FuriHal: fix start duration furi_hal_subghz_async_tx (#3230)

* FuriHal: fix start duration furi_hal_subghz_async_tx
* FuriHal: add check min duration arr for the first level
* FuriHal: fix conflict dev
* SubGhz: fix unit_test
* FuriHal: subghz internal fix start/stop transmit duration
* Drivers: subghz external fix start/stop transmit duration
* FuriHal: subghz optimization
* SubGhz: fix unit_test subghz
* FuriHal: subghz fix end duration if size == size dma buf
* FuriHal: revert enum values order, remove garbage
* FuriHal: revert one more small bit in subghz
* FuriHal: handle various corner cases in subghz transmission
* FuriHal: cleanup subghz code
* FuriHal: add parenthesis around value in subghz defines
* FuriHal: add packer subghz_async_tx
* FuriHal: more reliable subghz transmission end handling, fixes stuck transmission
* FuriHal: add subghz crutch docs, and rename some defines to conform naming standards
* FuriHal: subghz,  the logic of timers has been changed. disabling the shadow register ARR
* FuriHal: fix subghz off dma irq
* SubGhzExt: fun rename
* FuriHal,SubGhz: fix g0 state on reset, fix incorrect async_tx stop sequence, remove dead code.

Co-authored-by: あく <alleteam@gmail.com>
This commit is contained in:
Skorpionm 2024-01-11 11:56:14 +04:00 committed by GitHub
parent 0b15fc3807
commit 34539cda17
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 264 additions and 176 deletions

View File

@ -231,17 +231,17 @@ typedef struct {
size_t pos;
} SubGhzHalAsyncTxTest;
#define SUBGHZ_HAL_TEST_DURATION 1
#define SUBGHZ_HAL_TEST_DURATION 3
static LevelDuration subghz_hal_async_tx_test_yield(void* context) {
SubGhzHalAsyncTxTest* test = context;
bool is_odd = test->pos % 2;
if(test->type == SubGhzHalAsyncTxTestTypeNormal) {
if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_reset();
} else {
@ -251,36 +251,36 @@ static LevelDuration subghz_hal_async_tx_test_yield(void* context) {
if(test->pos == 0) {
test->pos++;
return level_duration_make(!is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_reset();
} else {
furi_crash("Yield after reset");
}
} else if(test->type == SubGhzHalAsyncTxTestTypeInvalidMid) {
if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
test->pos++;
return level_duration_make(!is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_reset();
} else {
furi_crash("Yield after reset");
}
} else if(test->type == SubGhzHalAsyncTxTestTypeInvalidEnd) {
if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL - 1) {
if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL - 1) {
test->pos++;
return level_duration_make(!is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * 8) {
test->pos++;
return level_duration_reset();
} else {
@ -294,20 +294,20 @@ static LevelDuration subghz_hal_async_tx_test_yield(void* context) {
furi_crash("Yield after reset");
}
} else if(test->type == SubGhzHalAsyncTxTestTypeResetMid) {
if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF / 2) {
test->pos++;
return level_duration_reset();
} else {
furi_crash("Yield after reset");
}
} else if(test->type == SubGhzHalAsyncTxTestTypeResetEnd) {
if(test->pos < API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL - 1) {
if(test->pos < FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL) {
test->pos++;
return level_duration_make(is_odd, SUBGHZ_HAL_TEST_DURATION);
} else if(test->pos == API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL - 1) {
} else if(test->pos == FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL) {
test->pos++;
return level_duration_reset();
} else {
@ -334,6 +334,8 @@ bool subghz_hal_async_tx_test_run(SubGhzHalAsyncTxTestType type) {
while(!furi_hal_subghz_is_async_tx_complete()) {
