unleashed-firmware/lib/nfc_protocols/mifare_classic.c

752 lines
25 KiB
C
Raw Normal View History

#include "mifare_classic.h"
#include "nfca.h"
#include "nfc_util.h"
#include <furi_hal_rtc.h>
// Algorithm from https://github.com/RfidResearchGroup/proxmark3.git
#define TAG "MfClassic"
#define MF_CLASSIC_AUTH_KEY_A_CMD (0x60U)
#define MF_CLASSIC_AUTH_KEY_B_CMD (0x61U)
#define MF_CLASSIC_READ_SECT_CMD (0x30)
typedef enum {
MfClassicActionDataRead,
MfClassicActionDataWrite,
MfClassicActionDataInc,
MfClassicActionDataDec,
MfClassicActionKeyARead,
MfClassicActionKeyAWrite,
MfClassicActionKeyBRead,
MfClassicActionKeyBWrite,
MfClassicActionACRead,
MfClassicActionACWrite,
} MfClassicAction;
static uint8_t mf_classic_get_first_block_num_of_sector(uint8_t sector) {
furi_assert(sector < 40);
if(sector < 32) {
return sector * 4;
} else {
return 32 * 4 + (sector - 32) * 16;
}
}
static uint8_t mf_classic_get_sector_by_block(uint8_t block) {
if(block < 128) {
return (block | 0x03) / 4;
} else {
return 32 + ((block | 0xf) - 32 * 4) / 16;
}
}
static uint8_t mf_classic_get_blocks_num_in_sector(uint8_t sector) {
furi_assert(sector < 40);
return sector < 32 ? 4 : 16;
}
static uint8_t mf_classic_get_sector_trailer(uint8_t block) {
if(block < 128) {
return block | 0x03;
} else {
return block | 0x0f;
}
}
static bool mf_classic_is_sector_trailer(uint8_t block) {
return block == mf_classic_get_sector_trailer(block);
}
uint8_t mf_classic_get_total_sectors_num(MfClassicReader* reader) {
furi_assert(reader);
if(reader->type == MfClassicType1k) {
return MF_CLASSIC_1K_TOTAL_SECTORS_NUM;
} else if(reader->type == MfClassicType4k) {
return MF_CLASSIC_4K_TOTAL_SECTORS_NUM;
} else {
return 0;
}
}
static uint16_t mf_classic_get_total_block_num(MfClassicType type) {
if(type == MfClassicType1k) {
return 64;
} else if(type == MfClassicType4k) {
return 256;
} else {
return 0;
}
}
static bool mf_classic_is_allowed_access_sector_trailer(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer = emulator->data.block[block_num].value;
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04) | ((sector_trailer[8] >> 2) & 0x02) |
((sector_trailer[8] >> 7) & 0x01);
switch(action) {
case MfClassicActionKeyARead: {
return false;
}
case MfClassicActionKeyAWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionKeyBRead: {
return (key == MfClassicKeyA && (AC == 0x00 || AC == 0x02 || AC == 0x01));
}
case MfClassicActionKeyBWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x04 || AC == 0x03)));
}
case MfClassicActionACRead: {
return (
(key == MfClassicKeyA) ||
(key == MfClassicKeyB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
}
case MfClassicActionACWrite: {
return (
(key == MfClassicKeyA && (AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x03 || AC == 0x05)));
}
default:
return false;
}
return true;
}
static bool mf_classic_is_allowed_access_data_block(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
uint8_t* sector_trailer = emulator->data.block[mf_classic_get_sector_trailer(block_num)].value;
uint8_t sector_block;
if(block_num <= 128) {
sector_block = block_num & 0x03;
} else {
sector_block = (block_num & 0x0f) / 5;
}
uint8_t AC;
switch(sector_block) {
case 0x00: {
