#pragma once #include <furi.h> #ifdef FURI_NDEBUG #define LFS_NO_ASSERT #define LFS_ASSERT(x) #else #define LFS_ASSERT furi_assert #endif #define LFS_TAG "Lfs" #ifdef FURI_LFS_DEBUG #define LFS_TRACE(...) FURI_LOG_T(LFS_TAG, __VA_ARGS__); #define LFS_DEBUG(...) FURI_LOG_D(LFS_TAG, __VA_ARGS__); #else #define LFS_TRACE(...) #define LFS_DEBUG(...) #endif // FURI_LFS_DEBUG #define LFS_WARN(...) FURI_LOG_W(LFS_TAG, __VA_ARGS__); #define LFS_ERROR(...) FURI_LOG_E(LFS_TAG, __VA_ARGS__); // Because crc #undef LFS_CONFIG // System includes #include <stdint.h> #include <stdbool.h> #include <string.h> #include <inttypes.h> #ifndef LFS_NO_MALLOC #include <stdlib.h> #endif #ifndef LFS_NO_ASSERT #include <assert.h> #endif #if !defined(LFS_NO_DEBUG) || !defined(LFS_NO_WARN) || !defined(LFS_NO_ERROR) || \ defined(LFS_YES_TRACE) #include <stdio.h> #endif #ifdef __cplusplus extern "C" { #endif // Builtin functions, these may be replaced by more efficient // toolchain-specific implementations. LFS_NO_INTRINSICS falls back to a more // expensive basic C implementation for debugging purposes // Min/max functions for unsigned 32-bit numbers static inline uint32_t lfs_max(uint32_t a, uint32_t b) { return (a > b) ? a : b; } static inline uint32_t lfs_min(uint32_t a, uint32_t b) { return (a < b) ? a : b; } // Align to nearest multiple of a size static inline uint32_t lfs_aligndown(uint32_t a, uint32_t alignment) { return a - (a % alignment); } static inline uint32_t lfs_alignup(uint32_t a, uint32_t alignment) { return lfs_aligndown(a + alignment - 1, alignment); } // Find the smallest power of 2 greater than or equal to a static inline uint32_t lfs_npw2(uint32_t a) { #if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM)) return 32 - __builtin_clz(a - 1); #else uint32_t r = 0; uint32_t s; a -= 1; s = (a > 0xffff) << 4; a >>= s; r |= s; s = (a > 0xff) << 3; a >>= s; r |= s; s = (a > 0xf) << 2; a >>= s; r |= s; s = (a > 0x3) << 1; a >>= s; r |= s; return (r | (a >> 1)) + 1; #endif } // Count the number of trailing binary zeros in a // lfs_ctz(0) may be undefined static inline uint32_t lfs_ctz(uint32_t a) { #if !defined(LFS_NO_INTRINSICS) && defined(__GNUC__) return __builtin_ctz(a); #else return lfs_npw2((a & -a) + 1) - 1; #endif } // Count the number of binary ones in a static inline uint32_t lfs_popc(uint32_t a) { #if !defined(LFS_NO_INTRINSICS) && (defined(__GNUC__) || defined(__CC_ARM)) return __builtin_popcount(a); #else a = a - ((a >> 1) & 0x55555555); a = (a & 0x33333333) + ((a >> 2) & 0x33333333); return (((a + (a >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24; #endif } // Find the sequence comparison of a and b, this is the distance // between a and b ignoring overflow static inline int lfs_scmp(uint32_t a, uint32_t b) { return (int)(unsigned)(a - b); } // Convert between 32-bit little-endian and native order static inline uint32_t lfs_fromle32(uint32_t a) { #if !defined(LFS_NO_INTRINSICS) && \ ((defined(BYTE_ORDER) && defined(ORDER_LITTLE_ENDIAN) && \ BYTE_ORDER == ORDER_LITTLE_ENDIAN) || \ (defined(__BYTE_ORDER) && defined(__ORDER_LITTLE_ENDIAN) && \ __BYTE_ORDER == __ORDER_LITTLE_ENDIAN) || \ (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) return a; #elif !defined(LFS_NO_INTRINSICS) && \ ((defined(BYTE_ORDER) && defined(ORDER_BIG_ENDIAN) && BYTE_ORDER == ORDER_BIG_ENDIAN) || \ (defined(__BYTE_ORDER) && defined(__ORDER_BIG_ENDIAN) && \ __BYTE_ORDER == __ORDER_BIG_ENDIAN) || \ (defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) return __builtin_bswap32(a); #else return (((uint8_t*)&a)[0] << 0) | (((uint8_t*)&a)[1] << 8) | (((uint8_t*)&a)[2] << 16) | (((uint8_t*)&a)[3] << 24); #endif } static inline uint32_t lfs_tole32(uint32_t a) { return lfs_fromle32(a); } // Convert between 32-bit big-endian and native order static inline uint32_t lfs_frombe32(uint32_t a) { #if !defined(LFS_NO_INTRINSICS) && \ ((defined(BYTE_ORDER) && defined(ORDER_LITTLE_ENDIAN) && \ BYTE_ORDER == ORDER_LITTLE_ENDIAN) || \ (defined(__BYTE_ORDER) && defined(__ORDER_LITTLE_ENDIAN) && \ __BYTE_ORDER == __ORDER_LITTLE_ENDIAN) || \ (defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) return __builtin_bswap32(a); #elif !defined(LFS_NO_INTRINSICS) && \ ((defined(BYTE_ORDER) && defined(ORDER_BIG_ENDIAN) && BYTE_ORDER == ORDER_BIG_ENDIAN) || \ (defined(__BYTE_ORDER) && defined(__ORDER_BIG_ENDIAN) && \ __BYTE_ORDER == __ORDER_BIG_ENDIAN) || \ (defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && \ __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)) return a; #else return (((uint8_t*)&a)[0] << 24) | (((uint8_t*)&a)[1] << 16) | (((uint8_t*)&a)[2] << 8) | (((uint8_t*)&a)[3] << 0); #endif } static inline uint32_t lfs_tobe32(uint32_t a) { return lfs_frombe32(a); } // Calculate CRC-32 with polynomial = 0x04c11db7 uint32_t lfs_crc(uint32_t crc, const void* buffer, size_t size); // Allocate memory, only used if buffers are not provided to littlefs // Note, memory must be 64-bit aligned static inline void* lfs_malloc(size_t size) { #ifndef LFS_NO_MALLOC return malloc(size); #else (void)size; return NULL; #endif } // Deallocate memory, only used if buffers are not provided to littlefs static inline void lfs_free(void* p) { #ifndef LFS_NO_MALLOC free(p); #else (void)p; #endif } #ifdef __cplusplus } /* extern "C" */ #endif