if(furi_hal_cortex_timer_is_expired(timer)) {
furi_hal_subghz_stop_async_tx();
furi_hal_subghz_sleep();
return false;
}
furi_delay_ms(10);

View File

@ -18,14 +18,14 @@
#define TAG "SubGhzDeviceCc1101Ext"
#define SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO &gpio_ext_pb2
#define SUBGHZ_DEVICE_CC1101_EXT_TX_GPIO (&gpio_ext_pb2)
/* DMA Channels definition */
#define SUBGHZ_DEVICE_CC1101_EXT_DMA DMA2
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL LL_DMA_CHANNEL_3
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL LL_DMA_CHANNEL_4
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL LL_DMA_CHANNEL_5
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ FuriHalInterruptIdDma2Ch3
#define SUBGHZ_DEVICE_CC1101_EXT_DMA (DMA2)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL (LL_DMA_CHANNEL_3)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_CHANNEL (LL_DMA_CHANNEL_4)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL (LL_DMA_CHANNEL_5)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ (FuriHalInterruptIdDma2Ch3)
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF \
SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_CHANNEL
#define SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF \
@ -34,10 +34,10 @@
SUBGHZ_DEVICE_CC1101_EXT_DMA, SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_CHANNEL
/** Low level buffer dimensions and guard times */
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL (256)
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL (256u)
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_HALF \
(SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL / 2)
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME 999 << 1
#define SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME (999u >> 1)
/** SubGhz state */
typedef enum {
@ -55,13 +55,25 @@ typedef enum {
SubGhzDeviceCC1101ExtRegulationTxRx, /**TxRx*/
} SubGhzDeviceCC1101ExtRegulation;
typedef enum {
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle,
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset,
SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun,
} SubGhzDeviceCC1101ExtAsyncTxMiddlewareState;
typedef struct {
SubGhzDeviceCC1101ExtAsyncTxMiddlewareState state;
bool is_odd_level;
uint32_t adder_duration;
} SubGhzDeviceCC1101ExtAsyncTxMiddleware;
typedef struct {
uint32_t* buffer;
LevelDuration carry_ld;
SubGhzDeviceCC1101ExtCallback callback;
void* callback_context;
uint32_t gpio_tx_buff[2];
uint32_t debug_gpio_buff[2];
SubGhzDeviceCC1101ExtAsyncTxMiddleware middleware;
} SubGhzDeviceCC1101ExtAsyncTx;
typedef struct {
@ -259,8 +271,8 @@ void subghz_device_cc1101_ext_dump_state() {
void subghz_device_cc1101_ext_load_custom_preset(const uint8_t* preset_data) {
//load config
subghz_device_cc1101_ext_reset();
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle);
uint32_t i = 0;
uint8_t pa[8] = {0};
while(preset_data[i]) {
@ -289,8 +301,8 @@ void subghz_device_cc1101_ext_load_custom_preset(const uint8_t* preset_data) {
}
void subghz_device_cc1101_ext_load_registers(const uint8_t* data) {
subghz_device_cc1101_ext_reset();
furi_hal_spi_acquire(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle);
uint32_t i = 0;
while(data[i]) {
cc1101_write_reg(subghz_device_cc1101_ext->spi_bus_handle, data[i], data[i + 1]);
@ -371,6 +383,7 @@ void subghz_device_cc1101_ext_reset() {
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(subghz_device_cc1101_ext->spi_bus_handle);
cc1101_reset(subghz_device_cc1101_ext->spi_bus_handle);
// Warning: push pull cc1101 clock output on GD0
cc1101_write_reg(
subghz_device_cc1101_ext->spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_release(subghz_device_cc1101_ext->spi_bus_handle);
