
}
/*
Allocate a memory block from a Memory Pool.
*/
void *osMemoryPoolAlloc (osMemoryPoolId_t mp_id, uint32_t timeout) {
MemPool_t *mp;
void *block;
uint32_t isrm;
if (mp_id == NULL) {
/* Invalid input parameters */
block = NULL;
}
else {
block = NULL;
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) {
if (IRQ_Context() != 0U) {
if (timeout == 0U) {
if (xSemaphoreTakeFromISR (mp->sem, NULL) == pdTRUE) {
if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) {
isrm = taskENTER_CRITICAL_FROM_ISR();
/* Get a block from the free-list */
block = AllocBlock(mp);
if (block == NULL) {
/* List of free blocks is empty, 'create' new block */
block = CreateBlock(mp);
}
taskEXIT_CRITICAL_FROM_ISR(isrm);
}
}
}
}
else {
if (xSemaphoreTake (mp->sem, (TickType_t)timeout) == pdTRUE) {
if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) {
taskENTER_CRITICAL();
/* Get a block from the free-list */
block = AllocBlock(mp);
if (block == NULL) {
/* List of free blocks is empty, 'create' new block */
block = CreateBlock(mp);
}
taskEXIT_CRITICAL();
}
}
}
}
}
/* Return memory block address */
return (block);
}
/*
Return an allocated memory block back to a Memory Pool.
*/
osStatus_t osMemoryPoolFree (osMemoryPoolId_t mp_id, void *block) {
MemPool_t *mp;
osStatus_t stat;
uint32_t isrm;
BaseType_t yield;
if ((mp_id == NULL) || (block == NULL)) {
/* Invalid input parameters */
stat = osErrorParameter;
}
else {
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) {
/* Invalid object status */
stat = osErrorResource;
}
else if ((block < (void *)&mp->mem_arr[0]) || (block > (void*)&mp->mem_arr[mp->mem_sz-1])) {
/* Block pointer outside of memory array area */
stat = osErrorParameter;
}
else {
stat = osOK;
if (IRQ_Context() != 0U) {
if (uxSemaphoreGetCountFromISR (mp->sem) == mp->bl_cnt) {
stat = osErrorResource;
}
else {
isrm = taskENTER_CRITICAL_FROM_ISR();
/* Add block to the list of free blocks */
FreeBlock(mp, block);
taskEXIT_CRITICAL_FROM_ISR(isrm);
yield = pdFALSE;
xSemaphoreGiveFromISR (mp->sem, &yield);
portYIELD_FROM_ISR (yield);
}
}
else {
if (uxSemaphoreGetCount (mp->sem) == mp->bl_cnt) {
stat = osErrorResource;
}
else {
taskENTER_CRITICAL();
/* Add block to the list of free blocks */
FreeBlock(mp, block);
taskEXIT_CRITICAL();
xSemaphoreGive (mp->sem);
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Get maximum number of memory blocks in a Memory Pool.
*/
uint32_t osMemoryPoolGetCapacity (osMemoryPoolId_t mp_id) {
MemPool_t *mp;
uint32_t n;
if (mp_id == NULL) {
/* Invalid input parameters */
n = 0U;
}
else {
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) {
/* Invalid object status */
n = 0U;
}
else {
n = mp->bl_cnt;
}
}
/* Return maximum number of memory blocks */
return (n);
}
/*
Get memory block size in a Memory Pool.
*/
uint32_t osMemoryPoolGetBlockSize (osMemoryPoolId_t mp_id) {
MemPool_t *mp;
uint32_t sz;
if (mp_id == NULL) {
/* Invalid input parameters */
sz = 0U;
}
else {
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) {
/* Invalid object status */
sz = 0U;
}
else {
sz = mp->bl_sz;
}
}
/* Return memory block size in bytes */
return (sz);
}
/*
Get number of memory blocks used in a Memory Pool.
*/
uint32_t osMemoryPoolGetCount (osMemoryPoolId_t mp_id) {
MemPool_t *mp;
uint32_t n;
if (mp_id == NULL) {
/* Invalid input parameters */
n = 0U;
}
else {
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) {
/* Invalid object status */
n = 0U;
}
else {
if (IRQ_Context() != 0U) {
n = uxSemaphoreGetCountFromISR (mp->sem);
} else {
n = uxSemaphoreGetCount (mp->sem);
}
n = mp->bl_cnt - n;
}
}
/* Return number of memory blocks used */
return (n);
}
/*
Get number of memory blocks available in a Memory Pool.
*/
uint32_t osMemoryPoolGetSpace (osMemoryPoolId_t mp_id) {
MemPool_t *mp;
uint32_t n;
if (mp_id == NULL) {
/* Invalid input parameters */
n = 0U;
}
else {
mp = (MemPool_t *)mp_id;
if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) {
/* Invalid object status */
n = 0U;
}
else {
if (IRQ_Context() != 0U) {
n = uxSemaphoreGetCountFromISR (mp->sem);
} else {
n = uxSemaphoreGetCount (mp->sem);
}
}
}
/* Return number of memory blocks available */
return (n);
}
/*
Delete a Memory Pool object.
