unleashed-firmware/lib/irda/encoder_decoder/common/irda_common_decoder.c

274 lines
9.4 KiB
C
Raw Normal View History

#include "furi/check.h"
#include "irda.h"
#include "irda_common_i.h"
#include <stdbool.h>
#include <furi.h>
#include "irda_i.h"
static void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder);
static bool irda_check_preamble(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
bool result = false;
bool start_level = (decoder->level + decoder->timings_cnt + 1) % 2;
// align to start at Mark timing
if (!start_level) {
if (decoder->timings_cnt > 0) {
--decoder->timings_cnt;
shift_left_array(decoder->timings, decoder->timings_cnt, 1);
}
}
if (decoder->protocol->timings.preamble_mark == 0) {
return true;
}
while ((!result) && (decoder->timings_cnt >= 2)) {
float preamble_tolerance = decoder->protocol->timings.preamble_tolerance;
uint16_t preamble_mark = decoder->protocol->timings.preamble_mark;
uint16_t preamble_space = decoder->protocol->timings.preamble_space;
if ((MATCH_PREAMBLE_TIMING(decoder->timings[0], preamble_mark, preamble_tolerance))
&& (MATCH_PREAMBLE_TIMING(decoder->timings[1], preamble_space, preamble_tolerance))) {
result = true;
}
decoder->timings_cnt -= 2;
shift_left_array(decoder->timings, decoder->timings_cnt, 2);
}
return result;
}
/* Pulse Distance-Width Modulation */
IrdaStatus irda_common_decode_pdwm(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
uint32_t* timings = decoder->timings;
uint16_t index = 0;
uint8_t shift = 0;
IrdaStatus status = IrdaStatusError;
uint32_t bit_tolerance = decoder->protocol->timings.bit_tolerance;
uint16_t bit1_mark = decoder->protocol->timings.bit1_mark;
uint16_t bit1_space = decoder->protocol->timings.bit1_space;
uint16_t bit0_mark = decoder->protocol->timings.bit0_mark;
uint16_t bit0_space = decoder->protocol->timings.bit0_space;
while (1) {
// Stop bit
if ((decoder->databit_cnt == decoder->protocol->databit_len) && (decoder->timings_cnt == 1)) {
if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance)) {
decoder->timings_cnt = 0;
status = IrdaStatusReady;
} else {
status = IrdaStatusError;
}
break;
}
if (decoder->timings_cnt >= 2) {
index = decoder->databit_cnt / 8;
shift = decoder->databit_cnt % 8; // LSB first
if (!shift)
decoder->data[index] = 0;
if (MATCH_BIT_TIMING(timings[0], bit1_mark, bit_tolerance)
&& MATCH_BIT_TIMING(timings[1], bit1_space, bit_tolerance)) {
decoder->data[index] |= (0x1 << shift); // add 1
} else if (MATCH_BIT_TIMING(timings[0], bit0_mark, bit_tolerance)
&& MATCH_BIT_TIMING(timings[1], bit0_space, bit_tolerance)) {
(void) decoder->data[index]; // add 0
} else {
status = IrdaStatusError;
break;
}
++decoder->databit_cnt;
decoder->timings_cnt -= 2;
shift_left_array(decoder->timings, decoder->timings_cnt, 2);
} else {
status = IrdaStatusOk;
break;
}
}
return status;
}
/* level switch detection goes in middle of time-quant */
IrdaStatus irda_common_decode_manchester(IrdaCommonDecoder* decoder) {
furi_assert(decoder);
IrdaStatus status = IrdaStatusOk;
uint16_t bit = decoder->protocol->timings.bit1_mark;
uint16_t tolerance = decoder->protocol->timings.bit_tolerance;
while (decoder->timings_cnt) {
uint32_t timing = decoder->timings[0];
bool* switch_detect = &decoder->switch_detect;
furi_assert((*switch_detect == true) || (*switch_detect == false));
bool single_timing = MATCH_BIT_TIMING(timing, bit, tolerance);
bool double_timing = MATCH_BIT_TIMING(timing, 2*bit, tolerance);
if(!single_timing && !double_timing) {
status = IrdaStatusError;
break;
}
if ((decoder->protocol->manchester_start_from_space) && (decoder->databit_cnt == 0)) {
*switch_detect = 1; /* fake as we were previously in the middle of time-quant */
decoder->data[0] = 0; /* first captured timing should be Mark */
++decoder->databit_cnt;
}
if (*switch_detect == 0) {