@ -563,50 +576,91 @@ void subghz_device_cc1101_ext_stop_async_rx() {
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
static void subghz_device_cc1101_ext_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx);
while(samples > 0) {
bool is_odd = samples % 2;
LevelDuration ld;
if(level_duration_is_reset(subghz_device_cc1101_ext->async_tx.carry_ld)) {
ld = subghz_device_cc1101_ext->async_tx.callback(
subghz_device_cc1101_ext->async_tx.callback_context);
} else {
ld = subghz_device_cc1101_ext->async_tx.carry_ld;
subghz_device_cc1101_ext->async_tx.carry_ld = level_duration_reset();
void subghz_device_cc1101_ext_async_tx_middleware_idle(
SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle;
middleware->is_odd_level = false;
middleware->adder_duration = SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
}
static inline uint32_t subghz_device_cc1101_ext_async_tx_middleware_get_duration(
SubGhzDeviceCC1101ExtAsyncTxMiddleware* middleware,
SubGhzDeviceCC1101ExtCallback callback) {
uint32_t ret = 0;
bool is_level = false;
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset) return 0;
while(1) {
LevelDuration ld = callback(subghz_device_cc1101_ext->async_tx.callback_context);
if(level_duration_is_reset(ld)) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateReset;
if(!middleware->is_odd_level) {
return 0;
} else {
return middleware->adder_duration;
}
} else if(level_duration_is_wait(ld)) {
middleware->is_odd_level = !middleware->is_odd_level;
ret = middleware->adder_duration + SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
middleware->adder_duration = 0;
return ret;
}
if(level_duration_is_wait(ld)) {
*buffer = SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
} else if(level_duration_is_reset(ld)) {
is_level = level_duration_get_level(ld);
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateIdle) {
if(is_level != middleware->is_odd_level) {
middleware->state = SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun;
middleware->is_odd_level = is_level;
middleware->adder_duration = level_duration_get_duration(ld);
return SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
} else {
continue;
}
}
if(middleware->state == SubGhzDeviceCC1101ExtAsyncTxMiddlewareStateRun) {
if(is_level == middleware->is_odd_level) {
middleware->adder_duration += level_duration_get_duration(ld);
continue;
} else {
middleware->is_odd_level = is_level;
ret = middleware->adder_duration;
middleware->adder_duration = level_duration_get_duration(ld);
return ret;
}
}
}
}
static void subghz_device_cc1101_ext_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx);
while(samples > 0) {
volatile uint32_t duration = subghz_device_cc1101_ext_async_tx_middleware_get_duration(
&subghz_device_cc1101_ext->async_tx.middleware,
subghz_device_cc1101_ext->async_tx.callback);
if(duration == 0) {
*buffer = 0;
buffer++;
samples--;
LL_DMA_DisableIT_HT(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
LL_DMA_DisableIT_TC(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
if(LL_DMA_IsActiveFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_HT3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
}
if(LL_DMA_IsActiveFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA)) {
LL_DMA_ClearFlag_TC3(SUBGHZ_DEVICE_CC1101_EXT_DMA);
}
LL_TIM_EnableIT_UPDATE(TIM17);
break;
} else {
bool level = level_duration_get_level(ld);
// Inject guard time if level is incorrect
if(is_odd != level) {
*buffer = SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
// Special case: prevent buffer overflow if sample is last
if(samples == 0) {
subghz_device_cc1101_ext->async_tx.carry_ld = ld;
break;
}
}