*/
osStatus_t osMemoryPoolDelete (osMemoryPoolId_t mp_id) {
MemPool_t *mp;
osStatus_t stat;
if (mp_id == NULL) {
/* Invalid input parameters */
stat = osErrorParameter;
}
else if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
mp = (MemPool_t *)mp_id;
taskENTER_CRITICAL();
/* Invalidate control block status */
mp->status = mp->status & 3U;
/* Wake-up tasks waiting for pool semaphore */
while (xSemaphoreGive (mp->sem) == pdTRUE);
mp->head = NULL;
mp->bl_sz = 0U;
mp->bl_cnt = 0U;
if ((mp->status & 2U) != 0U) {
/* Memory pool array allocated on heap */
vPortFree (mp->mem_arr);
}
if ((mp->status & 1U) != 0U) {
/* Memory pool control block allocated on heap */
vPortFree (mp);
}
taskEXIT_CRITICAL();
stat = osOK;
}
/* Return execution status */
return (stat);
}
/*
Create new block given according to the current block index.
*/
static void *CreateBlock (MemPool_t *mp) {
MemPoolBlock_t *p = NULL;
if (mp->n < mp->bl_cnt) {
/* Unallocated blocks exist, set pointer to new block */
p = (void *)(mp->mem_arr + (mp->bl_sz * mp->n));
/* Increment block index */
mp->n += 1U;
}
return (p);
}
/*
Allocate a block by reading the list of free blocks.
*/
static void *AllocBlock (MemPool_t *mp) {
MemPoolBlock_t *p = NULL;
if (mp->head != NULL) {
/* List of free block exists, get head block */
p = mp->head;
/* Head block is now next on the list */
mp->head = p->next;
}
return (p);
}
/*
Free block by putting it to the list of free blocks.
*/
static void FreeBlock (MemPool_t *mp, void *block) {
MemPoolBlock_t *p = block;
/* Store current head into block memory space */
p->next = mp->head;
/* Store current block as new head */
mp->head = p;
}
#endif /* FREERTOS_MPOOL_H_ */
/*---------------------------------------------------------------------------*/
/* Callback function prototypes */
extern void vApplicationIdleHook (void);
extern void vApplicationMallocFailedHook (void);
extern void vApplicationDaemonTaskStartupHook (void);
/**
Dummy implementation of the callback function vApplicationIdleHook().
*/
#if (configUSE_IDLE_HOOK == 1)
__WEAK void vApplicationIdleHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationTickHook().
*/
#if (configUSE_TICK_HOOK == 1)
__WEAK void vApplicationTickHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationMallocFailedHook().
*/
#if (configUSE_MALLOC_FAILED_HOOK == 1)
__WEAK void vApplicationMallocFailedHook (void) {
/* Assert when malloc failed hook is enabled but no application defined function exists */
configASSERT(0);
}
#endif
/**
Dummy implementation of the callback function vApplicationDaemonTaskStartupHook().
*/
#if (configUSE_DAEMON_TASK_STARTUP_HOOK == 1)
__WEAK void vApplicationDaemonTaskStartupHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationStackOverflowHook().
*/
#if (configCHECK_FOR_STACK_OVERFLOW > 0)
__WEAK void vApplicationStackOverflowHook (TaskHandle_t xTask, char *pcTaskName) {
(void)xTask;
(void)pcTaskName;
/* Assert when stack overflow is enabled but no application defined function exists */
configASSERT(0);
}
#endif
/*---------------------------------------------------------------------------*/
#if (configSUPPORT_STATIC_ALLOCATION == 1)
/*
vApplicationGetIdleTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION
equals to 1 and is required for static memory allocation support.
*/
__WEAK void vApplicationGetIdleTaskMemory (StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize) {
/* Idle task control block and stack */
static StaticTask_t Idle_TCB;
static StackType_t Idle_Stack[configMINIMAL_STACK_SIZE];
*ppxIdleTaskTCBBuffer = &Idle_TCB;
*ppxIdleTaskStackBuffer = &Idle_Stack[0];
*pulIdleTaskStackSize = (uint32_t)configMINIMAL_STACK_SIZE;
}
/*
vApplicationGetTimerTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION
equals to 1 and is required for static memory allocation support.
*/
__WEAK void vApplicationGetTimerTaskMemory (StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize) {
/* Timer task control block and stack */
static StaticTask_t Timer_TCB;
static StackType_t Timer_Stack[configTIMER_TASK_STACK_DEPTH];
*ppxTimerTaskTCBBuffer = &Timer_TCB;
*ppxTimerTaskStackBuffer = &Timer_Stack[0];
*pulTimerTaskStackSize = (uint32_t)configTIMER_TASK_STACK_DEPTH;
}
#endif