unleashed-firmware/applications/external/pocsag_pager/protocols/pocsag.c

376 lines
13 KiB
C
Raw Normal View History

2022-12-10 20:08:17 +03:00
#include "pocsag.h"
#include <inttypes.h>
#include <lib/flipper_format/flipper_format_i.h>
#include <furi/core/string.h>
#define TAG "POCSAG"
static const SubGhzBlockConst pocsag_const = {
.te_short = 833,
.te_delta = 100,
};
// Minimal amount of sync bits (interleaving zeros and ones)
#define POCSAG_MIN_SYNC_BITS 32
#define POCSAG_CW_BITS 32
#define POCSAG_CW_MASK 0xFFFFFFFF
#define POCSAG_FRAME_SYNC_CODE 0x7CD215D8
#define POCSAG_IDLE_CODE_WORD 0x7A89C197
#define POCSAG_FUNC_NUM 0
#define POCSAG_FUNC_ALERT1 1
#define POCSAG_FUNC_ALERT2 2
#define POCSAG_FUNC_ALPHANUM 3
static const char* func_msg[] = {"\e#Num:\e# ", "\e#Alert\e#", "\e#Alert:\e# ", "\e#Msg:\e# "};
static const char* bcd_chars = "*U -)(";
struct SubGhzProtocolDecoderPocsag {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
PCSGBlockGeneric generic;
uint8_t codeword_idx;
uint32_t ric;
uint8_t func;
// partially decoded character
uint8_t char_bits;
uint8_t char_data;
// message being decoded
FuriString* msg;
// Done messages, ready to be serialized/deserialized
FuriString* done_msg;
};
typedef struct SubGhzProtocolDecoderPocsag SubGhzProtocolDecoderPocsag;
typedef enum {
PocsagDecoderStepReset = 0,
PocsagDecoderStepFoundSync,
PocsagDecoderStepFoundPreamble,
PocsagDecoderStepMessage,
} PocsagDecoderStep;
void* subghz_protocol_decoder_pocsag_alloc(SubGhzEnvironment* environment) {
UNUSED(environment);
SubGhzProtocolDecoderPocsag* instance = malloc(sizeof(SubGhzProtocolDecoderPocsag));
instance->base.protocol = &subghz_protocol_pocsag;
instance->generic.protocol_name = instance->base.protocol->name;
instance->msg = furi_string_alloc();
instance->done_msg = furi_string_alloc();
if(instance->generic.result_msg == NULL) {
instance->generic.result_msg = furi_string_alloc();
}
if(instance->generic.result_ric == NULL) {
instance->generic.result_ric = furi_string_alloc();
}
return instance;
}
void subghz_protocol_decoder_pocsag_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
furi_string_free(instance->msg);
furi_string_free(instance->done_msg);
free(instance);
}
void subghz_protocol_decoder_pocsag_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
instance->decoder.parser_step = PocsagDecoderStepReset;
instance->decoder.decode_data = 0UL;
instance->decoder.decode_count_bit = 0;
instance->codeword_idx = 0;
instance->char_bits = 0;
instance->char_data = 0;
furi_string_reset(instance->msg);
furi_string_reset(instance->done_msg);
furi_string_reset(instance->generic.result_msg);
furi_string_reset(instance->generic.result_ric);
}
static void pocsag_decode_address_word(SubGhzProtocolDecoderPocsag* instance, uint32_t data) {
instance->ric = (data >> 13);
instance->ric = (instance->ric << 3) | (instance->codeword_idx >> 1);
instance->func = (data >> 11) & 0b11;
}
static bool decode_message_alphanumeric(SubGhzProtocolDecoderPocsag* instance, uint32_t data) {
for(uint8_t i = 0; i < 20; i++) {
instance->char_data >>= 1;
if(data & (1 << 30)) {
instance->char_data |= 1 << 6;
}
instance->char_bits++;
if(instance->char_bits == 7) {
if(instance->char_data == 0) return false;
furi_string_push_back(instance->msg, instance->char_data);
instance->char_data = 0;
instance->char_bits = 0;
}
data <<= 1;
}
return true;
}
static void decode_message_numeric(SubGhzProtocolDecoderPocsag* instance, uint32_t data) {
// 5 groups with 4 bits each
uint8_t val;
for(uint8_t i = 0; i < 5; i++) {
val = (data >> (27 - i * 4)) & 0b1111;
// reverse the order of 4 bits
val = (val & 0x5) << 1 | (val & 0xA) >> 1;
val = (val & 0x3) << 2 | (val & 0xC) >> 2;
if(val <= 9)
val += '0';
else
val = bcd_chars[val - 10];
furi_string_push_back(instance->msg, val);
}
}
// decode message word, maintaining instance state for partial decoding. Return true if more data
// might follow or false if end of message reached.
