#include "furi_hal_subghz.h" #include "furi_hal_version.h" #include "furi_hal_rtc.h" #include <furi_hal_gpio.h> #include <furi_hal_spi.h> #include <furi_hal_interrupt.h> #include <furi_hal_resources.h> #include <stm32wbxx_ll_dma.h> #include <furi.h> #include <cc1101.h> #include <stdio.h> #define TAG "FuriHalSubGhz" static volatile SubGhzState furi_hal_subghz_state = SubGhzStateInit; static volatile SubGhzRegulation furi_hal_subghz_regulation = SubGhzRegulationTxRx; static volatile FuriHalSubGhzPreset furi_hal_subghz_preset = FuriHalSubGhzPresetIDLE; static const uint8_t furi_hal_subghz_preset_ook_270khz_async_regs[][2] = { // https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz-group/sub-1-ghz/f/sub-1-ghz-forum/382066/cc1101---don-t-know-the-correct-registers-configuration /* GPIO GD0 */ {CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input /* FIFO and internals */ {CC1101_FIFOTHR, 0x47}, // The only important bit is ADC_RETENTION, FIFO Tx=33 Rx=32 /* Packet engine */ {CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening /* Frequency Synthesizer Control */ {CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz // Modem Configuration {CC1101_MDMCFG0, 0x00}, // Channel spacing is 25kHz {CC1101_MDMCFG1, 0x00}, // Channel spacing is 25kHz {CC1101_MDMCFG2, 0x30}, // Format ASK/OOK, No preamble/sync {CC1101_MDMCFG3, 0x32}, // Data rate is 3.79372 kBaud {CC1101_MDMCFG4, 0x67}, // Rx BW filter is 270.833333kHz /* Main Radio Control State Machine */ {CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us) /* Frequency Offset Compensation Configuration */ {CC1101_FOCCFG, 0x18}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ {CC1101_AGCCTRL0, 0x40}, // 01 - Low hysteresis, small asymmetric dead zone, medium gain; 00 - 8 samples agc; 00 - Normal AGC, 00 - 4dB boundary {CC1101_AGCCTRL1, 0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET {CC1101_AGCCTRL2, 0x03}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 011 - MAIN_TARGET 24 dB /* Wake on radio and timeouts control */ {CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours /* Frontend configuration */ {CC1101_FREND0, 0x11}, // Adjusts current TX LO buffer + high is PATABLE[1] {CC1101_FREND1, 0xB6}, // /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_ook_650khz_async_regs[][2] = { // https://e2e.ti.com/support/wireless-connectivity/sub-1-ghz-group/sub-1-ghz/f/sub-1-ghz-forum/382066/cc1101---don-t-know-the-correct-registers-configuration /* GPIO GD0 */ {CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input /* FIFO and internals */ {CC1101_FIFOTHR, 0x07}, // The only important bit is ADC_RETENTION /* Packet engine */ {CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening /* Frequency Synthesizer Control */ {CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz // Modem Configuration {CC1101_MDMCFG0, 0x00}, // Channel spacing is 25kHz {CC1101_MDMCFG1, 0x00}, // Channel spacing is 25kHz {CC1101_MDMCFG2, 0x30}, // Format ASK/OOK, No preamble/sync {CC1101_MDMCFG3, 0x32}, // Data rate is 3.79372 kBaud {CC1101_MDMCFG4, 0x17}, // Rx BW filter is 650.000kHz /* Main Radio Control State Machine */ {CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us) /* Frequency Offset Compensation Configuration */ {CC1101_FOCCFG, 0x18}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ // {CC1101_AGCTRL0,0x40}, // 01 - Low hysteresis, small asymmetric dead zone, medium gain; 00 - 8 samples agc; 00 - Normal AGC, 00 - 4dB boundary // {CC1101_AGCTRL1,0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET // {CC1101_AGCCTRL2, 0x03}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 011 - MAIN_TARGET 24 dB //MAGN_TARGET for RX filter BW =< 100 kHz