#include "subghz_frequency_analyzer_worker.h" #include #include #include #define TAG "SubghzFrequencyAnalyzerWorker" #define SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD -97.0f static const uint8_t subghz_preset_ook_58khz[][2] = { {CC1101_MDMCFG4, 0b11110111}, // Rx BW filter is 58.035714kHz /* End */ {0, 0}, }; static const uint8_t subghz_preset_ook_650khz[][2] = { {CC1101_MDMCFG4, 0b00010111}, // Rx BW filter is 650.000kHz /* End */ {0, 0}, }; struct SubGhzFrequencyAnalyzerWorker { FuriThread* thread; volatile bool worker_running; uint8_t sample_hold_counter; FrequencyRSSI frequency_rssi_buf; SubGhzSetting* setting; float filVal; float trigger_level; SubGhzFrequencyAnalyzerWorkerPairCallback pair_callback; void* context; }; static void subghz_frequency_analyzer_worker_load_registers(const uint8_t data[][2]) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); size_t i = 0; while(data[i][0]) { cc1101_write_reg(furi_hal_subghz.spi_bus_handle, data[i][0], data[i][1]); i++; } furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); } // running average with adaptive coefficient static uint32_t subghz_frequency_analyzer_worker_expRunningAverageAdaptive( SubGhzFrequencyAnalyzerWorker* instance, uint32_t newVal) { float k; float newValFloat = newVal; // the sharpness of the filter depends on the absolute value of the difference if(fabs(newValFloat - instance->filVal) > 500000) k = 0.9; else k = 0.03; instance->filVal += (newValFloat - instance->filVal) * k; return (uint32_t)instance->filVal; } /** Worker thread * * @param context * @return exit code */ static int32_t subghz_frequency_analyzer_worker_thread(void* context) { SubGhzFrequencyAnalyzerWorker* instance = context; FrequencyRSSI frequency_rssi = { .frequency_coarse = 0, .rssi_coarse = 0, .frequency_fine = 0, .rssi_fine = 0}; float rssi = 0; uint32_t frequency = 0; float rssi_temp = 0; uint32_t frequency_temp = 0; CC1101Status status; //Start CC1101 furi_hal_subghz_reset(); furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_flush_rx(furi_hal_subghz.spi_bus_handle); cc1101_flush_tx(furi_hal_subghz.spi_bus_handle); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_IOCFG0, CC1101IocfgHW); cc1101_write_reg(furi_hal_subghz.spi_bus_handle, CC1101_MDMCFG3, 0b01111111); // symbol rate cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_AGCCTRL2, 0b00000111); // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAGN_TARGET 42 dB cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_AGCCTRL1, 0b00001000); // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 1000 - Absolute carrier sense threshold disabled cc1101_write_reg( furi_hal_subghz.spi_bus_handle, CC1101_AGCCTRL0, 0b00110000); // 00 - No hysteresis, medium asymmetric dead zone, medium gain ; 11 - 64 samples agc; 00 - Normal AGC, 00 - 4dB boundary furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); furi_hal_subghz_set_path(FuriHalSubGhzPathIsolate); while(instance->worker_running) { furi_delay_ms(10); float rssi_min = 26.0f; float rssi_avg = 0; size_t rssi_avg_samples = 0; frequency_rssi.rssi_coarse = -127.0f; frequency_rssi.rssi_fine = -127.0f; furi_hal_subghz_idle(); subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_650khz); // First stage: coarse scan for(size_t i = 0; i < subghz_setting_get_frequency_count(instance->setting); i++) { uint32_t current_frequnecy = subghz_setting_get_frequency(instance->setting, i); if(furi_hal_subghz_is_frequency_valid(current_frequnecy) && (current_frequnecy != 467750000) && !((furi_hal_subghz.radio_type == SubGhzRadioExternal) && (current_frequnecy >= 311900000 && current_frequnecy <= 312200000))) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle); frequency = cc1101_set_frequency(furi_hal_subghz.spi_bus_handle, current_frequnecy); cc1101_calibrate(furi_hal_subghz.spi_bus_handle); do { status = cc1101_get_status(furi_hal_subghz.spi_bus_handle); } while(status.STATE != CC1101StateIDLE); cc1101_switch_to_rx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); furi_delay_ms(2); rssi = furi_hal_subghz_get_rssi(); rssi_avg += rssi; rssi_avg_samples++; if(rssi < rssi_min) rssi_min = rssi; if(frequency_rssi.rssi_coarse < rssi) { frequency_rssi.rssi_coarse = rssi; frequency_rssi.frequency_coarse = frequency; } } } FURI_LOG_T( TAG, "RSSI: avg %f, max %f at %lu, min %f", (double)(rssi_avg / rssi_avg_samples), (double)frequency_rssi.rssi_coarse, frequency_rssi.frequency_coarse, (double)rssi_min); // Second stage: fine scan if(frequency_rssi.rssi_coarse > instance->trigger_level) { furi_hal_subghz_idle(); subghz_frequency_analyzer_worker_load_registers(subghz_preset_ook_58khz); //for example -0.3 ... 