Merge branch 'fz-dev' into dev

This commit is contained in:
MX 2022-08-30 11:42:39 +03:00
commit 5272b81ae6
No known key found for this signature in database
GPG Key ID: F1863A37E20BEF27
84 changed files with 1392 additions and 47 deletions

0
applications/bad_usb/views/bad_usb_view.h Executable file → Normal file
View File

0
applications/bt/bt_debug_app/views/bt_carrier_test.c Executable file → Normal file
View File

0
applications/bt/bt_debug_app/views/bt_test.c Executable file → Normal file
View File

0
applications/bt/bt_debug_app/views/bt_test.h Executable file → Normal file
View File

0
applications/bt/bt_hid_app/views/bt_hid_keynote.c Executable file → Normal file
View File

0
applications/bt/bt_hid_app/views/bt_hid_media.c Executable file → Normal file
View File

0
applications/bt/bt_settings_app/bt_settings_app.c Executable file → Normal file
View File

0
applications/bt/bt_settings_app/bt_settings_app.h Executable file → Normal file
View File

View File

View File

0
applications/cli/cli_i.h Executable file → Normal file
View File

0
applications/gpio/views/gpio_test.c Executable file → Normal file
View File

0
applications/gpio/views/gpio_test.h Executable file → Normal file
View File

0
applications/gpio/views/gpio_usb_uart.h Executable file → Normal file
View File

0
applications/gui/canvas.h Executable file → Normal file
View File

0
applications/gui/modules/dialog_ex.c Executable file → Normal file
View File

0
applications/gui/modules/menu.h Executable file → Normal file
View File

0
applications/gui/modules/text_box.c Executable file → Normal file
View File

0
applications/gui/modules/text_box.h Executable file → Normal file
View File

0
applications/gui/modules/variable_item_list.h Executable file → Normal file
View File

0
applications/gui/modules/widget.h Executable file → Normal file
View File

View File

View File

View File

0
applications/gui/scene_manager.c Executable file → Normal file
View File

0
applications/gui/scene_manager.h Executable file → Normal file
View File

0
applications/gui/scene_manager_i.h Executable file → Normal file
View File

0
applications/gui/view_dispatcher.h Executable file → Normal file
View File

0
applications/nfc/helpers/nfc_emv_parser.c Executable file → Normal file
View File

0
applications/nfc/helpers/nfc_emv_parser.h Executable file → Normal file
View File

0
applications/nfc/nfc_cli.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_config.h Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_delete.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_delete_success.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_emulate_uid.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_file_select.c Executable file → Normal file
View File

View File

0
applications/nfc/scenes/nfc_scene_read_card_success.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_set_atqa.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_set_sak.c Executable file → Normal file
View File

0
applications/nfc/scenes/nfc_scene_set_uid.c Executable file → Normal file
View File

0
applications/picopass/picopass_worker.h Executable file → Normal file
View File

0
applications/picopass/scenes/picopass_scene.c Executable file → Normal file
View File

0
applications/picopass/scenes/picopass_scene_config.h Executable file → Normal file
View File

View File

0
applications/power/battery_test_app/battery_test_app.c Executable file → Normal file
View File

0
applications/power/power_service/power_i.h Executable file → Normal file
View File

0
applications/system/system_settings.h Executable file → Normal file
View File

View File

@ -6,7 +6,6 @@ It is invoked by `./fbt` in the firmware project root directory. Internally, it
## Requirements
Please install Python packages required by assets build scripts: `pip3 install -r scripts/requirements.txt`
Make sure that `gcc-arm-none-eabi` toolchain & OpenOCD executables are in system's PATH.
## NB

0
lib/ST25RFAL002/source/rfal_nfc.c Executable file → Normal file
View File

View File

@ -356,7 +356,7 @@ bool flipper_format_stream_read_value_line(
uint8_t* data = _data;
if(string_size(value) >= 2) {
// sscanf "%02X" does not work here
if(hex_chars_to_uint8(
if(hex_char_to_uint8(
string_get_char(value, 0),
string_get_char(value, 1),
&data[i])) {

View File

@ -27,16 +27,16 @@
#define LFRFID_WORKER_READ_DROP_TIME_MS 50
#define LFRFID_WORKER_READ_STABILIZE_TIME_MS 450
#define LFRFID_WORKER_READ_SWITCH_TIME_MS 1500
#define LFRFID_WORKER_READ_SWITCH_TIME_MS 2000
#define LFRFID_WORKER_WRITE_VERIFY_TIME_MS 1500
#define LFRFID_WORKER_WRITE_VERIFY_TIME_MS 2000
#define LFRFID_WORKER_WRITE_DROP_TIME_MS 50
#define LFRFID_WORKER_WRITE_TOO_LONG_TIME_MS 10000
#define LFRFID_WORKER_WRITE_MAX_UNSUCCESSFUL_READS 5
#define LFRFID_WORKER_READ_BUFFER_SIZE 512
#define LFRFID_WORKER_READ_BUFFER_COUNT 8
#define LFRFID_WORKER_READ_BUFFER_COUNT 16
#define LFRFID_WORKER_EMULATE_BUFFER_SIZE 1024
@ -132,6 +132,8 @@ static LFRFIDWorkerReadState lfrfid_worker_read_internal(
#ifdef LFRFID_WORKER_READ_DEBUG_GPIO
furi_hal_gpio_init_simple(LFRFID_WORKER_READ_DEBUG_GPIO_VALUE, GpioModeOutputPushPull);
furi_hal_gpio_init_simple(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, GpioModeOutputPushPull);
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_VALUE, false);
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, false);
#endif
LFRFIDWorkerReadContext ctx;
@ -171,10 +173,16 @@ static LFRFIDWorkerReadState lfrfid_worker_read_internal(
if(buffer_stream_get_overrun_count(ctx.stream) > 0) {
FURI_LOG_E(TAG, "Read overrun, recovering");
buffer_stream_reset(ctx.stream);
#ifdef LFRFID_WORKER_READ_DEBUG_GPIO
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, false);
#endif
continue;
}
if(buffer == NULL) {
#ifdef LFRFID_WORKER_READ_DEBUG_GPIO
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, false);
#endif
continue;
}
@ -261,24 +269,26 @@ static LFRFIDWorkerReadState lfrfid_worker_read_internal(
last_read_count = 0;
}
string_t string_info;
string_init(string_info);
for(uint8_t i = 0; i < protocol_data_size; i++) {
if(i != 0) {
string_cat_printf(string_info, " ");
if(furi_log_get_level() >= FuriLogLevelDebug) {
string_t string_info;
string_init(string_info);
for(uint8_t i = 0; i < protocol_data_size; i++) {
if(i != 0) {
string_cat_printf(string_info, " ");
}
string_cat_printf(string_info, "%02X", protocol_data[i]);
}
string_cat_printf(string_info, "%02X", protocol_data[i]);
FURI_LOG_D(
TAG,
"%s, %d, [%s]",
protocol_dict_get_name(worker->protocols, protocol),
last_read_count,
string_get_cstr(string_info));
string_clear(string_info);
}
FURI_LOG_D(
TAG,
"%s, %d, [%s]",
protocol_dict_get_name(worker->protocols, protocol),
last_read_count,
string_get_cstr(string_info));
string_clear(string_info);
protocol_dict_decoders_start(worker->protocols);
}
}
@ -321,6 +331,8 @@ static LFRFIDWorkerReadState lfrfid_worker_read_internal(
free(last_data);
#ifdef LFRFID_WORKER_READ_DEBUG_GPIO
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_VALUE, false);
furi_hal_gpio_write(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, false);
furi_hal_gpio_init_simple(LFRFID_WORKER_READ_DEBUG_GPIO_VALUE, GpioModeAnalog);
furi_hal_gpio_init_simple(LFRFID_WORKER_READ_DEBUG_GPIO_LOAD, GpioModeAnalog);
#endif