static bool pocsag_decode_message_word(SubGhzProtocolDecoderPocsag* instance, uint32_t data) {
switch(instance->func) {
case POCSAG_FUNC_ALERT2:
case POCSAG_FUNC_ALPHANUM:
return decode_message_alphanumeric(instance, data);
case POCSAG_FUNC_NUM:
decode_message_numeric(instance, data);
return true;
}
return false;
}
// Function called when current message got decoded, but other messages might follow
static void pocsag_message_done(SubGhzProtocolDecoderPocsag* instance) {
// append the message to the long-term storage string
furi_string_cat_printf(
instance->generic.result_ric, "\e#RIC: %" PRIu32 "\e# | ", instance->ric);
furi_string_cat_str(instance->generic.result_ric, func_msg[instance->func]);
if(instance->func != POCSAG_FUNC_ALERT1) {
furi_string_cat(instance->done_msg, instance->msg);
}
furi_string_cat_str(instance->done_msg, " ");
furi_string_cat(instance->generic.result_msg, instance->done_msg);
// reset the state
instance->char_bits = 0;
instance->char_data = 0;
furi_string_reset(instance->msg);
}
void subghz_protocol_decoder_pocsag_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
// reset state - waiting for 32 bits of interleaving 1s and 0s
if(instance->decoder.parser_step == PocsagDecoderStepReset) {
if(DURATION_DIFF(duration, pocsag_const.te_short) < pocsag_const.te_delta) {
// POCSAG signals are inverted
subghz_protocol_blocks_add_bit(&instance->decoder, !level);
if(instance->decoder.decode_count_bit == POCSAG_MIN_SYNC_BITS) {
instance->decoder.parser_step = PocsagDecoderStepFoundSync;
}
} else if(instance->decoder.decode_count_bit > 0) {
subghz_protocol_decoder_pocsag_reset(context);
}
return;
}
int bits_count = duration / pocsag_const.te_short;
uint32_t extra = duration - pocsag_const.te_short * bits_count;
if(DURATION_DIFF(extra, pocsag_const.te_short) < pocsag_const.te_delta)
bits_count++;
else if(extra > pocsag_const.te_delta) {
// in non-reset state we faced the error signal - we reached the end of the packet, flush data
if(furi_string_size(instance->done_msg) > 0) {
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
subghz_protocol_decoder_pocsag_reset(context);
return;
}
uint32_t codeword;
// handle state machine for every incoming bit
while(bits_count-- > 0) {
subghz_protocol_blocks_add_bit(&instance->decoder, !level);
switch(instance->decoder.parser_step) {
case PocsagDecoderStepFoundSync:
if((instance->decoder.decode_data & POCSAG_CW_MASK) == POCSAG_FRAME_SYNC_CODE) {
instance->decoder.parser_step = PocsagDecoderStepFoundPreamble;
instance->decoder.decode_count_bit = 0;
instance->decoder.decode_data = 0UL;
}
break;
case PocsagDecoderStepFoundPreamble:
// handle codewords
if(instance->decoder.decode_count_bit == POCSAG_CW_BITS) {
codeword = (uint32_t)(instance->decoder.decode_data & POCSAG_CW_MASK);
switch(codeword) {
case POCSAG_IDLE_CODE_WORD:
instance->codeword_idx++;
break;
case POCSAG_FRAME_SYNC_CODE:
instance->codeword_idx = 0;
break;
default:
// Here we expect only address messages
if(codeword >> 31 == 0) {
pocsag_decode_address_word(instance, codeword);
instance->decoder.parser_step = PocsagDecoderStepMessage;
}
instance->codeword_idx++;
}
instance->decoder.decode_count_bit = 0;
instance->decoder.decode_data = 0UL;
}
break;
case PocsagDecoderStepMessage:
if(instance->decoder.decode_count_bit == POCSAG_CW_BITS) {
codeword = (uint32_t)(instance->decoder.decode_data & POCSAG_CW_MASK);
switch(codeword) {
case POCSAG_IDLE_CODE_WORD:
// Idle during the message stops the message
instance->codeword_idx++;
