#include "thread.h" #include "kernel.h" #include "memmgr.h" #include "memmgr_heap.h" #include "check.h" #include "common_defines.h" #include "mutex.h" #include "string.h" #include "log.h" #include #include #include #include #define TAG "FuriThread" #define THREAD_NOTIFY_INDEX 1 // Index 0 is used for stream buffers typedef struct FuriThreadStdout FuriThreadStdout; struct FuriThreadStdout { FuriThreadStdoutWriteCallback write_callback; FuriString* buffer; }; struct FuriThread { FuriThreadState state; int32_t ret; FuriThreadCallback callback; void* context; FuriThreadStateCallback state_callback; void* state_context; char* name; char* appid; FuriThreadPriority priority; TaskHandle_t task_handle; size_t heap_size; FuriThreadStdout output; // Keep all non-alignable byte types in one place, // this ensures that the size of this structure is minimal bool is_service; bool heap_trace_enabled; configSTACK_DEPTH_TYPE stack_size; }; static size_t __furi_thread_stdout_write(FuriThread* thread, const char* data, size_t size); static int32_t __furi_thread_stdout_flush(FuriThread* thread); /** Catch threads that are trying to exit wrong way */ __attribute__((__noreturn__)) void furi_thread_catch() { //-V1082 // If you're here it means you're probably doing something wrong // with critical sections or with scheduler state asm volatile("nop"); // extra magic furi_crash("You are doing it wrong"); //-V779 __builtin_unreachable(); } static void furi_thread_set_state(FuriThread* thread, FuriThreadState state) { furi_assert(thread); thread->state = state; if(thread->state_callback) { thread->state_callback(state, thread->state_context); } } static void furi_thread_body(void* context) { furi_assert(context); FuriThread* thread = context; // store thread instance to thread local storage furi_assert(pvTaskGetThreadLocalStoragePointer(NULL, 0) == NULL); vTaskSetThreadLocalStoragePointer(NULL, 0, thread); furi_assert(thread->state == FuriThreadStateStarting); furi_thread_set_state(thread, FuriThreadStateRunning); TaskHandle_t task_handle = xTaskGetCurrentTaskHandle(); if(thread->heap_trace_enabled == true) { memmgr_heap_enable_thread_trace((FuriThreadId)task_handle); } thread->ret = thread->callback(thread->context); if(thread->heap_trace_enabled == true) { furi_delay_ms(33); thread->heap_size = memmgr_heap_get_thread_memory((FuriThreadId)task_handle); furi_log_print_format( thread->heap_size ? FuriLogLevelError : FuriLogLevelInfo, TAG, "%s allocation balance: %zu", thread->name ? thread->name : "Thread", thread->heap_size); memmgr_heap_disable_thread_trace((FuriThreadId)task_handle); } furi_assert(thread->state == FuriThreadStateRunning); if(thread->is_service) { FURI_LOG_W( TAG, "%s service thread TCB memory will not be reclaimed", thread->name ? thread->name : ""); } // flush stdout __furi_thread_stdout_flush(thread); furi_thread_set_state(thread, FuriThreadStateStopped); vTaskDelete(NULL); furi_thread_catch(); } FuriThread* furi_thread_alloc() { FuriThread* thread = malloc(sizeof(FuriThread)); thread->output.buffer = furi_string_alloc(); thread->is_service = false; FuriThread* parent = NULL; if(xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { // TLS is not available, if we called not from thread context parent = pvTaskGetThreadLocalStoragePointer(NULL, 0); if(parent && parent->appid) { furi_thread_set_appid(thread, parent->appid); } else { furi_thread_set_appid(thread, "unknown"); } } else { // if scheduler is not started, we are starting driver thread furi_thread_set_appid(thread, "driver"); } FuriHalRtcHeapTrackMode mode = furi_hal_rtc_get_heap_track_mode(); if(mode == FuriHalRtcHeapTrackModeAll) { thread->heap_trace_enabled = true; } else if(mode == FuriHalRtcHeapTrackModeTree && furi_thread_get_current_id()) { if(parent) thread->heap_trace_enabled = parent->heap_trace_enabled; } else { thread->heap_trace_enabled = false; } return thread; } FuriThread* furi_thread_alloc_ex( const char* name, uint32_t