View File

@ -8,6 +8,11 @@
#include "protocol_fdx_b.h"
#include "protocol_hid_generic.h"
#include "protocol_hid_ex_generic.h"
#include "protocol_pyramid.h"
#include "protocol_viking.h"
#include "protocol_jablotron.h"
#include "protocol_paradox.h"
#include "protocol_pac_stanley.h"
const ProtocolBase* lfrfid_protocols[] = {
[LFRFIDProtocolEM4100] = &protocol_em4100,
@ -19,4 +24,9 @@ const ProtocolBase* lfrfid_protocols[] = {
[LFRFIDProtocolFDXB] = &protocol_fdx_b,
[LFRFIDProtocolHidGeneric] = &protocol_hid_generic,
[LFRFIDProtocolHidExGeneric] = &protocol_hid_ex_generic,
[LFRFIDProtocolPyramid] = &protocol_pyramid,
[LFRFIDProtocolViking] = &protocol_viking,
[LFRFIDProtocolJablotron] = &protocol_jablotron,
[LFRFIDProtocolParadox] = &protocol_paradox,
[LFRFIDProtocolPACStanley] = &protocol_pac_stanley,
};

View File

@ -17,7 +17,11 @@ typedef enum {
LFRFIDProtocolFDXB,
LFRFIDProtocolHidGeneric,
LFRFIDProtocolHidExGeneric,
LFRFIDProtocolPyramid,
LFRFIDProtocolViking,
LFRFIDProtocolJablotron,
LFRFIDProtocolParadox,
LFRFIDProtocolPACStanley,
LFRFIDProtocolMax,
} LFRFIDProtocol;

View File

@ -53,7 +53,7 @@ void protocol_awid_decoder_start(ProtocolAwid* protocol) {
memset(protocol->encoded_data, 0, AWID_ENCODED_DATA_SIZE);
};
static bool protocol_awid_can_be_decoded(const uint8_t* data) {
static bool protocol_awid_can_be_decoded(uint8_t* data) {
bool result = false;
// Index map
@ -77,6 +77,12 @@ static bool protocol_awid_can_be_decoded(const uint8_t* data) {
bool parity_error = bit_lib_test_parity(data, 8, 88, BitLibParityOdd, 4);
if(parity_error) break;
bit_lib_remove_bit_every_nth(data, 8, 88, 4);
// Avoid detection for invalid formats
uint8_t len = bit_lib_get_bits(data, 8, 8);
if(len != 26 && len != 50 && len != 37 && len != 34) break;
result = true;
} while(false);
@ -84,7 +90,6 @@ static bool protocol_awid_can_be_decoded(const uint8_t* data) {
}
static void protocol_awid_decode(uint8_t* encoded_data, uint8_t* decoded_data) {
bit_lib_remove_bit_every_nth(encoded_data, 8, 88, 4);
bit_lib_copy_bits(decoded_data, 0, 66, encoded_data, 8);
}

View File

@ -264,7 +264,7 @@ bool protocol_em4100_write_data(ProtocolEM4100* protocol, void* data) {
void protocol_em4100_render_data(ProtocolEM4100* protocol, string_t result) {
uint8_t* data = protocol->data;
string_printf(result, "ID: %03u,%05u", data[2], (uint16_t)((data[3] << 8) | (data[4])));
string_printf(result, "FC: %03u, Card: %05u", data[2], (uint16_t)((data[3] << 8) | (data[4])));
};
const ProtocolBase protocol_em4100 = {

View File

@ -0,0 +1,207 @@
#include <furi.h>
#include "toolbox/level_duration.h"
#include "protocol_jablotron.h"
#include <toolbox/manchester_decoder.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define JABLOTRON_ENCODED_BIT_SIZE (64)
#define JABLOTRON_ENCODED_BYTE_SIZE (((JABLOTRON_ENCODED_BIT_SIZE) / 8))
#define JABLOTRON_PREAMBLE_BIT_SIZE (16)
#define JABLOTRON_PREAMBLE_BYTE_SIZE (2)
#define JABLOTRON_ENCODED_BYTE_FULL_SIZE \
(JABLOTRON_ENCODED_BYTE_SIZE + JABLOTRON_PREAMBLE_BYTE_SIZE)
#define JABLOTRON_DECODED_DATA_SIZE (5)
#define JABLOTRON_SHORT_TIME (256)
#define JABLOTRON_LONG_TIME (512)
#define JABLOTRON_JITTER_TIME (120)
#define JABLOTRON_SHORT_TIME_LOW (JABLOTRON_SHORT_TIME - JABLOTRON_JITTER_TIME)
#define JABLOTRON_SHORT_TIME_HIGH (JABLOTRON_SHORT_TIME + JABLOTRON_JITTER_TIME)
#define JABLOTRON_LONG_TIME_LOW (JABLOTRON_LONG_TIME - JABLOTRON_JITTER_TIME)
#define JABLOTRON_LONG_TIME_HIGH (JABLOTRON_LONG_TIME + JABLOTRON_JITTER_TIME)
typedef struct {
bool last_short;
bool last_level;
size_t encoded_index;
uint8_t encoded_data[JABLOTRON_ENCODED_BYTE_FULL_SIZE];
uint8_t data[JABLOTRON_DECODED_DATA_SIZE];
} ProtocolJablotron;
ProtocolJablotron* protocol_jablotron_alloc(void) {
ProtocolJablotron* protocol = malloc(sizeof(ProtocolJablotron));
return protocol;
};
void protocol_jablotron_free(ProtocolJablotron* protocol) {
free(protocol);
};
uint8_t* protocol_jablotron_get_data(ProtocolJablotron* proto) {
return proto->data;
};
void protocol_jablotron_decoder_start(ProtocolJablotron* protocol) {
memset(protocol->encoded_data, 0, JABLOTRON_ENCODED_BYTE_FULL_SIZE);
protocol->last_short = false;
};
uint8_t protocol_jablotron_checksum(uint8_t* bits) {
uint8_t chksum = 0;
for(uint8_t i = 16; i < 56; i += 8) {
chksum += bit_lib_get_bits(bits, i, 8);
}
chksum ^= 0x3A;
return chksum;
}
uint64_t protocol_jablotron_card_id(uint8_t* bytes) {
uint64_t id = 0;
for(int i = 0; i < 5; i++) {
id *= 100;
id += ((bytes[i] & 0xF0) >> 4) * 10 + (bytes[i] & 0x0F);
}
return id;
}
static bool protocol_jablotron_can_be_decoded(ProtocolJablotron* protocol) {
// check 11 bits preamble
if(bit_lib_get_bits_16(protocol->encoded_data, 0, 16) != 0b1111111111111111) return false;
// check next 11 bits preamble
if(bit_lib_get_bits_16(protocol->encoded_data, 64, 16) != 0b1111111111111111) return false;
uint8_t checksum = bit_lib_get_bits(protocol->encoded_data, 56, 8);
if(checksum != protocol_jablotron_checksum(protocol->encoded_data)) return false;
return true;
}
void protocol_jablotron_decode(ProtocolJablotron* protocol) {
bit_lib_copy_bits(protocol->data, 0, 40, protocol->encoded_data, 16);
}
bool protocol_jablotron_decoder_feed(ProtocolJablotron* protocol, bool level, uint32_t duration) {
UNUSED(level);
bool pushed = false;
// Bi-Phase Manchester decoding
if(duration >= JABLOTRON_SHORT_TIME_LOW && duration <= JABLOTRON_SHORT_TIME_HIGH) {
if(protocol->last_short == false) {
protocol->last_short = true;
} else {
pushed = true;
bit_lib_push_bit(protocol->encoded_data, JABLOTRON_ENCODED_BYTE_FULL_SIZE, false);
protocol->last_short = false;
}
} else if(duration >= JABLOTRON_LONG_TIME_LOW && duration <= JABLOTRON_LONG_TIME_HIGH) {
if(protocol->last_short == false) {
pushed = true;
bit_lib_push_bit(protocol->encoded_data, JABLOTRON_ENCODED_BYTE_FULL_SIZE, true);
} else {
// reset
protocol->last_short = false;
}
} else {
// reset
protocol->last_short = false;
}
if(pushed && protocol_jablotron_can_be_decoded(protocol)) {
protocol_jablotron_decode(protocol);
return true;
}
return false;
};
bool protocol_jablotron_encoder_start(ProtocolJablotron* protocol) {
// preamble
bit_lib_set_bits(protocol->encoded_data, 0, 0b11111111, 8);
bit_lib_set_bits(protocol->encoded_data, 8, 0b11111111, 8);
// Full code
bit_lib_copy_bits(protocol->encoded_data, 16, 40, protocol->data, 0);
// Checksum
bit_lib_set_bits(
protocol->encoded_data, 56, protocol_jablotron_checksum(protocol->encoded_data), 8);
protocol->encoded_index = 0;
protocol->last_short = false;
protocol->last_level = false;
return true;
};
LevelDuration protocol_jablotron_encoder_yield(ProtocolJablotron* protocol) {
uint32_t duration;
protocol->last_level = !protocol->last_level;
bool bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoded_index);
// Bi-Phase Manchester encoder
if(bit) {
// one long pulse for 1
duration = JABLOTRON_LONG_TIME / 8;
bit_lib_increment_index(protocol->encoded_index, JABLOTRON_ENCODED_BIT_SIZE);
} else {
// two short pulses for 0
duration = JABLOTRON_SHORT_TIME / 8;
if(protocol->last_short) {
bit_lib_increment_index(protocol->encoded_index, JABLOTRON_ENCODED_BIT_SIZE);
protocol->last_short = false;
} else {
protocol->last_short = true;
}
}
return level_duration_make(protocol->last_level, duration);
};
void protocol_jablotron_render_data(ProtocolJablotron* protocol, string_t result) {
uint64_t id = protocol_jablotron_card_id(protocol->data);
string_printf(result, "ID: %llX\r\n", id);
};
bool protocol_jablotron_write_data(ProtocolJablotron* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_jablotron_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_DIPHASE | LFRFID_T5577_BITRATE_RF_64 |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
const ProtocolBase protocol_jablotron = {
.name = "Jablotron",
.manufacturer = "Jablotron",
.data_size = JABLOTRON_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_jablotron_alloc,
.free = (ProtocolFree)protocol_jablotron_free,
.get_data = (ProtocolGetData)protocol_jablotron_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_jablotron_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_jablotron_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_jablotron_encoder_start,
.yield = (ProtocolEncoderYield)protocol_jablotron_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_jablotron_render_data,
.render_brief_data = (ProtocolRenderData)protocol_jablotron_render_data,
.write_data = (ProtocolWriteData)protocol_jablotron_write_data,
};