AC = ((sector_trailer[7] >> 2) & 0x04) | ((sector_trailer[8] << 1) & 0x02) |
((sector_trailer[8] >> 4) & 0x01);
break;
}
case 0x01: {
AC = ((sector_trailer[7] >> 3) & 0x04) | ((sector_trailer[8] >> 0) & 0x02) |
((sector_trailer[8] >> 5) & 0x01);
break;
}
case 0x02: {
AC = ((sector_trailer[7] >> 4) & 0x04) | ((sector_trailer[8] >> 1) & 0x02) |
((sector_trailer[8] >> 6) & 0x01);
break;
}
default:
return false;
}
switch(action) {
case MfClassicActionDataRead: {
return (
(key == MfClassicKeyA && !(AC == 0x03 || AC == 0x05 || AC == 0x07)) ||
(key == MfClassicKeyB && !(AC == 0x07)));
}
case MfClassicActionDataWrite: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
}
case MfClassicActionDataInc: {
return (
(key == MfClassicKeyA && (AC == 0x00)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06)));
}
case MfClassicActionDataDec: {
return (
(key == MfClassicKeyA && (AC == 0x00 || AC == 0x06 || AC == 0x01)) ||
(key == MfClassicKeyB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
}
default:
return false;
}
return false;
}
static bool mf_classic_is_allowed_access(
MfClassicEmulator* emulator,
uint8_t block_num,
MfClassicKey key,
MfClassicAction action) {
if(mf_classic_is_sector_trailer(block_num)) {
return mf_classic_is_allowed_access_sector_trailer(emulator, block_num, key, action);
} else {
return mf_classic_is_allowed_access_data_block(emulator, block_num, key, action);
}
}
bool mf_classic_check_card_type(uint8_t ATQA0, uint8_t ATQA1, uint8_t SAK) {
UNUSED(ATQA1);
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
return true;
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
return true;
} else {
return false;
}
}
bool mf_classic_get_type(
uint8_t* uid,
uint8_t uid_len,
uint8_t ATQA0,
uint8_t ATQA1,
uint8_t SAK,
MfClassicReader* reader) {
UNUSED(ATQA1);
furi_assert(uid);
furi_assert(reader);
memset(reader, 0, sizeof(MfClassicReader));
if((ATQA0 == 0x44 || ATQA0 == 0x04) && (SAK == 0x08 || SAK == 0x88 || SAK == 0x09)) {
reader->type = MfClassicType1k;
} else if((ATQA0 == 0x42 || ATQA0 == 0x02) && (SAK == 0x18)) {
reader->type = MfClassicType4k;
} else {
return false;
}
uint8_t* cuid_start = uid;
if(uid_len == 7) {
cuid_start = &uid[3];
}
reader->cuid = (cuid_start[0] << 24) | (cuid_start[1] << 16) | (cuid_start[2] << 8) |
(cuid_start[3]);
return true;
}
void mf_classic_reader_add_sector(
MfClassicReader* reader,
uint8_t sector,
uint64_t key_a,
uint64_t key_b) {
furi_assert(reader);
furi_assert(sector < MF_CLASSIC_SECTORS_MAX);
furi_assert((key_a != MF_CLASSIC_NO_KEY) || (key_b != MF_CLASSIC_NO_KEY));
if(reader->sectors_to_read < MF_CLASSIC_SECTORS_MAX - 1) {
reader->sector_reader[reader->sectors_to_read].key_a = key_a;
reader->sector_reader[reader->sectors_to_read].key_b = key_b;
reader->sector_reader[reader->sectors_to_read].sector_num = sector;
reader->sectors_to_read++;
}
}
void mf_classic_auth_init_context(MfClassicAuthContext* auth_ctx, uint32_t cuid, uint8_t sector) {
furi_assert(auth_ctx);
auth_ctx->cuid = cuid;
auth_ctx->sector = sector;
auth_ctx->key_a = MF_CLASSIC_NO_KEY;
auth_ctx->key_b = MF_CLASSIC_NO_KEY;
}
static bool mf_classic_auth(
FuriHalNfcTxRxContext* tx_rx,
uint32_t cuid,
uint32_t block,
uint64_t key,