433.92 ... +0.3 step 20KHz for(uint32_t i = frequency_rssi.frequency_coarse - 300000; i < frequency_rssi.frequency_coarse + 300000; i += 20000) { if(furi_hal_subghz_is_frequency_valid(i)) { furi_hal_spi_acquire(furi_hal_subghz.spi_bus_handle); cc1101_switch_to_idle(furi_hal_subghz.spi_bus_handle); frequency = cc1101_set_frequency(furi_hal_subghz.spi_bus_handle, i); cc1101_calibrate(furi_hal_subghz.spi_bus_handle); do { status = cc1101_get_status(furi_hal_subghz.spi_bus_handle); } while(status.STATE != CC1101StateIDLE); cc1101_switch_to_rx(furi_hal_subghz.spi_bus_handle); furi_hal_spi_release(furi_hal_subghz.spi_bus_handle); furi_delay_ms(2); rssi = furi_hal_subghz_get_rssi(); FURI_LOG_T(TAG, "#:%lu:%f", frequency, (double)rssi); if(frequency_rssi.rssi_fine < rssi) { frequency_rssi.rssi_fine = rssi; frequency_rssi.frequency_fine = frequency; } } } } // Deliver results fine if(frequency_rssi.rssi_fine > instance->trigger_level) { FURI_LOG_D( TAG, "=:%lu:%f", frequency_rssi.frequency_fine, (double)frequency_rssi.rssi_fine); instance->sample_hold_counter = 20; rssi_temp = frequency_rssi.rssi_fine; frequency_temp = frequency_rssi.frequency_fine; if(!float_is_equal(instance->filVal, 0.f)) { frequency_rssi.frequency_fine = subghz_frequency_analyzer_worker_expRunningAverageAdaptive( instance, frequency_rssi.frequency_fine); } // Deliver callback if(instance->pair_callback) { instance->pair_callback( instance->context, frequency_rssi.frequency_fine, frequency_rssi.rssi_fine, true); } } else if( // Deliver results coarse (frequency_rssi.rssi_coarse > instance->trigger_level) && (instance->sample_hold_counter < 10)) { FURI_LOG_D( TAG, "~:%lu:%f", frequency_rssi.frequency_coarse, (double)frequency_rssi.rssi_coarse); instance->sample_hold_counter = 20; rssi_temp = frequency_rssi.rssi_coarse; frequency_temp = frequency_rssi.frequency_coarse; if(!float_is_equal(instance->filVal, 0.f)) { frequency_rssi.frequency_coarse = subghz_frequency_analyzer_worker_expRunningAverageAdaptive( instance, frequency_rssi.frequency_coarse); } // Deliver callback if(instance->pair_callback) { instance->pair_callback( instance->context, frequency_rssi.frequency_coarse, frequency_rssi.rssi_coarse, true); } } else { if(instance->sample_hold_counter > 0) { instance->sample_hold_counter--; if(instance->sample_hold_counter == 18) { if(instance->pair_callback) { instance->pair_callback( instance->context, frequency_temp, rssi_temp, false); } } } else { instance->filVal = 0; if(instance->pair_callback) instance->pair_callback(instance->context, 0, 0, false); } } } //Stop CC1101 furi_hal_subghz_idle(); furi_hal_subghz_sleep(); return 0; } SubGhzFrequencyAnalyzerWorker* subghz_frequency_analyzer_worker_alloc(void* context) { furi_assert(context); SubGhzFrequencyAnalyzerWorker* instance = malloc(sizeof(SubGhzFrequencyAnalyzerWorker)); instance->thread = furi_thread_alloc(); furi_thread_set_name(instance->thread, "SubGhzFAWorker"); furi_thread_set_stack_size(instance->thread, 2048); furi_thread_set_context(instance->thread, instance); furi_thread_set_callback(instance->thread, subghz_frequency_analyzer_worker_thread); SubGhz* subghz = context; instance->setting = subghz->setting; instance->trigger_level = subghz->last_settings->frequency_analyzer_trigger; //instance->trigger_level = SUBGHZ_FREQUENCY_ANALYZER_THRESHOLD; return instance; } void subghz_frequency_analyzer_worker_free(SubGhzFrequencyAnalyzerWorker* instance) { furi_assert(instance); furi_thread_free(instance->thread); free(instance); } void subghz_frequency_analyzer_worker_set_pair_callback( SubGhzFrequencyAnalyzerWorker* instance, SubGhzFrequencyAnalyzerWorkerPairCallback callback, void* context) { furi_assert(instance); furi_assert(context); instance->pair_callback = callback; instance->context = context; } void subghz_frequency_analyzer_worker_start(SubGhzFrequencyAnalyzerWorker* instance) { furi_assert(instance); furi_assert(!instance->worker_running); instance->worker_running = true; furi_thread_start(instance->thread); } void subghz_frequency_analyzer_worker_stop(SubGhzFrequencyAnalyzerWorker* instance) { furi_assert(instance); furi_assert(instance->worker_running); instance->worker_running = false; furi_thread_join(instance->thread); } bool subghz_frequency_analyzer_worker_is_running(SubGhzFrequencyAnalyzerWorker* instance) { furi_assert(instance); return instance->worker_running; } void subghz_frequency_analyzer_worker_set_trigger_level( SubGhzFrequencyAnalyzerWorker* instance, float value) { instance->trigger_level = value; } float subghz_frequency_analyzer_worker_get_trigger_level(SubGhzFrequencyAnalyzerWorker* instance) { return instance->trigger_level; }