if (double_timing) {
status = IrdaStatusError;
break;
}
/* only single timing - level switch required in the middle of time-quant */
*switch_detect = 1;
} else {
/* double timing means we in the middle of time-quant again */
if (single_timing)
*switch_detect = 0;
}
--decoder->timings_cnt;
shift_left_array(decoder->timings, decoder->timings_cnt, 1);
status = IrdaStatusOk;
bool level = (decoder->level + decoder->timings_cnt) % 2;
if (decoder->databit_cnt < decoder->protocol->databit_len) {
if (*switch_detect) {
uint8_t index = decoder->databit_cnt / 8;
uint8_t shift = decoder->databit_cnt % 8; // LSB first
if (!shift)
decoder->data[index] = 0;
decoder->data[index] |= (level << shift);
++decoder->databit_cnt;
}
if (decoder->databit_cnt == decoder->protocol->databit_len) {
if (level) {
status = IrdaStatusReady;
break;
}
}
} else {
furi_assert(level);
/* cover case: sequence should be stopped after last bit was received */
if (single_timing) {
status = IrdaStatusReady;
break;
} else {
status = IrdaStatusError;
}
}
}
return status;
}
IrdaMessage* irda_common_decode(IrdaCommonDecoder* decoder, bool level, uint32_t duration) {
furi_assert(decoder);
IrdaMessage* message = 0;
IrdaStatus status = IrdaStatusError;
if (decoder->level == level) {
decoder->timings_cnt = 0;
}
decoder->level = level; // start with low level (Space timing)
decoder->timings[decoder->timings_cnt] = duration;
decoder->timings_cnt++;
furi_check(decoder->timings_cnt <= sizeof(decoder->timings));
while(1) {
switch (decoder->state) {
case IrdaCommonDecoderStateWaitPreamble:
if (irda_check_preamble(decoder)) {
decoder->state = IrdaCommonDecoderStateDecode;
decoder->databit_cnt = 0;
decoder->switch_detect = false;
continue;
}
break;
case IrdaCommonDecoderStateDecode:
status = decoder->protocol->decode(decoder);
if (status == IrdaStatusReady) {
if (decoder->protocol->interpret(decoder)) {
message = &decoder->message;
decoder->state = IrdaCommonDecoderStateProcessRepeat;
} else {
decoder->state = IrdaCommonDecoderStateWaitPreamble;
}
} else if (status == IrdaStatusError) {
irda_common_decoder_reset_state(decoder);
continue;
}
break;
case IrdaCommonDecoderStateProcessRepeat:
if (!decoder->protocol->decode_repeat) {
decoder->state = IrdaCommonDecoderStateWaitPreamble;
continue;
}
status = decoder->protocol->decode_repeat(decoder);
if (status == IrdaStatusError) {
irda_common_decoder_reset_state(decoder);
continue;
} else if (status == IrdaStatusReady) {
decoder->message.repeat = true;
message = &decoder->message;
}
break;
}
break;
}
return message;
}
void* irda_common_decoder_alloc(const IrdaCommonProtocolSpec* protocol) {
furi_assert(protocol);
uint32_t alloc_size = sizeof(IrdaCommonDecoder)
+ protocol->databit_len / 8
+ !!(protocol->databit_len % 8);
IrdaCommonDecoder* decoder = furi_alloc(alloc_size);
memset(decoder, 0, alloc_size);
decoder->protocol = protocol;
decoder->level = true;
return decoder;
}
void irda_common_decoder_set_context(void* decoder, void* context) {
IrdaCommonDecoder* common_decoder = decoder;
common_decoder->context = context;
}
void irda_common_decoder_free(void* decoder) {
furi_assert(decoder);
free(decoder);
}
void irda_common_decoder_reset_state(IrdaCommonDecoder* common_decoder) {
common_decoder->state = IrdaCommonDecoderStateWaitPreamble;
common_decoder->databit_cnt = 0;
common_decoder->switch_detect = false;
common_decoder->message.protocol = IrdaProtocolUnknown;
if ((common_decoder->protocol->timings.preamble_mark == 0) && (common_decoder->timings_cnt > 0)) {
--common_decoder->timings_cnt;
shift_left_array(common_decoder->timings, common_decoder->timings_cnt, 1);
}
}
void irda_common_decoder_reset(void* decoder) {
furi_assert(decoder);
IrdaCommonDecoder* common_decoder = decoder;
irda_common_decoder_reset_state(common_decoder);
common_decoder->timings_cnt = 0;
}