View File

@ -0,0 +1,4 @@
#pragma once
#include <toolbox/protocols/protocol.h>
extern const ProtocolBase protocol_jablotron;

View File

@ -0,0 +1,227 @@
#include <furi.h>
#include <math.h>
#include <toolbox/protocols/protocol.h>
#include <toolbox/hex.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define PAC_STANLEY_ENCODED_BIT_SIZE (128)
#define PAC_STANLEY_ENCODED_BYTE_SIZE (((PAC_STANLEY_ENCODED_BIT_SIZE) / 8))
#define PAC_STANLEY_PREAMBLE_BIT_SIZE (8)
#define PAC_STANLEY_PREAMBLE_BYTE_SIZE (1)
#define PAC_STANLEY_ENCODED_BYTE_FULL_SIZE \
(PAC_STANLEY_ENCODED_BYTE_SIZE + PAC_STANLEY_PREAMBLE_BYTE_SIZE)
#define PAC_STANLEY_BYTE_LENGTH (10) // start bit, 7 data bits, parity bit, stop bit
#define PAC_STANLEY_DATA_START_INDEX 8 + (3 * PAC_STANLEY_BYTE_LENGTH) + 1
#define PAC_STANLEY_DECODED_DATA_SIZE (4)
#define PAC_STANLEY_ENCODED_DATA_SIZE (sizeof(ProtocolPACStanley))
#define PAC_STANLEY_CLOCKS_IN_US (32)
#define PAC_STANLEY_CYCLE_LENGTH (256)
#define PAC_STANLEY_MIN_TIME (60)
#define PAC_STANLEY_MAX_TIME (4000)
typedef struct {
bool inverted;
bool got_preamble;
size_t encoded_index;
uint8_t encoded_data[PAC_STANLEY_ENCODED_BYTE_FULL_SIZE];
uint8_t data[PAC_STANLEY_DECODED_DATA_SIZE];
} ProtocolPACStanley;
ProtocolPACStanley* protocol_pac_stanley_alloc(void) {
ProtocolPACStanley* protocol = malloc(sizeof(ProtocolPACStanley));
return (void*)protocol;
}
void protocol_pac_stanley_free(ProtocolPACStanley* protocol) {
free(protocol);
}
uint8_t* protocol_pac_stanley_get_data(ProtocolPACStanley* protocol) {
return protocol->data;
}
static void protocol_pac_stanley_decode(ProtocolPACStanley* protocol) {
uint8_t asciiCardId[8];
for(size_t idx = 0; idx < 8; idx++) {
uint8_t byte = bit_lib_reverse_8_fast(bit_lib_get_bits(
protocol->encoded_data,
PAC_STANLEY_DATA_START_INDEX + (PAC_STANLEY_BYTE_LENGTH * idx),
8));
asciiCardId[idx] = byte & 0x7F; // discard the parity bit
}
hex_chars_to_uint8((char*)asciiCardId, protocol->data);
}
static bool protocol_pac_stanley_can_be_decoded(ProtocolPACStanley* protocol) {
// Check preamble
if(bit_lib_get_bits(protocol->encoded_data, 0, 8) != 0b11111111) return false;
if(bit_lib_get_bit(protocol->encoded_data, 8) != 0) return false;
if(bit_lib_get_bit(protocol->encoded_data, 9) != 0) return false;
if(bit_lib_get_bit(protocol->encoded_data, 10) != 1) return false;
if(bit_lib_get_bits(protocol->encoded_data, 11, 8) != 0b00000010) return false;
// Check next preamble
if(bit_lib_get_bits(protocol->encoded_data, 128, 8) != 0b11111111) return false;
// Checksum
uint8_t checksum = 0;
uint8_t stripped_byte;
for(size_t idx = 0; idx < 9; idx++) {
uint8_t byte = bit_lib_reverse_8_fast(bit_lib_get_bits(
protocol->encoded_data,
PAC_STANLEY_DATA_START_INDEX + (PAC_STANLEY_BYTE_LENGTH * idx),
8));
stripped_byte = byte & 0x7F; // discard the parity bit
if(bit_lib_test_parity_32(stripped_byte, BitLibParityOdd) != (byte & 0x80) >> 7) {
return false;
}
if(idx < 8) checksum ^= stripped_byte;
}
if(stripped_byte != checksum) return false;
return true;
}
void protocol_pac_stanley_decoder_start(ProtocolPACStanley* protocol) {
memset(protocol->data, 0, PAC_STANLEY_DECODED_DATA_SIZE);
protocol->inverted = false;
protocol->got_preamble = false;
}
bool protocol_pac_stanley_decoder_feed(ProtocolPACStanley* protocol, bool level, uint32_t duration) {
bool pushed = false;
if(duration > PAC_STANLEY_MAX_TIME) return false;
uint8_t pulses = (uint8_t)round((float)duration / PAC_STANLEY_CYCLE_LENGTH);
// Handle last stopbit & preamble (1 sb, 8 bit preamble)
if(pulses >= 9 && !protocol->got_preamble) {
pulses = 8;
protocol->got_preamble = true;
protocol->inverted = !level;
} else if(pulses >= 9 && protocol->got_preamble) {
protocol->got_preamble = false;
} else if(pulses == 0 && duration > PAC_STANLEY_MIN_TIME) {
pulses = 1;
}
if(pulses) {
for(uint8_t i = 0; i < pulses; i++) {
bit_lib_push_bit(
protocol->encoded_data,
PAC_STANLEY_ENCODED_BYTE_FULL_SIZE,
level ^ protocol->inverted);
}
pushed = true;
}
if(pushed && protocol_pac_stanley_can_be_decoded(protocol)) {
protocol_pac_stanley_decode(protocol);
return true;
}
return false;
}
bool protocol_pac_stanley_encoder_start(ProtocolPACStanley* protocol) {
memset(protocol->encoded_data, 0, PAC_STANLEY_ENCODED_BYTE_SIZE);
uint8_t idbytes[10];
idbytes[0] = '2';
idbytes[1] = '0';
uint8_to_hex_chars(protocol->data, &idbytes[2], 8);
// insert start and stop bits
for(size_t i = 0; i < 16; i++) protocol->encoded_data[i] = 0x40 >> (i + 3) % 5 * 2;
protocol->encoded_data[0] = 0xFF; // mark + stop
protocol->encoded_data[1] = 0x20; // start + reflect8(STX)
uint8_t checksum = 0;
for(size_t i = 2; i < 13; i++) {
uint8_t shift = 7 - (i + 3) % 4 * 2;
uint8_t index = i + (i - 1) / 4;
uint16_t pattern;
if(i < 12) {
pattern = bit_lib_reverse_8_fast(idbytes[i - 2]);
pattern |= bit_lib_test_parity_32(pattern, BitLibParityOdd);
if(i > 3) checksum ^= idbytes[i - 2];
} else {
pattern = (bit_lib_reverse_8_fast(checksum) & 0xFE) |
(bit_lib_test_parity_32(checksum, BitLibParityOdd));
}
pattern <<= shift;
protocol->encoded_data[index] |= pattern >> 8 & 0xFF;
protocol->encoded_data[index + 1] |= pattern & 0xFF;
}
protocol->encoded_index = 0;
return true;
}
LevelDuration protocol_pac_stanley_encoder_yield(ProtocolPACStanley* protocol) {
uint16_t length = PAC_STANLEY_CLOCKS_IN_US;
bool bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoded_index);
bit_lib_increment_index(protocol->encoded_index, PAC_STANLEY_ENCODED_BIT_SIZE);
while(bit_lib_get_bit(protocol->encoded_data, protocol->encoded_index) == bit) {
length += PAC_STANLEY_CLOCKS_IN_US;
bit_lib_increment_index(protocol->encoded_index, PAC_STANLEY_ENCODED_BIT_SIZE);
}
return level_duration_make(bit, length);
}
bool protocol_pac_stanley_write_data(ProtocolPACStanley* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_pac_stanley_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_DIRECT | LFRFID_T5577_BITRATE_RF_32 |
(4 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.block[4] = bit_lib_get_bits_32(protocol->encoded_data, 96, 32);
request->t5577.blocks_to_write = 5;
result = true;
}
return result;
}
void protocol_pac_stanley_render_data(ProtocolPACStanley* protocol, string_t result) {
uint8_t* data = protocol->data;
string_printf(result, "CIN: %02X%02X%02X%02X", data[0], data[1], data[2], data[3]);
}
const ProtocolBase protocol_pac_stanley = {
.name = "PAC/Stanley",
.manufacturer = "N/A",
.data_size = PAC_STANLEY_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_pac_stanley_alloc,
.free = (ProtocolFree)protocol_pac_stanley_free,
.get_data = (ProtocolGetData)protocol_pac_stanley_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_pac_stanley_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_pac_stanley_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_pac_stanley_encoder_start,
.yield = (ProtocolEncoderYield)protocol_pac_stanley_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_pac_stanley_render_data,
.render_brief_data = (ProtocolRenderData)protocol_pac_stanley_render_data,
.write_data = (ProtocolWriteData)protocol_pac_stanley_write_data,
};