uint32_t duration = level_duration_get_duration(ld);
furi_assert(duration > 0);
*buffer = duration >> 1;
// Lowest possible value is 4us
if(duration < 4) duration = 4;
// Divide by 2 since timer resolution is 2us
// Subtract 1 since we counting from 0
*buffer = (duration >> 1) - 1;
buffer++;
samples--;
}
@ -638,12 +692,14 @@ static void subghz_device_cc1101_ext_async_tx_dma_isr() {
static void subghz_device_cc1101_ext_async_tx_timer_isr() {
if(LL_TIM_IsActiveFlag_UPDATE(TIM17)) {
if(LL_TIM_GetAutoReload(TIM17) == 0) {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
if(subghz_device_cc1101_ext->async_mirror_pin != NULL)
furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false);
LL_TIM_DisableCounter(TIM17);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTxEnd;
if(subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx) {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_DEF);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateAsyncTxEnd;
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
if(subghz_device_cc1101_ext->async_mirror_pin != NULL)
furi_hal_gpio_write(subghz_device_cc1101_ext->async_mirror_pin, false);
LL_TIM_DisableCounter(TIM17);
}
}
LL_TIM_ClearFlag_UPDATE(TIM17);
}
@ -693,16 +749,18 @@ bool subghz_device_cc1101_ext_start_async_tx(SubGhzDeviceCC1101ExtCallback callb
// Configure TIM
// Set the timer resolution to 2 us
LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1);
LL_TIM_SetCounterMode(TIM17, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetAutoReload(TIM17, 0xFFFF);
LL_TIM_SetClockDivision(TIM17, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetAutoReload(TIM17, 500);
LL_TIM_SetPrescaler(TIM17, (64 << 1) - 1);
LL_TIM_SetClockSource(TIM17, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_DisableARRPreload(TIM17);
furi_hal_interrupt_set_isr(
FuriHalInterruptIdTim1TrgComTim17, subghz_device_cc1101_ext_async_tx_timer_isr, NULL);
subghz_device_cc1101_ext_async_tx_middleware_idle(
&subghz_device_cc1101_ext->async_tx.middleware);
subghz_device_cc1101_ext_async_tx_refill(
subghz_device_cc1101_ext->async_tx.buffer, SUBGHZ_DEVICE_CC1101_EXT_ASYNC_TX_BUFFER_FULL);
@ -748,7 +806,6 @@ bool subghz_device_cc1101_ext_start_async_tx(SubGhzDeviceCC1101ExtCallback callb
// Start counter
LL_TIM_EnableDMAReq_UPDATE(TIM17);
LL_TIM_GenerateEvent_UPDATE(TIM17);
subghz_device_cc1101_ext_tx();
@ -767,11 +824,15 @@ void subghz_device_cc1101_ext_stop_async_tx() {
subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTx ||
subghz_device_cc1101_ext->state == SubGhzDeviceCC1101ExtStateAsyncTxEnd);
// Deinitialize GPIO
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
furi_hal_gpio_init(
subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullDown, GpioSpeedLow);
// Shutdown radio
subghz_device_cc1101_ext_idle();
// Deinitialize Timer
FURI_CRITICAL_ENTER();
furi_hal_bus_disable(FuriHalBusTIM17);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTim1TrgComTim17, NULL, NULL);
@ -780,17 +841,11 @@ void subghz_device_cc1101_ext_stop_async_tx() {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH4_DEF);
furi_hal_interrupt_set_isr(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH3_IRQ, NULL, NULL);
// Deinitialize GPIO
furi_hal_gpio_write(subghz_device_cc1101_ext->g0_pin, false);
furi_hal_gpio_init(subghz_device_cc1101_ext->g0_pin, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// Stop debug
if(subghz_device_cc1101_ext_stop_debug()) {
LL_DMA_DisableChannel(SUBGHZ_DEVICE_CC1101_EXT_DMA_CH5_DEF);
}
FURI_CRITICAL_EXIT();
free(subghz_device_cc1101_ext->async_tx.buffer);
subghz_device_cc1101_ext->state = SubGhzDeviceCC1101ExtStateIdle;

View File

@ -18,7 +18,6 @@ struct SubGhzFileEncoderWorker {