stack_size, FuriThreadCallback callback, void* context) { FuriThread* thread = furi_thread_alloc(); furi_thread_set_name(thread, name); furi_thread_set_stack_size(thread, stack_size); furi_thread_set_callback(thread, callback); furi_thread_set_context(thread, context); return thread; } void furi_thread_free(FuriThread* thread) { furi_assert(thread); // Ensure that use join before free furi_assert(thread->state == FuriThreadStateStopped); furi_assert(thread->task_handle == NULL); if(thread->name) free(thread->name); if(thread->appid) free(thread->appid); furi_string_free(thread->output.buffer); free(thread); } void furi_thread_set_name(FuriThread* thread, const char* name) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); if(thread->name) free(thread->name); thread->name = name ? strdup(name) : NULL; } void furi_thread_set_appid(FuriThread* thread, const char* appid) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); if(thread->appid) free(thread->appid); thread->appid = appid ? strdup(appid) : NULL; } void furi_thread_mark_as_service(FuriThread* thread) { thread->is_service = true; } void furi_thread_set_stack_size(FuriThread* thread, size_t stack_size) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); furi_assert(stack_size % 4 == 0); thread->stack_size = stack_size; } void furi_thread_set_callback(FuriThread* thread, FuriThreadCallback callback) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->callback = callback; } void furi_thread_set_context(FuriThread* thread, void* context) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->context = context; } void furi_thread_set_priority(FuriThread* thread, FuriThreadPriority priority) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); furi_assert(priority >= FuriThreadPriorityIdle && priority <= FuriThreadPriorityIsr); thread->priority = priority; } void furi_thread_set_current_priority(FuriThreadPriority priority) { UBaseType_t new_priority = priority ? priority : FuriThreadPriorityNormal; vTaskPrioritySet(NULL, new_priority); } FuriThreadPriority furi_thread_get_current_priority() { return (FuriThreadPriority)uxTaskPriorityGet(NULL); } void furi_thread_set_state_callback(FuriThread* thread, FuriThreadStateCallback callback) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->state_callback = callback; } void furi_thread_set_state_context(FuriThread* thread, void* context) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->state_context = context; } FuriThreadState furi_thread_get_state(FuriThread* thread) { furi_assert(thread); return thread->state; } void furi_thread_start(FuriThread* thread) { furi_assert(thread); furi_assert(thread->callback); furi_assert(thread->state == FuriThreadStateStopped); furi_assert(thread->stack_size > 0 && thread->stack_size < (UINT16_MAX * sizeof(StackType_t))); furi_thread_set_state(thread, FuriThreadStateStarting); uint32_t stack = thread->stack_size / sizeof(StackType_t); UBaseType_t priority = thread->priority ? thread->priority : FuriThreadPriorityNormal; if(thread->is_service) { thread->task_handle = xTaskCreateStatic( furi_thread_body, thread->name, stack, thread, priority, memmgr_alloc_from_pool(sizeof(StackType_t) * stack), memmgr_alloc_from_pool(sizeof(StaticTask_t))); } else { BaseType_t ret = xTaskCreate( furi_thread_body, thread->name, stack, thread, priority, &thread->task_handle); furi_check(ret == pdPASS); } furi_check(thread->task_handle); } void furi_thread_cleanup_tcb_event(TaskHandle_t task) { FuriThread* thread = pvTaskGetThreadLocalStoragePointer(task, 0); if(thread) { // clear thread local storage vTaskSetThreadLocalStoragePointer(task, 0, NULL); furi_assert(thread->task_handle == task); thread->task_handle = NULL; } } bool furi_thread_join(FuriThread* thread) { furi_assert(thread); furi_check(furi_thread_get_current() != thread); // !!! IMPORTANT NOTICE !!! // // If your thread exited, but your app stuck here: some other thread uses // all cpu time, which