#include "hormann.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #define TAG "SubGhzProtocolHormannHsm" #define HORMANN_HSM_PATTERN 0xFF000000003 static const SubGhzBlockConst subghz_protocol_hormann_const = { .te_short = 500, .te_long = 1000, .te_delta = 200, .min_count_bit_for_found = 44, }; struct SubGhzProtocolDecoderHormann { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; }; struct SubGhzProtocolEncoderHormann { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; }; typedef enum { HormannDecoderStepReset = 0, HormannDecoderStepFoundStartHeader, HormannDecoderStepFoundHeader, HormannDecoderStepFoundStartBit, HormannDecoderStepSaveDuration, HormannDecoderStepCheckDuration, } HormannDecoderStep; const SubGhzProtocolDecoder subghz_protocol_hormann_decoder = { .alloc = subghz_protocol_decoder_hormann_alloc, .free = subghz_protocol_decoder_hormann_free, .feed = subghz_protocol_decoder_hormann_feed, .reset = subghz_protocol_decoder_hormann_reset, .get_hash_data = subghz_protocol_decoder_hormann_get_hash_data, .serialize = subghz_protocol_decoder_hormann_serialize, .deserialize = subghz_protocol_decoder_hormann_deserialize, .get_string = subghz_protocol_decoder_hormann_get_string, }; const SubGhzProtocolEncoder subghz_protocol_hormann_encoder = { .alloc = subghz_protocol_encoder_hormann_alloc, .free = subghz_protocol_encoder_hormann_free, .deserialize = subghz_protocol_encoder_hormann_deserialize, .stop = subghz_protocol_encoder_hormann_stop, .yield = subghz_protocol_encoder_hormann_yield, }; const SubGhzProtocol subghz_protocol_hormann = { .name = SUBGHZ_PROTOCOL_HORMANN_HSM_NAME, .type = SubGhzProtocolTypeStatic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_hormann_decoder, .encoder = &subghz_protocol_hormann_encoder, }; void* subghz_protocol_encoder_hormann_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolEncoderHormann* instance = malloc(sizeof(SubGhzProtocolEncoderHormann)); instance->base.protocol = &subghz_protocol_hormann; instance->generic.protocol_name = instance->base.protocol->name; instance->encoder.repeat = 10; instance->encoder.size_upload = 2048; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_hormann_free(void* context) { furi_assert(context); SubGhzProtocolEncoderHormann* instance = context; free(instance->encoder.upload); free(instance); } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderHormann instance * @return true On success */ static bool subghz_protocol_encoder_hormann_get_upload(SubGhzProtocolEncoderHormann* instance) { furi_assert(instance); size_t index = 0; size_t size_upload = (instance->generic.data_count_bit * 2 + 2) * 20 + 1; if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } instance->encoder.repeat = 10; //original remote does 10 repeats for(size_t repeat = 0; repeat < 20; repeat++) { //Send start bit instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_hormann_const.te_short * 24); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_hormann_const.te_short); //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_hormann_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_hormann_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_hormann_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_hormann_const.te_long); } } } instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_hormann_const.te_short * 24); return true; } SubGhzProtocolStatus subghz_protocol_encoder_hormann_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderHormann* instance = context; SubGhzProtocolStatus ret = SubGhzProtocolStatusError; do { ret = subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_hormann_const.min_count_bit_for_found); if(ret != SubGhzProtocolStatusOk) { break; } //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); if(!subghz_protocol_encoder_hormann_get_upload(instance)) { ret = SubGhzProtocolStatusErrorEncoderGetUpload; break; } instance->encoder.is_running = true; } while(false); return ret; } void subghz_protocol_encoder_hormann_stop(void* context) { SubGhzProtocolEncoderHormann* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_hormann_yield(void* context) { SubGhzProtocolEncoderHormann* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_hormann_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderHormann* instance = malloc(sizeof(SubGhzProtocolDecoderHormann)); instance->base.protocol = &subghz_protocol_hormann; instance->generic.protocol_name = instance->base.protocol->name; return instance; } void subghz_protocol_decoder_hormann_free(void* context) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; free(instance); } static bool subghz_protocol_decoder_hormann_check_pattern(SubGhzProtocolDecoderHormann* instance) { return (instance->decoder.decode_data & HORMANN_HSM_PATTERN) == HORMANN_HSM_PATTERN; } void subghz_protocol_decoder_hormann_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; instance->decoder.parser_step = HormannDecoderStepReset; } void subghz_protocol_decoder_hormann_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; switch(instance->decoder.parser_step) { case HormannDecoderStepReset: if((level) && (DURATION_DIFF(duration, subghz_protocol_hormann_const.te_short * 24) < subghz_protocol_hormann_const.te_delta * 24)) { instance->decoder.parser_step = HormannDecoderStepFoundStartBit; } break; case HormannDecoderStepFoundStartBit: if((!level) && (DURATION_DIFF(duration, subghz_protocol_hormann_const.te_short) < subghz_protocol_hormann_const.te_delta)) { instance->decoder.parser_step = HormannDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = HormannDecoderStepReset; } break; case HormannDecoderStepSaveDuration: if(level) { //save interval if(duration >= (subghz_protocol_hormann_const.te_short * 5) && subghz_protocol_decoder_hormann_check_pattern(instance)) { instance->decoder.parser_step = HormannDecoderStepFoundStartBit; if(instance->decoder.decode_count_bit >= subghz_protocol_hormann_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } break; } instance->decoder.te_last = duration; instance->decoder.parser_step = HormannDecoderStepCheckDuration; } else { instance->decoder.parser_step = HormannDecoderStepReset; } break; case HormannDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_hormann_const.te_short) < subghz_protocol_hormann_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_hormann_const.te_long) < subghz_protocol_hormann_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = HormannDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_hormann_const.te_long) < subghz_protocol_hormann_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_hormann_const.te_short) < subghz_protocol_hormann_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = HormannDecoderStepSaveDuration; } else instance->decoder.parser_step = HormannDecoderStepReset; } else { instance->decoder.parser_step = HormannDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance */ static void subghz_protocol_hormann_check_remote_controller(SubGhzBlockGeneric* instance) { instance->btn = (instance->data >> 4) & 0xF; } uint8_t subghz_protocol_decoder_hormann_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_hormann_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; return subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } SubGhzProtocolStatus subghz_protocol_decoder_hormann_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; return subghz_block_generic_deserialize_check_count_bit( &instance->generic, flipper_format, subghz_protocol_hormann_const.min_count_bit_for_found); } void subghz_protocol_decoder_hormann_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderHormann* instance = context; subghz_protocol_hormann_check_remote_controller(&instance->generic); furi_string_cat_printf( output, "%s\r\n" "%dbit\r\n" "Key:0x%03lX%08lX\r\n" "Btn:0x%01X\r\n", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, instance->generic.btn); }