#include #include #include #include #include "lfrfid_protocols.h" #include #define JITTER_TIME (20) #define MIN_TIME (64 - JITTER_TIME) #define MAX_TIME (80 + JITTER_TIME) #define PYRAMID_DATA_SIZE 13 #define PYRAMID_PREAMBLE_SIZE 3 #define PYRAMID_ENCODED_DATA_SIZE \ (PYRAMID_PREAMBLE_SIZE + PYRAMID_DATA_SIZE + PYRAMID_PREAMBLE_SIZE) #define PYRAMID_ENCODED_BIT_SIZE ((PYRAMID_PREAMBLE_SIZE + PYRAMID_DATA_SIZE) * 8) #define PYRAMID_DECODED_DATA_SIZE (4) #define PYRAMID_DECODED_BIT_SIZE ((PYRAMID_ENCODED_BIT_SIZE - PYRAMID_PREAMBLE_SIZE * 8) / 2) typedef struct { FSKDemod* fsk_demod; } ProtocolPyramidDecoder; typedef struct { FSKOsc* fsk_osc; uint8_t encoded_index; uint32_t pulse; } ProtocolPyramidEncoder; typedef struct { ProtocolPyramidDecoder decoder; ProtocolPyramidEncoder encoder; uint8_t encoded_data[PYRAMID_ENCODED_DATA_SIZE]; uint8_t data[PYRAMID_DECODED_DATA_SIZE]; } ProtocolPyramid; ProtocolPyramid* protocol_pyramid_alloc(void) { ProtocolPyramid* protocol = malloc(sizeof(ProtocolPyramid)); protocol->decoder.fsk_demod = fsk_demod_alloc(MIN_TIME, 6, MAX_TIME, 5); protocol->encoder.fsk_osc = fsk_osc_alloc(8, 10, 50); return protocol; } void protocol_pyramid_free(ProtocolPyramid* protocol) { fsk_demod_free(protocol->decoder.fsk_demod); fsk_osc_free(protocol->encoder.fsk_osc); free(protocol); } uint8_t* protocol_pyramid_get_data(ProtocolPyramid* protocol) { return protocol->data; } void protocol_pyramid_decoder_start(ProtocolPyramid* protocol) { memset(protocol->encoded_data, 0, PYRAMID_ENCODED_DATA_SIZE); } static bool protocol_pyramid_can_be_decoded(uint8_t* data) { // check preamble if(bit_lib_get_bits_16(data, 0, 16) != 0b0000000000000001 || bit_lib_get_bits(data, 16, 8) != 0b00000001) { return false; } if(bit_lib_get_bits_16(data, 128, 16) != 0b0000000000000001 || bit_lib_get_bits(data, 136, 8) != 0b00000001) { return false; } uint8_t checksum = bit_lib_get_bits(data, 120, 8); uint8_t checksum_data[13] = {0x00}; for(uint8_t i = 0; i < 13; i++) { checksum_data[i] = bit_lib_get_bits(data, 16 + (i * 8), 8); } uint8_t calc_checksum = bit_lib_crc8(checksum_data, 13, 0x31, 0x00, true, true, 0x00); if(checksum != calc_checksum) return false; // Remove parity bit_lib_remove_bit_every_nth(data, 8, 15 * 8, 8); // Determine Startbit and format int j; for(j = 0; j < 105; ++j) { if(bit_lib_get_bit(data, j)) break; } uint8_t fmt_len = 105 - j; // Only support 26bit format for now if(fmt_len != 26) return false; return true; } static void protocol_pyramid_decode(ProtocolPyramid* protocol) { // Format bit_lib_set_bits(protocol->data, 0, 26, 8); // Facility Code bit_lib_copy_bits(protocol->data, 8, 8, protocol->encoded_data, 73 + 8); // Card Number bit_lib_copy_bits(protocol->data, 16, 16, protocol->encoded_data, 81 + 8); } bool protocol_pyramid_decoder_feed(ProtocolPyramid* protocol, bool level, uint32_t duration) { bool value; uint32_t count; bool result = false; fsk_demod_feed(protocol->decoder.fsk_demod, level, duration, &value, &count); if(count > 0) { for(size_t i = 0; i < count; i++) { bit_lib_push_bit(protocol->encoded_data, PYRAMID_ENCODED_DATA_SIZE, value); if(protocol_pyramid_can_be_decoded(protocol->encoded_data)) { protocol_pyramid_decode(protocol); result = true; } } } return result; } bool protocol_pyramid_get_parity(const uint8_t* bits, uint8_t type, int length) { int x; for(x = 0; length > 0; --length) x += bit_lib_get_bit(bits, length - 1); x %= 2; return x ^ type; } void protocol_pyramid_add_wiegand_parity( uint8_t* target, uint8_t target_position, uint8_t* source, uint8_t length) { bit_lib_set_bit( target, target_position, protocol_pyramid_get_parity(source, 0 /* even */, length / 2)); bit_lib_copy_bits(target, target_position + 1, length, source, 0); bit_lib_set_bit( target, target_position + length + 1, protocol_pyramid_get_parity(source + length / 2, 1 /* odd */, length / 2)); } static void protocol_pyramid_encode(ProtocolPyramid* protocol) { memset(protocol->encoded_data, 