MfClassicKey key_type,
Crypto1* crypto) {
bool auth_success = false;
memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeDefault;
do {
if(key_type == MfClassicKeyA) {
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_A_CMD;
} else {
tx_rx->tx_data[0] = MF_CLASSIC_AUTH_KEY_B_CMD;
}
tx_rx->tx_data[1] = block;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRxNoCrc;
tx_rx->tx_bits = 2 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
uint32_t nt = (uint32_t)nfc_util_bytes2num(tx_rx->rx_data, 4);
crypto1_init(crypto, key);
crypto1_word(crypto, nt ^ cuid, 0);
uint8_t nr[4] = {};
nfc_util_num2bytes(prng_successor(DWT->CYCCNT, 32), 4, nr);
for(uint8_t i = 0; i < 4; i++) {
tx_rx->tx_data[i] = crypto1_byte(crypto, nr[i], 0) ^ nr[i];
tx_rx->tx_parity[0] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nr[i])) & 0x01) << (7 - i));
}
nt = prng_successor(nt, 32);
for(uint8_t i = 4; i < 8; i++) {
nt = prng_successor(nt, 8);
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ (nt & 0xff);
tx_rx->tx_parity[0] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(nt & 0xff)) & 0x01)
<< (7 - i));
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
tx_rx->tx_bits = 8 * 8;
if(!furi_hal_nfc_tx_rx(tx_rx, 6)) break;
if(tx_rx->rx_bits == 32) {
crypto1_word(crypto, 0, 0);
auth_success = true;
}
} while(false);
return auth_success;
}
bool mf_classic_auth_attempt(
FuriHalNfcTxRxContext* tx_rx,
MfClassicAuthContext* auth_ctx,
uint64_t key) {
furi_assert(tx_rx);
furi_assert(auth_ctx);
bool found_key = false;
bool need_halt = (auth_ctx->key_a == MF_CLASSIC_NO_KEY) &&
(auth_ctx->key_b == MF_CLASSIC_NO_KEY);
Crypto1 crypto;
if(auth_ctx->key_a == MF_CLASSIC_NO_KEY) {
// Try AUTH with key A
if(mf_classic_auth(
tx_rx,
auth_ctx->cuid,
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
key,
MfClassicKeyA,
&crypto)) {
auth_ctx->key_a = key;
found_key = true;
}
}
if(need_halt) {
furi_hal_nfc_sleep();
furi_hal_nfc_activate_nfca(300, &auth_ctx->cuid);
}
if(auth_ctx->key_b == MF_CLASSIC_NO_KEY) {
// Try AUTH with key B
if(mf_classic_auth(
tx_rx,
auth_ctx->cuid,
mf_classic_get_first_block_num_of_sector(auth_ctx->sector),
key,
MfClassicKeyB,
&crypto)) {
auth_ctx->key_b = key;
found_key = true;
}
}
return found_key;
}
bool mf_classic_read_block(
FuriHalNfcTxRxContext* tx_rx,
Crypto1* crypto,
uint8_t block_num,
MfClassicBlock* block) {
furi_assert(tx_rx);
furi_assert(crypto);
furi_assert(block);
bool read_block_success = false;
uint8_t plain_cmd[4] = {MF_CLASSIC_READ_SECT_CMD, block_num, 0x00, 0x00};
nfca_append_crc16(plain_cmd, 2);
memset(tx_rx->tx_data, 0, sizeof(tx_rx->tx_data));
memset(tx_rx->tx_parity, 0, sizeof(tx_rx->tx_parity));
for(uint8_t i = 0; i < 4; i++) {
tx_rx->tx_data[i] = crypto1_byte(crypto, 0x00, 0) ^ plain_cmd[i];
tx_rx->tx_parity[0] |=
((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_cmd[i])) & 0x01) << (7 - i);
}
tx_rx->tx_bits = 4 * 9;
tx_rx->tx_rx_type = FuriHalNfcTxRxTypeRaw;
2022-04-22 15:41:10 +03:00
if(furi_hal_nfc_tx_rx(tx_rx, 50)) {
if(tx_rx->rx_bits == 8 * 18) {
for(uint8_t i = 0; i < 18; i++) {
block->value[i] = crypto1_byte(crypto, 0, 0) ^ tx_rx->rx_data[i];
}
read_block_success = true;
}
}
return read_block_success;