View File

@ -0,0 +1,4 @@
#pragma once
#include <toolbox/protocols/protocol.h>
extern const ProtocolBase protocol_pac_stanley;

View File

@ -0,0 +1,201 @@
#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/fsk_demod.h>
#include <lfrfid/tools/fsk_osc.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define JITTER_TIME (20)
#define MIN_TIME (64 - JITTER_TIME)
#define MAX_TIME (80 + JITTER_TIME)
#define PARADOX_DECODED_DATA_SIZE (6)
#define PARADOX_PREAMBLE_LENGTH (8)
#define PARADOX_ENCODED_BIT_SIZE (96)
#define PARADOX_ENCODED_DATA_SIZE (((PARADOX_ENCODED_BIT_SIZE) / 8) + 1)
#define PARADOX_ENCODED_DATA_LAST (PARADOX_ENCODED_DATA_SIZE - 1)
typedef struct {
FSKDemod* fsk_demod;
} ProtocolParadoxDecoder;
typedef struct {
FSKOsc* fsk_osc;
uint8_t encoded_index;
} ProtocolParadoxEncoder;
typedef struct {
ProtocolParadoxDecoder decoder;
ProtocolParadoxEncoder encoder;
uint8_t encoded_data[PARADOX_ENCODED_DATA_SIZE];
uint8_t data[PARADOX_DECODED_DATA_SIZE];
} ProtocolParadox;
ProtocolParadox* protocol_paradox_alloc(void) {
ProtocolParadox* protocol = malloc(sizeof(ProtocolParadox));
protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5);
protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50);
return protocol;
};
void protocol_paradox_free(ProtocolParadox* protocol) {
fsk_demod_free(protocol->decoder.fsk_demod);
fsk_osc_free(protocol->encoder.fsk_osc);
free(protocol);
};
uint8_t* protocol_paradox_get_data(ProtocolParadox* protocol) {
return protocol->data;
};
void protocol_paradox_decoder_start(ProtocolParadox* protocol) {
memset(protocol->encoded_data, 0, PARADOX_ENCODED_DATA_SIZE);
};
static bool protocol_paradox_can_be_decoded(ProtocolParadox* protocol) {
// check preamble
if(protocol->encoded_data[0] != 0b00001111 ||
protocol->encoded_data[PARADOX_ENCODED_DATA_LAST] != 0b00001111)
return false;
for(uint32_t i = PARADOX_PREAMBLE_LENGTH; i < 96; i += 2) {
if(bit_lib_get_bit(protocol->encoded_data, i) ==
bit_lib_get_bit(protocol->encoded_data, i + 1)) {
return false;
}
}
return true;
}
static void protocol_paradox_decode(uint8_t* encoded_data, uint8_t* decoded_data) {
for(uint32_t i = PARADOX_PREAMBLE_LENGTH; i < 96; i += 2) {
if(bit_lib_get_bits(encoded_data, i, 2) == 0b01) {
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0);
} else if(bit_lib_get_bits(encoded_data, i, 2) == 0b10) {
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 1);
}
}
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0);
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0);
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0);
bit_lib_push_bit(decoded_data, PARADOX_DECODED_DATA_SIZE, 0);
}
bool protocol_paradox_decoder_feed(ProtocolParadox* protocol, bool level, uint32_t duration) {
bool value;
uint32_t count;
fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count);
if(count > 0) {
for(size_t i = 0; i < count; i++) {
bit_lib_push_bit(protocol->encoded_data, PARADOX_ENCODED_DATA_SIZE, value);
if(protocol_paradox_can_be_decoded(protocol)) {
protocol_paradox_decode(protocol->encoded_data, protocol->data);
return true;
}
}
}
return false;
};
static void protocol_paradox_encode(const uint8_t* decoded_data, uint8_t* encoded_data) {
// preamble
bit_lib_set_bits(encoded_data, 0, 0b00001111, 8);
for(size_t i = 0; i < 44; i++) {
if(bit_lib_get_bit(decoded_data, i)) {
bit_lib_set_bits(encoded_data, PARADOX_PREAMBLE_LENGTH + i * 2, 0b10, 2);
} else {
bit_lib_set_bits(encoded_data, PARADOX_PREAMBLE_LENGTH + i * 2, 0b01, 2);
}
}
};
bool protocol_paradox_encoder_start(ProtocolParadox* protocol) {
protocol_paradox_encode(protocol->data, (uint8_t*)protocol->encoded_data);
protocol->encoder.encoded_index = 0;
fsk_osc_reset(protocol->encoder.fsk_osc);
return true;
};
LevelDuration protocol_paradox_encoder_yield(ProtocolParadox* protocol) {
bool level;
uint32_t duration;
bool bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index);
bool advance = fsk_osc_next_half(protocol->encoder.fsk_osc, bit, &level, &duration);
if(advance) {
bit_lib_increment_index(protocol->encoder.encoded_index, PARADOX_ENCODED_BIT_SIZE);
}
return level_duration_make(level, duration);
};
void protocol_paradox_render_data(ProtocolParadox* protocol, string_t result) {
uint8_t* decoded_data = protocol->data;
uint8_t fc = bit_lib_get_bits(decoded_data, 10, 8);
uint16_t card_id = bit_lib_get_bits_16(decoded_data, 18, 16);
string_cat_printf(result, "Facility: %u\r\n", fc);
string_cat_printf(result, "Card: %lu\r\n", card_id);
string_cat_printf(result, "Data: ");
for(size_t i = 0; i < PARADOX_DECODED_DATA_SIZE; i++) {
string_cat_printf(result, "%02X", decoded_data[i]);
}
};
void protocol_paradox_render_brief_data(ProtocolParadox* protocol, string_t result) {
uint8_t* decoded_data = protocol->data;
uint8_t fc = bit_lib_get_bits(decoded_data, 10, 8);
uint16_t card_id = bit_lib_get_bits_16(decoded_data, 18, 16);
string_cat_printf(result, "FC: %03u, Card: %05u", fc, card_id);
};
bool protocol_paradox_write_data(ProtocolParadox* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_paradox_encode(protocol->data, (uint8_t*)protocol->encoded_data);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 |
(3 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.blocks_to_write = 4;
result = true;
}
return result;
};
const ProtocolBase protocol_paradox = {
.name = "Paradox",
.manufacturer = "Paradox",
.data_size = PARADOX_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_paradox_alloc,
.free = (ProtocolFree)protocol_paradox_free,
.get_data = (ProtocolGetData)protocol_paradox_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_paradox_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_paradox_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_paradox_encoder_start,
.yield = (ProtocolEncoderYield)protocol_paradox_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_paradox_render_data,
.render_brief_data = (ProtocolRenderData)protocol_paradox_render_brief_data,
.write_data = (ProtocolWriteData)protocol_paradox_write_data,
};