volatile bool worker_running;
volatile bool worker_stoping;
bool level;
bool is_storage_slow;
FuriString* str_data;
FuriString* file_path;
@ -41,19 +40,8 @@ void subghz_file_encoder_worker_callback_end(
void subghz_file_encoder_worker_add_level_duration(
SubGhzFileEncoderWorker* instance,
int32_t duration) {
bool res = true;
if(duration < 0 && !instance->level) {
res = false;
} else if(duration > 0 && instance->level) {
res = false;
}
if(res) {
instance->level = !instance->level;
furi_stream_buffer_send(instance->stream, &duration, sizeof(int32_t), 100);
} else {
FURI_LOG_E(TAG, "Invalid level in the stream");
}
size_t ret = furi_stream_buffer_send(instance->stream, &duration, sizeof(int32_t), 100);
if(sizeof(int32_t) != ret) FURI_LOG_E(TAG, "Invalid add duration in the stream");
}
bool subghz_file_encoder_worker_data_parse(SubGhzFileEncoderWorker* instance, const char* strStart) {
@ -190,7 +178,6 @@ SubGhzFileEncoderWorker* subghz_file_encoder_worker_alloc() {
instance->str_data = furi_string_alloc();
instance->file_path = furi_string_alloc();
instance->level = false;
instance->worker_stoping = true;
return instance;

View File

@ -17,13 +17,13 @@
#define TAG "FuriHalSubGhz"
static uint32_t furi_hal_subghz_debug_gpio_buff[2];
static uint32_t furi_hal_subghz_debug_gpio_buff[2] = {0};
/* DMA Channels definition */
#define SUBGHZ_DMA DMA2
#define SUBGHZ_DMA_CH1_CHANNEL LL_DMA_CHANNEL_1
#define SUBGHZ_DMA_CH2_CHANNEL LL_DMA_CHANNEL_2
#define SUBGHZ_DMA_CH1_IRQ FuriHalInterruptIdDma2Ch1
#define SUBGHZ_DMA (DMA2)
#define SUBGHZ_DMA_CH1_CHANNEL (LL_DMA_CHANNEL_1)
#define SUBGHZ_DMA_CH2_CHANNEL (LL_DMA_CHANNEL_2)
#define SUBGHZ_DMA_CH1_IRQ (FuriHalInterruptIdDma2Ch1)
#define SUBGHZ_DMA_CH1_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH1_CHANNEL
#define SUBGHZ_DMA_CH2_DEF SUBGHZ_DMA, SUBGHZ_DMA_CH2_CHANNEL
@ -36,7 +36,6 @@ typedef enum {
SubGhzStateAsyncRx, /**< Async RX started */
SubGhzStateAsyncTx, /**< Async TX started, DMA and timer is on */
SubGhzStateAsyncTxLast, /**< Async TX continue, DMA completed and timer got last value to go */
SubGhzStateAsyncTxEnd, /**< Async TX complete, cleanup needed */
} SubGhzState;
@ -79,6 +78,10 @@ void furi_hal_subghz_init() {
&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow);
#endif
#ifdef FURI_HAL_SUBGHZ_ASYNC_MIRROR_GPIO
furi_hal_subghz_set_async_mirror_pin(&FURI_HAL_SUBGHZ_ASYNC_MIRROR_GPIO);
#endif
// Reset
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
@ -158,8 +161,8 @@ void furi_hal_subghz_dump_state() {
void furi_hal_subghz_load_custom_preset(const uint8_t* preset_data) {
//load config
furi_hal_subghz_reset();
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
uint32_t i = 0;
uint8_t pa[8] = {0};
while(preset_data[i]) {
@ -187,8 +190,8 @@ void furi_hal_subghz_load_custom_preset(const uint8_t* preset_data) {
}
void furi_hal_subghz_load_registers(const uint8_t* data) {
furi_hal_subghz_reset();
furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
uint32_t i = 0;
while(data[i]) {
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i], data[i + 1]);
@ -266,6 +269,7 @@ void furi_hal_subghz_reset() {
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz);
cc1101_reset(&furi_hal_spi_bus_handle_subghz);
// Warning: push pull cc1101 clock output on GD0
cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance);
furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz);
}
@ -382,6 +386,7 @@ void furi_hal_subghz_set_path(FuriHalSubGhzPath path) {
static bool furi_hal_subghz_start_debug() {
bool ret = false;
if(furi_hal_subghz.async_mirror_pin != NULL) {
furi_hal_gpio_write(furi_hal_subghz.async_mirror_pin, false);
furi_hal_gpio_init(
furi_hal_subghz.async_mirror_pin,