0, sizeof(protocol->encoded_data)); uint8_t pre[16]; memset(pre, 0, sizeof(pre)); // Format start bit bit_lib_set_bit(pre, 79, 1); uint8_t wiegand[3]; memset(wiegand, 0, sizeof(wiegand)); // FC bit_lib_copy_bits(wiegand, 0, 8, protocol->data, 8); // CardNum bit_lib_copy_bits(wiegand, 8, 16, protocol->data, 16); // Wiegand parity protocol_pyramid_add_wiegand_parity(pre, 80, wiegand, 24); bit_lib_add_parity(pre, 8, protocol->encoded_data, 8, 102, 8, 1); // Add checksum uint8_t checksum_buffer[13]; for(uint8_t i = 0; i < 13; i++) checksum_buffer[i] = bit_lib_get_bits(protocol->encoded_data, 16 + (i * 8), 8); uint8_t crc = bit_lib_crc8(checksum_buffer, 13, 0x31, 0x00, true, true, 0x00); bit_lib_set_bits(protocol->encoded_data, 120, crc, 8); } bool protocol_pyramid_encoder_start(ProtocolPyramid* protocol) { protocol->encoder.encoded_index = 0; protocol->encoder.pulse = 0; protocol_pyramid_encode(protocol); return true; } LevelDuration protocol_pyramid_encoder_yield(ProtocolPyramid* protocol) { bool level = 0; uint32_t duration = 0; // if pulse is zero, we need to output high, otherwise we need to output low if(protocol->encoder.pulse == 0) { // get bit uint8_t bit = bit_lib_get_bit(protocol->encoded_data, protocol->encoder.encoded_index); // get pulse from oscillator bool advance = fsk_osc_next(protocol->encoder.fsk_osc, bit, &duration); if(advance) { bit_lib_increment_index(protocol->encoder.encoded_index, PYRAMID_ENCODED_BIT_SIZE); } // duration diveded by 2 because we need to output high and low duration = duration / 2; protocol->encoder.pulse = duration; level = true; } else { // output low half and reset pulse duration = protocol->encoder.pulse; protocol->encoder.pulse = 0; level = false; } return level_duration_make(level, duration); } bool protocol_pyramid_write_data(ProtocolPyramid* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; // Correct protocol data by redecoding protocol_pyramid_encode(protocol); bit_lib_remove_bit_every_nth(protocol->encoded_data, 8, 15 * 8, 8); protocol_pyramid_decode(protocol); protocol_pyramid_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_MODULATION_FSK2a | LFRFID_T5577_BITRATE_RF_50 | (4 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32); request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32); request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32); request->t5577.block[4] = bit_lib_get_bits_32(protocol->encoded_data, 96, 32); request->t5577.blocks_to_write = 5; result = true; } return result; } void protocol_pyramid_render_data(ProtocolPyramid* protocol, FuriString* result) { uint8_t* decoded_data = protocol->data; uint8_t format_length = decoded_data[0]; furi_string_printf(result, "Format: %hhu\n", format_length); if(format_length == 26) { uint8_t facility; bit_lib_copy_bits(&facility, 0, 8, decoded_data, 8); uint16_t card_id; bit_lib_copy_bits((uint8_t*)&card_id, 8, 8, decoded_data, 16); bit_lib_copy_bits((uint8_t*)&card_id, 0, 8, decoded_data, 24); furi_string_cat_printf(result, "FC: %03hhu; Card: %05hu", facility, card_id); } else { furi_string_cat_printf(result, "Data: Unknown"); } } const ProtocolBase protocol_pyramid = { .name = "Pyramid", .manufacturer = "Farpointe", .data_size = PYRAMID_DECODED_DATA_SIZE, .features = LFRFIDFeatureASK, .validate_count = 3, .alloc = (ProtocolAlloc)protocol_pyramid_alloc, .free = (ProtocolFree)protocol_pyramid_free, .get_data = (ProtocolGetData)protocol_pyramid_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_pyramid_decoder_start, .feed = (ProtocolDecoderFeed)protocol_pyramid_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_pyramid_encoder_start, .yield = (ProtocolEncoderYield)protocol_pyramid_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_pyramid_render_data, .render_brief_data = (ProtocolRenderData)protocol_pyramid_render_data, .write_data = (ProtocolWriteData)protocol_pyramid_write_data, };