View File

@ -0,0 +1,4 @@
#pragma once
#include <toolbox/protocols/protocol.h>
extern const ProtocolBase protocol_paradox;

View File

@ -0,0 +1,277 @@
#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <lfrfid/tools/fsk_demod.h>
#include <lfrfid/tools/fsk_osc.h>
#include "lfrfid_protocols.h"
#include <lfrfid/tools/bit_lib.h>
#define JITTER_TIME (20)
#define MIN_TIME (64 - JITTER_TIME)
#define MAX_TIME (80 + JITTER_TIME)
#define PYRAMID_DATA_SIZE 13
#define PYRAMID_PREAMBLE_SIZE 3
#define PYRAMID_ENCODED_DATA_SIZE \
(PYRAMID_PREAMBLE_SIZE + PYRAMID_DATA_SIZE + PYRAMID_PREAMBLE_SIZE)
#define PYRAMID_ENCODED_BIT_SIZE ((PYRAMID_PREAMBLE_SIZE + PYRAMID_DATA_SIZE) * 8)
#define PYRAMID_DECODED_DATA_SIZE (4)
#define PYRAMID_DECODED_BIT_SIZE ((PYRAMID_ENCODED_BIT_SIZE - PYRAMID_PREAMBLE_SIZE * 8) / 2)
typedef struct {
FSKDemod* fsk_demod;
} ProtocolPyramidDecoder;
typedef struct {
FSKOsc* fsk_osc;
uint8_t encoded_index;
uint32_t pulse;
} ProtocolPyramidEncoder;
typedef struct {
ProtocolPyramidDecoder decoder;
ProtocolPyramidEncoder encoder;
uint8_t encoded_data[PYRAMID_ENCODED_DATA_SIZE];
uint8_t data[PYRAMID_DECODED_DATA_SIZE];
} ProtocolPyramid;
ProtocolPyramid* protocol_pyramid_alloc(void) {
ProtocolPyramid* protocol = malloc(sizeof(ProtocolPyramid));
protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5);
protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50);
return protocol;
};
void protocol_pyramid_free(ProtocolPyramid* protocol) {
fsk_demod_free(protocol->decoder.fsk_demod);
fsk_osc_free(protocol->encoder.fsk_osc);
free(protocol);
};
uint8_t* protocol_pyramid_get_data(ProtocolPyramid* protocol) {
return protocol->data;
};
void protocol_pyramid_decoder_start(ProtocolPyramid* protocol) {
memset(protocol->encoded_data, 0, PYRAMID_ENCODED_DATA_SIZE);
};
static bool protocol_pyramid_can_be_decoded(uint8_t* data) {
// check preamble
if(bit_lib_get_bits_16(data, 0, 16) != 0b0000000000000001 ||
bit_lib_get_bits(data, 16, 8) != 0b00000001) {
return false;
}
if(bit_lib_get_bits_16(data, 128, 16) != 0b0000000000000001 ||
bit_lib_get_bits(data, 136, 8) != 0b00000001) {
return false;
}
uint8_t checksum = bit_lib_get_bits(data, 120, 8);
uint8_t checksum_data[13] = {0x00};
for(uint8_t i = 0; i < 13; i++) {
checksum_data[i] = bit_lib_get_bits(data, 16 + (i * 8), 8);
}
uint8_t calc_checksum = bit_lib_crc8(checksum_data, 13, 0x31, 0x00, true, true, 0x00);
if(checksum != calc_checksum) return false;
// Remove parity
bit_lib_remove_bit_every_nth(data, 8, 15 * 8, 8);
// Determine Startbit and format
int j;
for(j = 0; j < 105; ++j) {
if(bit_lib_get_bit(data, j)) break;
}
uint8_t fmt_len = 105 - j;
// Only suppport 26bit format for now
if(fmt_len != 26) return false;
return true;
}
static void protocol_pyramid_decode(ProtocolPyramid* protocol) {
// Format
bit_lib_set_bits(protocol->data, 0, 26, 8);
// Facility Code
bit_lib_copy_bits(protocol->data, 8, 8, protocol->encoded_data, 73 + 8);
// Card Number
bit_lib_copy_bits(protocol->data, 16, 16, protocol->encoded_data, 81 + 8);
}
bool protocol_pyramid_decoder_feed(ProtocolPyramid* protocol, bool level, uint32_t duration) {
bool value;
uint32_t count;
bool result = false;
fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count);
if(count > 0) {
for(size_t i = 0; i < count; i++) {
bit_lib_push_bit(protocol->encoded_data, PYRAMID_ENCODED_DATA_SIZE, value);
if(protocol_pyramid_can_be_decoded(protocol->encoded_data)) {
protocol_pyramid_decode(protocol);
result = true;
}
}
}
return result;
};
bool protocol_pyramid_get_parity(const uint8_t* bits, uint8_t type, int length) {
int x;
for(x = 0; length > 0; --length) x += bit_lib_get_bit(bits, length - 1);
x %= 2;
return x ^ type;
}
void protocol_pyramid_add_wiegand_parity(
uint8_t* target,
uint8_t target_position,
uint8_t* source,
uint8_t length) {
bit_lib_set_bit(
target, target_position, protocol_pyramid_get_parity(source, 0 /* even */, length / 2));
bit_lib_copy_bits(target, target_position + 1, length, source, 0);
bit_lib_set_bit(
target,
target_position + length + 1,
protocol_pyramid_get_parity(source + length / 2, 1 /* odd */, length / 2));
}
static void protocol_pyramid_encode(ProtocolPyramid* protocol) {
memset(protocol->encoded_data, 0, sizeof(protocol->encoded_data));
uint8_t pre[16];
memset(pre, 0, sizeof(pre));
// Format start bit
bit_lib_set_bit(pre, 79, 1);
uint8_t wiegand[3];
memset(wiegand, 0, sizeof(wiegand));
// FC
bit_lib_copy_bits(wiegand, 0, 8, protocol->data, 8);
// CardNum
bit_lib_copy_bits(wiegand, 8, 16, protocol->data, 16);
// Wiegand parity
protocol_pyramid_add_wiegand_parity(pre, 80, wiegand, 24);
bit_lib_add_parity(pre, 8, protocol->encoded_data, 8, 102, 8, 1);
// Add checksum
uint8_t checksum_buffer[13];
for(uint8_t i = 0; i < 13; i++)
checksum_buffer[i] = bit_lib_get_bits(protocol->encoded_data, 16 + (i * 8), 8);
uint8_t crc = bit_lib_crc8(checksum_buffer, 13, 0x31, 0x00, true, true, 0x00);
bit_lib_set_bits(protocol->encoded_data, 120, crc, 8);
}
bool protocol_pyramid_encoder_start(ProtocolPyramid* protocol) {
protocol->encoder.encoded_index = 0;
protocol->encoder.pulse = 0;
protocol_pyramid_encode(protocol);
return true;
};
LevelDuration protocol_pyramid_encoder_yield(ProtocolPyramid* protocol) {
bool level = 0;
uint32_t duration = 0;
// if pulse is zero, we need to output high, otherwise we need to output low
if(protocol->encoder.pulse == 0) {
// get bit
uint8_t bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index);
// get pulse from oscillator
bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration);
if(advance) {
bit_lib_increment_index(protocol->encoder.encoded_index, PYRAMID_ENCODED_BIT_SIZE);
}
// duration diveded by 2 because we need to output high and low
duration = duration / 2;
protocol->encoder.pulse = duration;
level = true;
} else {
// output low half and reset pulse
duration = protocol->encoder.pulse;
protocol->encoder.pulse = 0;
level = false;
}
return level_duration_make(level, duration);
};
bool protocol_pyramid_write_data(ProtocolPyramid* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_pyramid_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 |
(4 << LFRFID_T5577_MAXBLOCK_SHIFT);
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32);
request->t5577.block[4] = bit_lib_get_bits_32(protocol->encoded_data, 96, 32);
request->t5577.blocks_to_write = 5;
result = true;
}
return result;
};
void protocol_pyramid_render_data(ProtocolPyramid* protocol, string_t result) {
uint8_t* decoded_data = protocol->data;
uint8_t format_length = decoded_data[0];
string_cat_printf(result, "Format: 26\r\n", format_length);
if(format_length == 26) {
uint8_t facility;
bit_lib_copy_bits(&facility, 0, 8, decoded_data, 8);
uint16_t card_id;
bit_lib_copy_bits((uint8_t*)&card_id, 8, 8, decoded_data, 16);
bit_lib_copy_bits((uint8_t*)&card_id, 0, 8, decoded_data, 24);
string_cat_printf(result, "FC: %03u, Card: %05u", facility, card_id);
} else {
string_cat_printf(result, "Data: unknown");
}
};
const ProtocolBase protocol_pyramid = {
.name = "Pyramid",
.manufacturer = "Farpointe",
.data_size = PYRAMID_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_pyramid_alloc,
.free = (ProtocolFree)protocol_pyramid_free,
.get_data = (ProtocolGetData)protocol_pyramid_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_pyramid_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_pyramid_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_pyramid_encoder_start,
.yield = (ProtocolEncoderYield)protocol_pyramid_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_pyramid_render_data,
.render_brief_data = (ProtocolRenderData)protocol_pyramid_render_data,
.write_data = (ProtocolWriteData)protocol_pyramid_write_data,
};