instance->decoder.parser_step = PocsagDecoderStepFoundPreamble;
pocsag_message_done(instance);
break;
case POCSAG_FRAME_SYNC_CODE:
instance->codeword_idx = 0;
break;
default:
// In this state, both address and message words can arrive
if(codeword >> 31 == 0) {
pocsag_message_done(instance);
pocsag_decode_address_word(instance, codeword);
} else {
if(!pocsag_decode_message_word(instance, codeword)) {
instance->decoder.parser_step = PocsagDecoderStepFoundPreamble;
pocsag_message_done(instance);
}
}
instance->codeword_idx++;
}
instance->decoder.decode_count_bit = 0;
instance->decoder.decode_data = 0UL;
}
break;
}
}
}
uint8_t subghz_protocol_decoder_pocsag_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
uint8_t hash = 0;
for(size_t i = 0; i < furi_string_size(instance->done_msg); i++)
hash ^= furi_string_get_char(instance->done_msg, i);
return hash;
}
SubGhzProtocolStatus subghz_protocol_decoder_pocsag_serialize(
2022-12-10 20:08:17 +03:00
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
uint32_t msg_len;
if(SubGhzProtocolStatusOk !=
pcsg_block_generic_serialize(&instance->generic, flipper_format, preset))
return SubGhzProtocolStatusError;
2022-12-10 20:08:17 +03:00
msg_len = furi_string_size(instance->done_msg);
if(!flipper_format_write_uint32(flipper_format, "MsgLen", &msg_len, 1)) {
FURI_LOG_E(TAG, "Error adding MsgLen");
return SubGhzProtocolStatusError;
2022-12-10 20:08:17 +03:00
}
uint8_t* s = (uint8_t*)furi_string_get_cstr(instance->done_msg);
if(!flipper_format_write_hex(flipper_format, "Msg", s, msg_len)) {
FURI_LOG_E(TAG, "Error adding Msg");
return SubGhzProtocolStatusError;
2022-12-10 20:08:17 +03:00
}
return SubGhzProtocolStatusOk;
2022-12-10 20:08:17 +03:00
}
SubGhzProtocolStatus
subghz_protocol_decoder_pocsag_deserialize(void* context, FlipperFormat* flipper_format) {
2022-12-10 20:08:17 +03:00
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
2022-12-10 20:08:17 +03:00
uint32_t msg_len;
uint8_t* buf;
do {
2023-03-04 01:04:59 +03:00
if(SubGhzProtocolStatusOk !=
pcsg_block_generic_deserialize(&instance->generic, flipper_format)) {
2022-12-10 20:08:17 +03:00
break;
}
if(!flipper_format_read_uint32(flipper_format, "MsgLen", &msg_len, 1)) {
FURI_LOG_E(TAG, "Missing MsgLen");
break;
}
buf = malloc(msg_len);
if(!flipper_format_read_hex(flipper_format, "Msg", buf, msg_len)) {
FURI_LOG_E(TAG, "Missing Msg");
free(buf);
break;
}
furi_string_set_strn(instance->done_msg, (const char*)buf, msg_len);
free(buf);
ret = SubGhzProtocolStatusOk;
2022-12-10 20:08:17 +03:00
} while(false);
return ret;
}
void subhz_protocol_decoder_pocsag_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderPocsag* instance = context;
furi_string_cat_printf(output, "%s\r\n", instance->generic.protocol_name);
furi_string_cat(output, instance->done_msg);
}
const SubGhzProtocolDecoder subghz_protocol_pocsag_decoder = {
.alloc = subghz_protocol_decoder_pocsag_alloc,
.free = subghz_protocol_decoder_pocsag_free,
.reset = subghz_protocol_decoder_pocsag_reset,
.feed = subghz_protocol_decoder_pocsag_feed,
.get_hash_data = subghz_protocol_decoder_pocsag_get_hash_data,
.serialize = subghz_protocol_decoder_pocsag_serialize,
.deserialize = subghz_protocol_decoder_pocsag_deserialize,
.get_string = subhz_protocol_decoder_pocsag_get_string,
};
const SubGhzProtocol subghz_protocol_pocsag = {
.name = SUBGHZ_PROTOCOL_POCSAG_NAME,
.type = SubGhzProtocolTypeStatic,
.flag = SubGhzProtocolFlag_FM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Save |
SubGhzProtocolFlag_Load,
.decoder = &subghz_protocol_pocsag_decoder,
};