GpioModeOutputPushPull,
@ -522,73 +527,121 @@ void furi_hal_subghz_stop_async_rx() {
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
}
typedef enum {
FuriHalSubGhzAsyncTxMiddlewareStateIdle,
FuriHalSubGhzAsyncTxMiddlewareStateReset,
FuriHalSubGhzAsyncTxMiddlewareStateRun,
} FuriHalSubGhzAsyncTxMiddlewareState;
typedef struct {
FuriHalSubGhzAsyncTxMiddlewareState state;
bool is_odd_level;
uint32_t adder_duration;
} FuriHalSubGhzAsyncTxMiddleware;
typedef struct {
uint32_t* buffer;
LevelDuration carry_ld;
FuriHalSubGhzAsyncTxCallback callback;
void* callback_context;
uint64_t duty_high;
uint64_t duty_low;
FuriHalSubGhzAsyncTxMiddleware middleware;
} FuriHalSubGhzAsyncTx;
static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0};
static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx);
while(samples > 0) {
bool is_odd = samples % 2;
LevelDuration ld;
if(level_duration_is_reset(furi_hal_subghz_async_tx.carry_ld)) {
ld = furi_hal_subghz_async_tx.callback(furi_hal_subghz_async_tx.callback_context);
} else {
ld = furi_hal_subghz_async_tx.carry_ld;
furi_hal_subghz_async_tx.carry_ld = level_duration_reset();
void furi_hal_subghz_async_tx_middleware_idle(FuriHalSubGhzAsyncTxMiddleware* middleware) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateIdle;
middleware->is_odd_level = false;
middleware->adder_duration = 0;
}
static inline uint32_t furi_hal_subghz_async_tx_middleware_get_duration(
FuriHalSubGhzAsyncTxMiddleware* middleware,
FuriHalSubGhzAsyncTxCallback callback) {
uint32_t ret = 0;
bool is_level = false;
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateReset) return 0;
while(1) {
LevelDuration ld = callback(furi_hal_subghz_async_tx.callback_context);
if(level_duration_is_reset(ld)) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateReset;
if(!middleware->is_odd_level) {
return 0;
} else {
return middleware->adder_duration;
}
} else if(level_duration_is_wait(ld)) {
middleware->is_odd_level = !middleware->is_odd_level;
ret = middleware->adder_duration + FURI_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
middleware->adder_duration = 0;
return ret;
}
if(level_duration_is_wait(ld)) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
} else if(level_duration_is_reset(ld)) {
is_level = level_duration_get_level(ld);
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateIdle) {
if(is_level != middleware->is_odd_level) {
middleware->state = FuriHalSubGhzAsyncTxMiddlewareStateRun;
middleware->is_odd_level = is_level;
middleware->adder_duration = 0;
} else {
continue;
}
}
if(middleware->state == FuriHalSubGhzAsyncTxMiddlewareStateRun) {
if(is_level == middleware->is_odd_level) {
middleware->adder_duration += level_duration_get_duration(ld);
continue;
} else {
middleware->is_odd_level = is_level;
ret = middleware->adder_duration;
middleware->adder_duration = level_duration_get_duration(ld);
return ret;
}
}
}
}
static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) {
furi_assert(furi_hal_subghz.state == SubGhzStateAsyncTx);
while(samples > 0) {
volatile uint32_t duration = furi_hal_subghz_async_tx_middleware_get_duration(
&furi_hal_subghz_async_tx.middleware, furi_hal_subghz_async_tx.callback);
if(duration == 0) {
*buffer = 0;
buffer++;
samples--;
LL_DMA_DisableIT_HT(SUBGHZ_DMA_CH1_DEF);
LL_DMA_DisableIT_TC(SUBGHZ_DMA_CH1_DEF);
if(LL_DMA_IsActiveFlag_HT1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_HT1(SUBGHZ_DMA);
}
if(LL_DMA_IsActiveFlag_TC1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_TC1(SUBGHZ_DMA);
}
LL_TIM_EnableIT_UPDATE(TIM2);
break;
} else {
bool level = level_duration_get_level(ld);
// Inject guard time if level is incorrect
if(is_odd != level) {
*buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
buffer++;
samples--;
if(is_odd) {
furi_hal_subghz_async_tx.duty_high += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
} else {
furi_hal_subghz_async_tx.duty_low += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME;
}
// Special case: prevent buffer overflow if sample is last
if(samples == 0) {
furi_hal_subghz_async_tx.carry_ld = ld;
break;
}
// Lowest possible value is 2us
if(duration > 2) {
// Subtract 1 since we counting from 0
*buffer = duration - 1;
} else {
*buffer = 1;
}
uint32_t duration = level_duration_get_duration(ld);
furi_assert(duration > 0);
*buffer = duration;
buffer++;
samples--;
}
if(is_odd) {
furi_hal_subghz_async_tx.duty_high += duration;
} else {
furi_hal_subghz_async_tx.duty_low += duration;
}
if(samples % 2) {
furi_hal_subghz_async_tx.duty_high += duration;
} else {
furi_hal_subghz_async_tx.duty_low += duration;
}
}
}
@ -600,13 +653,13 @@ static void furi_hal_subghz_async_tx_dma_isr() {
if(LL_DMA_IsActiveFlag_HT1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_HT1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
furi_hal_subghz_async_tx.buffer, FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
if(LL_DMA_IsActiveFlag_TC1(SUBGHZ_DMA)) {
LL_DMA_ClearFlag_TC1(SUBGHZ_DMA);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer + API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF,
API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
furi_hal_subghz_async_tx.buffer + FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF,
FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF);
}
#else
#error Update this code. Would you kindly?
@ -618,15 +671,11 @@ static void furi_hal_subghz_async_tx_timer_isr() {
LL_TIM_ClearFlag_UPDATE(TIM2);
if(LL_TIM_GetAutoReload(TIM2) == 0) {
if(furi_hal_subghz.state == SubGhzStateAsyncTx) {
furi_hal_subghz.state = SubGhzStateAsyncTxLast;
LL_DMA_DisableChannel(SUBGHZ_DMA_CH1_DEF);
} else if(furi_hal_subghz.state == SubGhzStateAsyncTxLast) {
furi_hal_subghz.state = SubGhzStateAsyncTxEnd;
LL_DMA_DisableChannel(SUBGHZ_DMA_CH1_DEF);
//forcibly pulls the pin to the ground so that there is no carrier
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullDown, GpioSpeedLow);
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullDown, GpioSpeedLow);
LL_TIM_DisableCounter(TIM2);
} else {
furi_crash();
}
}
}
@ -648,7 +697,7 @@ bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void*
furi_hal_subghz_async_tx.duty_high = 0;
furi_hal_subghz_async_tx.buffer =
malloc(API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
malloc(FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t));
// Connect CC1101_GD0 to TIM2 as output
furi_hal_gpio_init_ex(
@ -664,7 +713,7 @@ bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void*
dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT;
dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD;
dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD;
dma_config.NbData = API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL;
dma_config.NbData = FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL;
dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP;
dma_config.Priority = LL_DMA_MODE_NORMAL;
LL_DMA_Init(SUBGHZ_DMA_CH1_DEF, &dma_config);
@ -676,14 +725,12 @@ bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void*
furi_hal_bus_enable(FuriHalBusTIM2);
// Configure TIM2
LL_TIM_InitTypeDef TIM_InitStruct = {0};
TIM_InitStruct.Prescaler = 64 - 1;
TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP;
TIM_InitStruct.Autoreload = 1000;
TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
LL_TIM_Init(TIM2, &TIM_InitStruct);
LL_TIM_SetCounterMode(TIM2, LL_TIM_COUNTERMODE_UP);