}
bool mf_classic_read_sector(
FuriHalNfcTxRxContext* tx_rx,
Crypto1* crypto,
MfClassicSectorReader* sector_reader,
MfClassicSector* sector) {
furi_assert(tx_rx);
furi_assert(sector_reader);
furi_assert(sector);
uint32_t cuid = 0;
uint64_t key;
MfClassicKey key_type;
uint8_t first_block;
bool sector_read = false;
furi_hal_nfc_sleep();
do {
// Activate card
if(!furi_hal_nfc_activate_nfca(200, &cuid)) break;
first_block = mf_classic_get_first_block_num_of_sector(sector_reader->sector_num);
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
key = sector_reader->key_a;
key_type = MfClassicKeyA;
} else if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
key = sector_reader->key_b;
key_type = MfClassicKeyB;
} else {
break;
}
// Auth to first block in sector
if(!mf_classic_auth(tx_rx, cuid, first_block, key, key_type, crypto)) break;
sector->total_blocks = mf_classic_get_blocks_num_in_sector(sector_reader->sector_num);
// Read blocks
for(uint8_t i = 0; i < sector->total_blocks; i++) {
mf_classic_read_block(tx_rx, crypto, first_block + i, &sector->block[i]);
}
// Save sector keys in last block
if(sector_reader->key_a != MF_CLASSIC_NO_KEY) {
nfc_util_num2bytes(
sector_reader->key_a, 6, &sector->block[sector->total_blocks - 1].value[0]);
}
if(sector_reader->key_b != MF_CLASSIC_NO_KEY) {
nfc_util_num2bytes(
sector_reader->key_b, 6, &sector->block[sector->total_blocks - 1].value[10]);
}
sector_read = true;
} while(false);
return sector_read;
}
uint8_t mf_classic_read_card(
FuriHalNfcTxRxContext* tx_rx,
MfClassicReader* reader,
MfClassicData* data) {
furi_assert(tx_rx);
furi_assert(reader);
furi_assert(data);
uint8_t sectors_read = 0;
data->type = reader->type;
data->key_a_mask = 0;
data->key_b_mask = 0;
MfClassicSector temp_sector = {};
for(uint8_t i = 0; i < reader->sectors_to_read; i++) {
if(mf_classic_read_sector(
tx_rx, &reader->crypto, &reader->sector_reader[i], &temp_sector)) {
uint8_t first_block =
mf_classic_get_first_block_num_of_sector(reader->sector_reader[i].sector_num);
for(uint8_t j = 0; j < temp_sector.total_blocks; j++) {
data->block[first_block + j] = temp_sector.block[j];
}
if(reader->sector_reader[i].key_a != MF_CLASSIC_NO_KEY) {
data->key_a_mask |= 1 << reader->sector_reader[i].sector_num;
}
if(reader->sector_reader[i].key_b != MF_CLASSIC_NO_KEY) {
data->key_b_mask |= 1 << reader->sector_reader[i].sector_num;
}
sectors_read++;
}
}
return sectors_read;
}
void mf_crypto1_decrypt(
Crypto1* crypto,
uint8_t* encrypted_data,
uint16_t encrypted_data_bits,
uint8_t* decrypted_data) {
if(encrypted_data_bits < 8) {
uint8_t decrypted_byte = 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 0)) << 0;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 1)) << 1;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 2)) << 2;
decrypted_byte |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(encrypted_data[0], 3)) << 3;
decrypted_data[0] = decrypted_byte;
} else {
for(size_t i = 0; i < encrypted_data_bits / 8; i++) {
decrypted_data[i] = crypto1_byte(crypto, 0, 0) ^ encrypted_data[i];
}
}
}
void mf_crypto1_encrypt(
Crypto1* crypto,
uint8_t* keystream,
uint8_t* plain_data,
uint16_t plain_data_bits,
uint8_t* encrypted_data,