delays kernel from releasing task handle while(thread->task_handle) { furi_delay_ms(10); } return true; } FuriThreadId furi_thread_get_id(FuriThread* thread) { furi_assert(thread); return thread->task_handle; } void furi_thread_enable_heap_trace(FuriThread* thread) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->heap_trace_enabled = true; } void furi_thread_disable_heap_trace(FuriThread* thread) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); thread->heap_trace_enabled = false; } size_t furi_thread_get_heap_size(FuriThread* thread) { furi_assert(thread); furi_assert(thread->heap_trace_enabled == true); return thread->heap_size; } int32_t furi_thread_get_return_code(FuriThread* thread) { furi_assert(thread); furi_assert(thread->state == FuriThreadStateStopped); return thread->ret; } FuriThreadId furi_thread_get_current_id() { return xTaskGetCurrentTaskHandle(); } FuriThread* furi_thread_get_current() { FuriThread* thread = pvTaskGetThreadLocalStoragePointer(NULL, 0); return thread; } void furi_thread_yield() { furi_assert(!FURI_IS_IRQ_MODE()); taskYIELD(); } /* Limits */ #define MAX_BITS_TASK_NOTIFY 31U #define MAX_BITS_EVENT_GROUPS 24U #define THREAD_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_TASK_NOTIFY) - 1U)) #define EVENT_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_EVENT_GROUPS) - 1U)) uint32_t furi_thread_flags_set(FuriThreadId thread_id, uint32_t flags) { TaskHandle_t hTask = (TaskHandle_t)thread_id; uint32_t rflags; BaseType_t yield; if((hTask == NULL) || ((flags & THREAD_FLAGS_INVALID_BITS) != 0U)) { rflags = (uint32_t)FuriStatusErrorParameter; } else { rflags = (uint32_t)FuriStatusError; if(FURI_IS_IRQ_MODE()) { yield = pdFALSE; (void)xTaskNotifyIndexedFromISR(hTask, THREAD_NOTIFY_INDEX, flags, eSetBits, &yield); (void)xTaskNotifyAndQueryIndexedFromISR( hTask, THREAD_NOTIFY_INDEX, 0, eNoAction, &rflags, NULL); portYIELD_FROM_ISR(yield); } else { (void)xTaskNotifyIndexed(hTask, THREAD_NOTIFY_INDEX, flags, eSetBits); (void)xTaskNotifyAndQueryIndexed(hTask, THREAD_NOTIFY_INDEX, 0, eNoAction, &rflags); } } /* Return flags after setting */ return (rflags); } uint32_t furi_thread_flags_clear(uint32_t flags) { TaskHandle_t hTask; uint32_t rflags, cflags; if(FURI_IS_IRQ_MODE()) { rflags = (uint32_t)FuriStatusErrorISR; } else if((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { rflags = (uint32_t)FuriStatusErrorParameter; } else { hTask = xTaskGetCurrentTaskHandle(); if(xTaskNotifyAndQueryIndexed(hTask, THREAD_NOTIFY_INDEX, 0, eNoAction, &cflags) == pdPASS) { rflags = cflags; cflags &= ~flags; if(xTaskNotifyIndexed(hTask, THREAD_NOTIFY_INDEX, cflags, eSetValueWithOverwrite) != pdPASS) { rflags = (uint32_t)FuriStatusError; } } else { rflags = (uint32_t)FuriStatusError; } } /* Return flags before clearing */ return (rflags); } uint32_t furi_thread_flags_get(void) { TaskHandle_t hTask; uint32_t rflags; if(FURI_IS_IRQ_MODE()) { rflags = (uint32_t)FuriStatusErrorISR; } else { hTask = xTaskGetCurrentTaskHandle(); if(xTaskNotifyAndQueryIndexed(hTask, THREAD_NOTIFY_INDEX, 0, eNoAction, &rflags) != pdPASS) { rflags = (uint32_t)FuriStatusError; } } return (rflags); } uint32_t furi_thread_flags_wait(uint32_t flags, uint32_t options, uint32_t timeout) { uint32_t rflags, nval; uint32_t clear; TickType_t t0, td, tout; BaseType_t rval; if(FURI_IS_IRQ_MODE()) { rflags = (uint32_t)FuriStatusErrorISR; } else if((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { rflags = (uint32_t)FuriStatusErrorParameter; } else { if((options & FuriFlagNoClear) == FuriFlagNoClear) { clear = 0U; } else { clear = flags; } rflags = 0U; tout = timeout; t0 = xTaskGetTickCount(); do { rval = xTaskNotifyWaitIndexed(THREAD_NOTIFY_INDEX, 0, clear, &nval, tout); if(rval == pdPASS) { rflags &= flags; rflags |= nval; if((options & FuriFlagWaitAll) == FuriFlagWaitAll) { if((flags & rflags) == flags) { break; } else { if(timeout == 0U) { rflags = (uint32_t)FuriStatusErrorResource; break; } } } else { if((flags & rflags) != 0) { break; } else { if(timeout == 0U) { rflags = (uint32_t)FuriStatusErrorResource; break; } } } /* Update timeout */ td = xTaskGetTickCount() - t0; if(td > tout) { tout = 0; } else { tout -= td; } } else { if(timeout == 0) { rflags = (uint32_t)FuriStatusErrorResource; } else { rflags = (uint32_t)FuriStatusErrorTimeout; } } } while(rval != pdFAIL); } /* Return flags before clearing */ return (rflags); } uint32_t furi_thread_enumerate(FuriThreadId* thread_array, uint32_t array_items) { uint32_t i, count; TaskStatus_t* task; if(FURI_IS_IRQ_MODE() || (thread_array == NULL) || (array_items == 0U)) { count = 0U; } else { vTaskSuspendAll(); count = uxTaskGetNumberOfTasks(); task = pvPortMalloc(count * sizeof(TaskStatus_t)); if(task != NULL) { count = uxTaskGetSystemState(task, count, NULL); for(i = 0U; (i < count) && (i < array_items); i++) { thread_array[i] = (FuriThreadId)task[i].xHandle; } count = i; } (void)xTaskResumeAll(); vPortFree(task); } return (count); } const char* furi_thread_get_name(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; const char* name; if(FURI_IS_IRQ_MODE() || (hTask == NULL)) { name = NULL; } else { name = pcTaskGetName(hTask); } return (name); } const char* furi_thread_get_appid(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; const char* appid = "system"; if(!FURI_IS_IRQ_MODE() && (hTask != NULL)) { FuriThread* thread = (FuriThread*)pvTaskGetThreadLocalStoragePointer(hTask, 0); if(thread) { appid = thread->appid; } } return (appid); } uint32_t furi_thread_get_stack_space(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; uint32_t sz; if(FURI_IS_IRQ_MODE() || (hTask == NULL)) { sz = 0U; } else { sz = (uint32_t)(uxTaskGetStackHighWaterMark(hTask) * sizeof(StackType_t)); } return (sz); } static size_t __furi_thread_stdout_write(FuriThread* thread, const char* data, size_t size) { if(thread->output.write_callback != NULL) { thread->output.write_callback(data, size); } else { furi_hal_console_tx((const uint8_t*)data, size); } return size; } static int32_t __furi_thread_stdout_flush(FuriThread* thread) { FuriString* buffer = thread->output.buffer; size_t size = furi_string_size(buffer); if(size > 0) { __furi_thread_stdout_write(thread, furi_string_get_cstr(buffer), size); furi_string_reset(buffer); } return 0; } void furi_thread_set_stdout_callback(FuriThreadStdoutWriteCallback callback) { FuriThread* thread = furi_thread_get_current(); furi_assert(thread); __furi_thread_stdout_flush(thread); thread->output.write_callback = callback; } FuriThreadStdoutWriteCallback furi_thread_get_stdout_callback() { FuriThread* thread = furi_thread_get_current(); furi_assert(thread); return thread->output.write_callback; } size_t furi_thread_stdout_write(const char* data, size_t size) { FuriThread* thread = furi_thread_get_current(); furi_assert(thread); if(size == 0 || data == NULL) { return __furi_thread_stdout_flush(thread); } else { if(data[size - 1] == '\n') { // if the last character is a newline, we can flush buffer and write data as is, wo buffers __furi_thread_stdout_flush(thread); __furi_thread_stdout_write(thread, data, size); } else { // string_cat doesn't work here because we need to write the exact size data for(size_t i = 0; i < size; i++) { furi_string_push_back(thread->output.buffer, data[i]); if(data[i] == '\n') { __furi_thread_stdout_flush(thread); } } } } return size; } int32_t furi_thread_stdout_flush() { FuriThread* thread = furi_thread_get_current(); furi_assert(thread); return __furi_thread_stdout_flush(thread); } void furi_thread_suspend(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; vTaskSuspend(hTask); } void furi_thread_resume(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; if(FURI_IS_IRQ_MODE()) { xTaskResumeFromISR(hTask); } else { vTaskResume(hTask); } } bool furi_thread_is_suspended(FuriThreadId thread_id) { TaskHandle_t hTask = (TaskHandle_t)thread_id; return eTaskGetState(hTask) == eSuspended; }