LL_TIM_SetClockDivision(TIM2, LL_TIM_CLOCKDIVISION_DIV1);
LL_TIM_SetAutoReload(TIM2, 1000);
LL_TIM_SetPrescaler(TIM2, 64 - 1);
LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL);
LL_TIM_EnableARRPreload(TIM2);
LL_TIM_DisableARRPreload(TIM2);
// Configure TIM2 CH2
LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0};
@ -691,21 +738,21 @@ bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void*
TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE;
TIM_OC_InitStruct.CompareValue = 0;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_LOW;
TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH;
LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct);
LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2);
LL_TIM_DisableMasterSlaveMode(TIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_async_tx_timer_isr, NULL);
furi_hal_subghz_async_tx_middleware_idle(&furi_hal_subghz_async_tx.middleware);
furi_hal_subghz_async_tx_refill(
furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL);
furi_hal_subghz_async_tx.buffer, FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL);
LL_TIM_EnableDMAReq_UPDATE(TIM2);
LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2);
// Start counter
LL_TIM_GenerateEvent_UPDATE(TIM2);
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true);
#endif
@ -717,8 +764,8 @@ bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void*
// Start debug
if(furi_hal_subghz_start_debug()) {
const GpioPin* gpio = furi_hal_subghz.async_mirror_pin;
furi_hal_subghz_debug_gpio_buff[0] = (uint32_t)gpio->pin << GPIO_NUMBER;
furi_hal_subghz_debug_gpio_buff[1] = gpio->pin;
furi_hal_subghz_debug_gpio_buff[0] = gpio->pin;
furi_hal_subghz_debug_gpio_buff[1] = (uint32_t)gpio->pin << GPIO_NUMBER;
dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_debug_gpio_buff;
dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (gpio->port->BSRR);
@ -746,9 +793,12 @@ bool furi_hal_subghz_is_async_tx_complete() {
void furi_hal_subghz_stop_async_tx() {
furi_assert(
furi_hal_subghz.state == SubGhzStateAsyncTx ||
furi_hal_subghz.state == SubGhzStateAsyncTxLast ||
furi_hal_subghz.state == SubGhzStateAsyncTxEnd);
// Deinitialize GPIO
// Keep in mind that cc1101 will try to pull it up in idle.
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullDown, GpioSpeedLow);
// Shutdown radio
furi_hal_subghz_idle();
#ifdef FURI_HAL_SUBGHZ_TX_GPIO
@ -756,7 +806,6 @@ void furi_hal_subghz_stop_async_tx() {
#endif
// Deinitialize Timer
FURI_CRITICAL_ENTER();
furi_hal_bus_disable(FuriHalBusTIM2);
furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL);
@ -765,16 +814,11 @@ void furi_hal_subghz_stop_async_tx() {
furi_hal_interrupt_set_isr(SUBGHZ_DMA_CH1_IRQ, NULL, NULL);
// Deinitialize GPIO
furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow);
// Stop debug
if(furi_hal_subghz_stop_debug()) {
LL_DMA_DisableChannel(SUBGHZ_DMA_CH2_DEF);
}
FURI_CRITICAL_EXIT();
free(furi_hal_subghz_async_tx.buffer);
float duty_cycle =

View File

@ -17,10 +17,10 @@
extern "C" {
#endif
/** Low level buffer dimensions and guard times */
#define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL (256)
#define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF (API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL / 2)
#define API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME 999
/** Various subghz defines */
#define FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL (256u)
#define FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF (FURI_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL / 2)
#define FURI_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME (999u)
/** Switchable Radio Paths */
typedef enum {