uint8_t* encrypted_parity) {
if(plain_data_bits < 8) {
encrypted_data[0] = 0;
for(size_t i = 0; i < plain_data_bits; i++) {
encrypted_data[0] |= (crypto1_bit(crypto, 0, 0) ^ FURI_BIT(plain_data[0], i)) << i;
}
} else {
memset(encrypted_parity, 0, plain_data_bits / 8 + 1);
for(uint8_t i = 0; i < plain_data_bits / 8; i++) {
encrypted_data[i] = crypto1_byte(crypto, keystream ? keystream[i] : 0, 0) ^
plain_data[i];
encrypted_parity[i / 8] |=
(((crypto1_filter(crypto->odd) ^ nfc_util_odd_parity8(plain_data[i])) & 0x01)
<< (7 - (i & 0x0007)));
}
}
}
bool mf_classic_emulator(MfClassicEmulator* emulator, FuriHalNfcTxRxContext* tx_rx) {
furi_assert(emulator);
furi_assert(tx_rx);
bool command_processed = false;
bool is_encrypted = false;
uint8_t plain_data[MF_CLASSIC_MAX_DATA_SIZE];
MfClassicKey access_key = MfClassicKeyA;
// Read command
while(!command_processed) {
if(!is_encrypted) {
memcpy(plain_data, tx_rx->rx_data, tx_rx->rx_bits / 8);
} else {
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) {
FURI_LOG_D(
TAG,
"Error in tx rx. Tx :%d bits, Rx: %d bits",
tx_rx->tx_bits,
tx_rx->rx_bits);
break;
}
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
}
if(plain_data[0] == 0x50 && plain_data[1] == 0x00) {
FURI_LOG_T(TAG, "Halt received");
furi_hal_nfc_listen_sleep();
command_processed = true;
break;
} else if(plain_data[0] == 0x60 || plain_data[0] == 0x61) {
uint8_t block = plain_data[1];
uint64_t key = 0;
uint8_t sector_trailer_block = mf_classic_get_sector_trailer(block);
MfClassicSectorTrailer* sector_trailer =
(MfClassicSectorTrailer*)emulator->data.block[sector_trailer_block].value;
if(plain_data[0] == 0x60) {
key = nfc_util_bytes2num(sector_trailer->key_a, 6);
access_key = MfClassicKeyA;
} else {
key = nfc_util_bytes2num(sector_trailer->key_b, 6);
access_key = MfClassicKeyB;
}
uint32_t nonce = prng_successor(DWT->CYCCNT, 32);
uint8_t nt[4];
uint8_t nt_keystream[4];
nfc_util_num2bytes(nonce, 4, nt);
nfc_util_num2bytes(nonce ^ emulator->cuid, 4, nt_keystream);
crypto1_init(&emulator->crypto, key);
if(!is_encrypted) {
crypto1_word(&emulator->crypto, emulator->cuid ^ nonce, 0);
memcpy(tx_rx->tx_data, nt, sizeof(nt));
tx_rx->tx_parity[0] = 0;
for(size_t i = 0; i < sizeof(nt); i++) {
tx_rx->tx_parity[0] |= nfc_util_odd_parity8(nt[i]) << (7 - i);
}
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
} else {
mf_crypto1_encrypt(
&emulator->crypto,
nt_keystream,
nt,
sizeof(nt) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(nt) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
}
if(!furi_hal_nfc_tx_rx(tx_rx, 500)) {
FURI_LOG_E(TAG, "Error in NT exchange");
command_processed = true;
break;
}
if(tx_rx->rx_bits != 64) {
FURI_LOG_W(TAG, "Incorrect nr + ar");
command_processed = true;
break;
}
// Check if we store valid key
if(access_key == MfClassicKeyA) {
if(FURI_BIT(emulator->data.key_a_mask, mf_classic_get_sector_by_block(block)) ==
0) {
FURI_LOG_D(TAG, "Unsupported sector key A for block %d", sector_trailer_block);
break;
}
} else if(access_key == MfClassicKeyB) {
if(FURI_BIT(emulator->data.key_b_mask, mf_classic_get_sector_by_block(block)) ==
0) {
FURI_LOG_D(TAG, "Unsupported sector key B for block %d", sector_trailer_block);
break;
}