View File

@ -0,0 +1,4 @@
#pragma once
#include <toolbox/protocols/protocol.h>
extern const ProtocolBase protocol_pyramid;

View File

@ -0,0 +1,201 @@
#include <furi.h>
#include <toolbox/protocols/protocol.h>
#include <toolbox/manchester_decoder.h>
#include <lfrfid/tools/bit_lib.h>
#include "lfrfid_protocols.h"
#define VIKING_CLOCK_PER_BIT (32)
#define VIKING_ENCODED_BIT_SIZE (64)
#define VIKING_ENCODED_BYTE_SIZE (((VIKING_ENCODED_BIT_SIZE) / 8))
#define VIKING_PREAMBLE_BIT_SIZE (24)
#define VIKING_PREAMBLE_BYTE_SIZE (3)
#define VIKING_ENCODED_BYTE_FULL_SIZE (VIKING_ENCODED_BYTE_SIZE + VIKING_PREAMBLE_BYTE_SIZE)
#define VIKING_DECODED_DATA_SIZE 4
#define VIKING_READ_SHORT_TIME (128)
#define VIKING_READ_LONG_TIME (256)
#define VIKING_READ_JITTER_TIME (60)
#define VIKING_READ_SHORT_TIME_LOW (VIKING_READ_SHORT_TIME - VIKING_READ_JITTER_TIME)
#define VIKING_READ_SHORT_TIME_HIGH (VIKING_READ_SHORT_TIME + VIKING_READ_JITTER_TIME)
#define VIKING_READ_LONG_TIME_LOW (VIKING_READ_LONG_TIME - VIKING_READ_JITTER_TIME)
#define VIKING_READ_LONG_TIME_HIGH (VIKING_READ_LONG_TIME + VIKING_READ_JITTER_TIME)
typedef struct {
uint8_t data[VIKING_DECODED_DATA_SIZE];
uint8_t encoded_data[VIKING_ENCODED_BYTE_FULL_SIZE];
uint8_t encoded_data_index;
bool encoded_polarity;
ManchesterState decoder_manchester_state;
} ProtocolViking;
ProtocolViking* protocol_viking_alloc(void) {
ProtocolViking* proto = malloc(sizeof(ProtocolViking));
return (void*)proto;
};
void protocol_viking_free(ProtocolViking* protocol) {
free(protocol);
};
uint8_t* protocol_viking_get_data(ProtocolViking* protocol) {
return protocol->data;
};
static void protocol_viking_decode(ProtocolViking* protocol) {
// Copy Card ID
bit_lib_copy_bits(protocol->data, 0, 32, protocol->encoded_data, 24);
}
static bool protocol_viking_can_be_decoded(ProtocolViking* protocol) {
// check 24 bits preamble
if(bit_lib_get_bits_16(protocol->encoded_data, 0, 16) != 0b1111001000000000) return false;
if(bit_lib_get_bits(protocol->encoded_data, 16, 8) != 0b00000000) return false;
// check next 24 bits preamble
if(bit_lib_get_bits_16(protocol->encoded_data, 64, 16) != 0b1111001000000000) return false;
if(bit_lib_get_bits(protocol->encoded_data, 80, 8) != 0b00000000) return false;
// Checksum
uint32_t checksum = bit_lib_get_bits(protocol->encoded_data, 0, 8) ^
bit_lib_get_bits(protocol->encoded_data, 8, 8) ^
bit_lib_get_bits(protocol->encoded_data, 16, 8) ^
bit_lib_get_bits(protocol->encoded_data, 24, 8) ^
bit_lib_get_bits(protocol->encoded_data, 32, 8) ^
bit_lib_get_bits(protocol->encoded_data, 40, 8) ^
bit_lib_get_bits(protocol->encoded_data, 48, 8) ^
bit_lib_get_bits(protocol->encoded_data, 56, 8) ^ 0xA8;
if(checksum != 0) return false;
return true;
}
void protocol_viking_decoder_start(ProtocolViking* protocol) {
memset(protocol->encoded_data, 0, VIKING_ENCODED_BYTE_FULL_SIZE);
manchester_advance(
protocol->decoder_manchester_state,
ManchesterEventReset,
&protocol->decoder_manchester_state,
NULL);
};
bool protocol_viking_decoder_feed(ProtocolViking* protocol, bool level, uint32_t duration) {
bool result = false;
ManchesterEvent event = ManchesterEventReset;
if(duration > VIKING_READ_SHORT_TIME_LOW && duration < VIKING_READ_SHORT_TIME_HIGH) {
if(!level) {
event = ManchesterEventShortHigh;
} else {
event = ManchesterEventShortLow;
}
} else if(duration > VIKING_READ_LONG_TIME_LOW && duration < VIKING_READ_LONG_TIME_HIGH) {
if(!level) {
event = ManchesterEventLongHigh;
} else {
event = ManchesterEventLongLow;
}
}
if(event != ManchesterEventReset) {
bool data;
bool data_ok = manchester_advance(
protocol->decoder_manchester_state, event, &protocol->decoder_manchester_state, &data);
if(data_ok) {
bit_lib_push_bit(protocol->encoded_data, VIKING_ENCODED_BYTE_FULL_SIZE, data);
if(protocol_viking_can_be_decoded(protocol)) {
protocol_viking_decode(protocol);
result = true;
}
}
}
return result;
};
bool protocol_viking_encoder_start(ProtocolViking* protocol) {
// Preamble
bit_lib_set_bits(protocol->encoded_data, 0, 0b11110010, 8);
bit_lib_set_bits(protocol->encoded_data, 8, 0b00000000, 8);
bit_lib_set_bits(protocol->encoded_data, 16, 0b00000000, 8);
// Card Id
bit_lib_copy_bits(protocol->encoded_data, 24, 32, protocol->data, 0);
// Checksum
uint32_t id = bit_lib_get_bits_32(protocol->data, 0, 32);
uint8_t checksum = ((id >> 24) & 0xFF) ^ ((id >> 16) & 0xFF) ^ ((id >> 8) & 0xFF) ^