}
uint32_t nr = nfc_util_bytes2num(tx_rx->rx_data, 4);
uint32_t ar = nfc_util_bytes2num(&tx_rx->rx_data[4], 4);
crypto1_word(&emulator->crypto, nr, 1);
uint32_t cardRr = ar ^ crypto1_word(&emulator->crypto, 0, 0);
if(cardRr != prng_successor(nonce, 64)) {
FURI_LOG_T(TAG, "Wrong AUTH! %08X != %08X", cardRr, prng_successor(nonce, 64));
// Don't send NACK, as tag don't send it
command_processed = true;
break;
}
uint32_t ans = prng_successor(nonce, 96);
uint8_t responce[4] = {};
nfc_util_num2bytes(ans, 4, responce);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
responce,
sizeof(responce) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = sizeof(responce) * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
is_encrypted = true;
} else if(is_encrypted && plain_data[0] == 0x30) {
uint8_t block = plain_data[1];
uint8_t block_data[18] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyARead)) {
memset(block_data, 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBRead)) {
memset(&block_data[10], 0, 6);
}
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACRead)) {
memset(&block_data[6], 0, 4);
}
} else {
if(!mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataRead)) {
memset(block_data, 0, 16);
}
}
nfca_append_crc16(block_data, 16);
mf_crypto1_encrypt(
&emulator->crypto,
NULL,
block_data,
sizeof(block_data) * 8,
tx_rx->tx_data,
tx_rx->tx_parity);
tx_rx->tx_bits = 18 * 8;
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
} else if(is_encrypted && plain_data[0] == 0xA0) {
uint8_t block = plain_data[1];
if(block > mf_classic_get_total_block_num(emulator->data.type)) {
break;
}
// Send ACK
uint8_t ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
if(!furi_hal_nfc_tx_rx(tx_rx, 300)) break;
if(tx_rx->rx_bits != 18 * 8) break;
mf_crypto1_decrypt(&emulator->crypto, tx_rx->rx_data, tx_rx->rx_bits, plain_data);
uint8_t block_data[16] = {};
memcpy(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE);
if(mf_classic_is_sector_trailer(block)) {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyAWrite)) {
memcpy(block_data, plain_data, 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionKeyBWrite)) {
memcpy(&block_data[10], &plain_data[10], 6);
}
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionACWrite)) {
memcpy(&block_data[6], &plain_data[6], 4);
}
} else {
if(mf_classic_is_allowed_access(
emulator, block, access_key, MfClassicActionDataWrite)) {
memcpy(block_data, plain_data, MF_CLASSIC_BLOCK_SIZE);
}
}
if(memcmp(block_data, emulator->data.block[block].value, MF_CLASSIC_BLOCK_SIZE)) {
memcpy(emulator->data.block[block].value, block_data, MF_CLASSIC_BLOCK_SIZE);
emulator->data_changed = true;
}
// Send ACK
ack = 0x0A;
mf_crypto1_encrypt(&emulator->crypto, NULL, &ack, 4, tx_rx->tx_data, tx_rx->tx_parity);
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
} else {
// Unknown command
break;
}
}
if(!command_processed) {
// Send NACK
uint8_t nack = 0x04;
if(is_encrypted) {
mf_crypto1_encrypt(
&emulator->crypto, NULL, &nack, 4, tx_rx->tx_data, tx_rx->tx_parity);
} else {
tx_rx->tx_data[0] = nack;
}
tx_rx->tx_rx_type = FuriHalNfcTxRxTransparent;
tx_rx->tx_bits = 4;
furi_hal_nfc_tx_rx(tx_rx, 300);
}
return true;
}