(id & 0xFF) ^ 0xF2 ^ 0xA8;
bit_lib_set_bits(protocol->encoded_data, 56, checksum, 8);
return true;
};
LevelDuration protocol_viking_encoder_yield(ProtocolViking* protocol) {
bool level = bit_lib_get_bit(protocol->encoded_data, protocol->encoded_data_index);
uint32_t duration = VIKING_CLOCK_PER_BIT / 2;
if(protocol->encoded_polarity) {
protocol->encoded_polarity = false;
} else {
level = !level;
protocol->encoded_polarity = true;
bit_lib_increment_index(protocol->encoded_data_index, VIKING_ENCODED_BIT_SIZE);
}
return level_duration_make(level, duration);
};
bool protocol_viking_write_data(ProtocolViking* protocol, void* data) {
LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data;
bool result = false;
protocol_viking_encoder_start(protocol);
if(request->write_type == LFRFIDWriteTypeT5577) {
request->t5577.block[0] =
(LFRFID_T5577_MODULATION_MANCHESTER | LFRFID_T5577_BITRATE_RF_32 |
(2 << LFRFID_T5577_MAXBLOCK_SHIFT));
request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32);
request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32);
request->t5577.blocks_to_write = 3;
result = true;
}
return result;
};
void protocol_viking_render_data(ProtocolViking* protocol, string_t result) {
uint32_t id = bit_lib_get_bits_32(protocol->data, 0, 32);
string_printf(result, "ID: %08lX\r\n", id);
};
const ProtocolBase protocol_viking = {
.name = "Viking",
.manufacturer = "Viking",
.data_size = VIKING_DECODED_DATA_SIZE,
.features = LFRFIDFeatureASK,
.validate_count = 3,
.alloc = (ProtocolAlloc)protocol_viking_alloc,
.free = (ProtocolFree)protocol_viking_free,
.get_data = (ProtocolGetData)protocol_viking_get_data,
.decoder =
{
.start = (ProtocolDecoderStart)protocol_viking_decoder_start,
.feed = (ProtocolDecoderFeed)protocol_viking_decoder_feed,
},
.encoder =
{
.start = (ProtocolEncoderStart)protocol_viking_encoder_start,
.yield = (ProtocolEncoderYield)protocol_viking_encoder_yield,
},
.render_data = (ProtocolRenderData)protocol_viking_render_data,
.render_brief_data = (ProtocolRenderData)protocol_viking_render_data,
.write_data = (ProtocolWriteData)protocol_viking_write_data,
};

View File

@ -0,0 +1,4 @@
#pragma once
#include <toolbox/protocols/protocol.h>
extern const ProtocolBase protocol_viking;

View File

@ -129,6 +129,45 @@ bool bit_lib_test_parity(
return result;
}
size_t bit_lib_add_parity(
const uint8_t* data,
size_t position,
uint8_t* dest,
size_t dest_position,
uint8_t source_length,
uint8_t parity_length,
BitLibParity parity) {
uint32_t parity_word = 0;
size_t j = 0, bit_count = 0;
for(int word = 0; word < source_length; word += parity_length - 1) {
for(int bit = 0; bit < parity_length - 1; bit++) {
parity_word = (parity_word << 1) | bit_lib_get_bit(data, position + word + bit);
bit_lib_set_bit(
dest, dest_position + j++, bit_lib_get_bit(data, position + word + bit));
}
// if parity fails then return 0
switch(parity) {
case BitLibParityAlways0:
bit_lib_set_bit(dest, dest_position + j++, 0);
break; // marker bit which should be a 0
case BitLibParityAlways1:
bit_lib_set_bit(dest, dest_position + j++, 1);
break; // marker bit which should be a 1
default:
bit_lib_set_bit(
dest,
dest_position + j++,
(bit_lib_test_parity_32(parity_word, BitLibParityOdd) ^ parity) ^ 1);
break;
}
bit_count += parity_length;
parity_word = 0;
}
// if we got here then all the parities passed
// return bit count
return bit_count;
}
size_t bit_lib_remove_bit_every_nth(uint8_t* data, size_t position, uint8_t length, uint8_t n) {
size_t counter = 0;
size_t result_counter = 0;
@ -262,6 +301,43 @@ uint16_t bit_lib_reverse_16_fast(uint16_t data) {
return result;
}
uint8_t bit_lib_reverse_8_fast(uint8_t byte) {
byte = (byte & 0xF0) >> 4 | (byte & 0x0F) << 4;
byte = (byte & 0xCC) >> 2 | (byte & 0x33) << 2;
byte = (byte & 0xAA) >> 1 | (byte & 0x55) << 1;
return byte;
}
uint16_t bit_lib_crc8(
uint8_t const* data,
size_t data_size,
uint8_t polynom,
uint8_t init,
bool ref_in,
bool ref_out,
uint8_t xor_out) {
uint8_t crc = init;
for(size_t i = 0; i < data_size; ++i) {
uint8_t byte = data[i];
if(ref_in) bit_lib_reverse_bits(&byte, 0, 8);
crc ^= byte;
for(size_t j = 8; j > 0; --j) {
if(crc & TOPBIT(8)) {
crc = (crc << 1) ^ polynom;
} else {
crc = (crc << 1);
}
}
}
if(ref_out) bit_lib_reverse_bits(&crc, 0, 8);
crc ^= xor_out;
return crc;
}
uint16_t bit_lib_crc16(
uint8_t const* data,
size_t data_size,

View File

@ -7,6 +7,8 @@
extern "C" {
#endif
#define TOPBIT(X) (1 << (X - 1))
typedef enum {
BitLibParityEven,
BitLibParityOdd,
@ -114,6 +116,27 @@ bool bit_lib_test_parity(
BitLibParity parity,
uint8_t parity_length);
/**
* @brief Add parity to bit array
*
* @param data Source bit array
* @param position Start position
* @param dest Destination bit array
* @param dest_position Destination position
* @param source_length Source bit count
* @param parity_length Parity block length
* @param parity Parity to test against
* @return size_t
*/
size_t bit_lib_add_parity(
const uint8_t* data,
size_t position,
uint8_t* dest,
size_t dest_position,
uint8_t source_length,
uint8_t parity_length,
BitLibParity parity);
/**
* @brief Remove bit every n in array and shift array left. Useful to remove parity.
*
@ -194,6 +217,35 @@ void bit_lib_print_regions(
*/
uint16_t bit_lib_reverse_16_fast(uint16_t data);
/**
* @brief Reverse bits in uint8_t, faster than generic bit_lib_reverse_bits.
*
* @param byte Byte
* @return uint8_t the reversed byte
*/
uint8_t bit_lib_reverse_8_fast(uint8_t byte);
/**
* @brief Slow, but generic CRC8 implementation
*
* @param data
* @param data_size
* @param polynom CRC polynom
* @param init init value
* @param ref_in true if the right bit is older
* @param ref_out true to reverse output
* @param xor_out xor output with this value
* @return uint8_t
*/
uint16_t bit_lib_crc8(
uint8_t const* data,
size_t data_size,
uint8_t polynom,
uint8_t init,
bool ref_in,
bool ref_out,
uint8_t xor_out);
/**
* @brief Slow, but generic CRC16 implementation
*

View File

@ -782,7 +782,7 @@ static void nfc_device_load_mifare_classic_block(
char hi = string_get_char(block_str, 3 * i);
char low = string_get_char(block_str, 3 * i + 1);
uint8_t byte = 0;
if(hex_chars_to_uint8(hi, low, &byte)) {
if(hex_char_to_uint8(hi, low, &byte)) {
block_tmp.value[i] = byte;
} else {
FURI_BIT_SET(block_unknown_bytes_mask, i);

0
lib/nfc/nfc_worker.h Executable file → Normal file
View File

0
lib/nfc/protocols/emv.h Executable file → Normal file
View File

0
lib/nfc/protocols/nfca.c Executable file → Normal file
View File

View File

@ -15,7 +15,7 @@ bool hex_char_to_hex_nibble(char c, uint8_t* nibble) {
}
}
bool hex_chars_to_uint8(char hi, char low, uint8_t* value) {
bool hex_char_to_uint8(char hi, char low, uint8_t* value) {
uint8_t hi_nibble_value, low_nibble_value;
if(hex_char_to_hex_nibble(hi, &hi_nibble_value) &&
@ -27,13 +27,29 @@ bool hex_chars_to_uint8(char hi, char low, uint8_t* value) {
}
}
bool hex_chars_to_uint8(const char* value_str, uint8_t* value) {
bool parse_success = false;
while(*value_str && value_str[1]) {
parse_success = hex_char_to_uint8(*value_str, value_str[1], value++);
if(!parse_success) break;
value_str += 2;
}
return parse_success;
}
bool hex_chars_to_uint64(const char* value_str, uint64_t* value) {
uint8_t* _value = (uint8_t*)value;
bool parse_success = false;
for(uint8_t i = 0; i < 8; i++) {
parse_success = hex_chars_to_uint8(value_str[i * 2], value_str[i * 2 + 1], &_value[7 - i]);
parse_success = hex_char_to_uint8(value_str[i * 2], value_str[i * 2 + 1], &_value[7 - i]);
if(!parse_success) break;
}
return parse_success;
}
void uint8_to_hex_chars(const uint8_t* src, uint8_t* target, int length) {
const char chars[] = "0123456789ABCDEF";
while(--length >= 0)
target[length] = chars[(src[length >> 1] >> ((1 - (length & 1)) << 2)) & 0xF];
}

View File

@ -14,14 +14,22 @@ extern "C" {
*/
bool hex_char_to_hex_nibble(char c, uint8_t* nibble);
/** Convert ASCII hex values to byte
/** Convert ASCII hex value to byte
* @param hi hi nibble text
* @param low low nibble text
* @param value output value
*
* @return bool conversion status
*/
bool hex_chars_to_uint8(char hi, char low, uint8_t* value);
bool hex_char_to_uint8(char hi, char low, uint8_t* value);
/** Convert ASCII hex values to uint8_t
* @param value_str ASCII data
* @param value output value
*
* @return bool conversion status
*/
bool hex_chars_to_uint8(const char* value_str, uint8_t* value);
/** Convert ASCII hex values to uint64_t
* @param value_str ASCII 64 bi data
@ -31,6 +39,14 @@ bool hex_chars_to_uint8(char hi, char low, uint8_t* value);
*/
bool hex_chars_to_uint64(const char* value_str, uint64_t* value);
/** Convert uint8_t to ASCII hex values
* @param src source data
* @param target output value
* @param length data length
*
*/
void uint8_to_hex_chars(const uint8_t* src, uint8_t* target, int length);
#ifdef __cplusplus
}
#endif

View File

@ -26,7 +26,6 @@ Also display type, region and etc...
## Core1 and Core2 firmware flashing
Main flashing sequence can be found in root `Makefile`.
Core2 goes first, then Core1.
Never flash FUS or you will loose your job, girlfriend and keys in secure enclave.

View File

@ -88,7 +88,7 @@ class Main(App):
def _fix_filename(self, filename: str):
return filename.replace("-", "_")
def _replace_occurance(self, sources: list, old: str, new: str):
def _replace_occurrence(self, sources: list, old: str, new: str):
old = old.encode()
new = new.encode()
for source in sources:
@ -102,7 +102,7 @@ class Main(App):
pattern = re.compile(SOURCE_CODE_FILE_PATTERN)
good = []
bad = []
# Check sources for invalid filesname
# Check sources for invalid filenames
for source in sources:
basename = os.path.basename(source)
if not pattern.match(basename):
@ -113,40 +113,63 @@ class Main(App):
bad.append((source, basename, new_basename))
else:
good.append(source)
# Notify about errors or replace all occurances
# Notify about errors or replace all occurrences
if dry_run:
if len(bad) > 0:
self.logger.error(f"Found {len(bad)} incorrectly named files")
self.logger.info(bad)
return False
else:
# Replace occurances in text files
# Replace occurrences in text files
for source, old, new in bad:
self._replace_occurance(sources, old, new)
self._replace_occurrence(sources, old, new)
# Rename files
for source, old, new in bad:
shutil.move(source, source.replace(old, new))
return True
def check(self):
def _apply_file_permissions(self, sources: list, dry_run: bool = False):
execute_permissions = 0o111
pattern = re.compile(SOURCE_CODE_FILE_PATTERN)
good = []
bad = []
# Check sources for unexpected execute permissions
for source in sources:
st = os.stat(source)
perms_too_many = st.st_mode & execute_permissions
if perms_too_many:
good_perms = st.st_mode & ~perms_too_many
bad.append((source, oct(perms_too_many), good_perms))
else:
good.append(source)
# Notify or fix
if dry_run:
if len(bad) > 0:
self.logger.error(f"Found {len(bad)} incorrect permissions")
self.logger.info([record[0:2] for record in bad])
return False
else:
for source, perms_too_many, new_perms in bad:
os.chmod(source, new_perms)
return True
def _perform(self, dry_run: bool):
result = 0
sources = self._find_sources(self.args.input)
if not self._format_sources(sources, dry_run=True):
result |= 0b01
if not self._apply_file_naming_convention(sources, dry_run=True):
result |= 0b10
if not self._format_sources(sources, dry_run=dry_run):
result |= 0b001
if not self._apply_file_naming_convention(sources, dry_run=dry_run):
result |= 0b010
if not self._apply_file_permissions(sources, dry_run=dry_run):
result |= 0b100
self._check_folders(self.args.input)
return result
def check(self):
return self._perform(dry_run=True)
def format(self):
result = 0
sources = self._find_sources(self.args.input)
if not self._format_sources(sources):
result |= 0b01
if not self._apply_file_naming_convention(sources):
result |= 0b10
self._check_folders(self.args.input)
return result
return self._perform(dry_run=False)
if __name__ == "__main__":