is 0x3. For higher RX filter BW's MAGN_TARGET is 0x7. {CC1101_AGCCTRL0, 0x91}, // 10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary {CC1101_AGCCTRL1, 0x0}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET {CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB /* Wake on radio and timeouts control */ {CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours /* Frontend configuration */ {CC1101_FREND0, 0x11}, // Adjusts current TX LO buffer + high is PATABLE[1] {CC1101_FREND1, 0xB6}, // /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs[][2] = { /* GPIO GD0 */ {CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input /* Frequency Synthesizer Control */ {CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz /* Packet engine */ {CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening {CC1101_PKTCTRL1, 0x04}, // // Modem Configuration {CC1101_MDMCFG0, 0x00}, {CC1101_MDMCFG1, 0x02}, {CC1101_MDMCFG2, 0x04}, // Format 2-FSK/FM, No preamble/sync, Disable (current optimized) {CC1101_MDMCFG3, 0x83}, // Data rate is 4.79794 kBaud {CC1101_MDMCFG4, 0x67}, //Rx BW filter is 270.833333 kHz {CC1101_DEVIATN, 0x04}, //Deviation 2.380371 kHz /* Main Radio Control State Machine */ {CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us) /* Frequency Offset Compensation Configuration */ {CC1101_FOCCFG, 0x16}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ {CC1101_AGCCTRL0, 0x91}, //10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary {CC1101_AGCCTRL1, 0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET {CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB /* Wake on radio and timeouts control */ {CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours /* Frontend configuration */ {CC1101_FREND0, 0x10}, // Adjusts current TX LO buffer {CC1101_FREND1, 0x56}, /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_2fsk_dev47_6khz_async_regs[][2] = { /* GPIO GD0 */ {CC1101_IOCFG0, 0x0D}, // GD0 as async serial data output/input /* Frequency Synthesizer Control */ {CC1101_FSCTRL1, 0x06}, // IF = (26*10^6) / (2^10) * 0x06 = 152343.75Hz /* Packet engine */ {CC1101_PKTCTRL0, 0x32}, // Async, continious, no whitening {CC1101_PKTCTRL1, 0x04}, // // Modem Configuration {CC1101_MDMCFG0, 0x00}, {CC1101_MDMCFG1, 0x02}, {CC1101_MDMCFG2, 0x04}, // Format 2-FSK/FM, No preamble/sync, Disable (current optimized) {CC1101_MDMCFG3, 0x83}, // Data rate is 4.79794 kBaud {CC1101_MDMCFG4, 0x67}, //Rx BW filter is 270.833333 kHz {CC1101_DEVIATN, 0x47}, //Deviation 47.60742 kHz /* Main Radio Control State Machine */ {CC1101_MCSM0, 0x18}, // Autocalibrate on idle-to-rx/tx, PO_TIMEOUT is 64 cycles(149-155us) /* Frequency Offset Compensation Configuration */ {CC1101_FOCCFG, 0x16}, // no frequency offset compensation, POST_K same as PRE_K, PRE_K is 4K, GATE is off /* Automatic Gain Control */ {CC1101_AGCCTRL0, 0x91}, //10 - Medium hysteresis, medium asymmetric dead zone, medium gain ; 01 - 16 samples agc; 00 - Normal AGC, 01 - 8dB boundary {CC1101_AGCCTRL1, 0x00}, // 0; 0 - LNA 2 gain is decreased to minimum before decreasing LNA gain; 00 - Relative carrier sense threshold disabled; 0000 - RSSI to MAIN_TARGET {CC1101_AGCCTRL2, 0x07}, // 00 - DVGA all; 000 - MAX LNA+LNA2; 111 - MAIN_TARGET 42 dB /* Wake on radio and timeouts control */ {CC1101_WORCTRL, 0xFB}, // WOR_RES is 2^15 periods (0.91 - 0.94 s) 16.5 - 17.2 hours /* Frontend configuration */ {CC1101_FREND0, 0x10}, // Adjusts current TX LO buffer {CC1101_FREND1, 0x56}, /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_msk_99_97kb_async_regs[][2] = { /* GPIO GD0 */ {CC1101_IOCFG0, 0x06}, {CC1101_FIFOTHR, 0x07}, // The only important bit is ADC_RETENTION {CC1101_SYNC1, 0x46}, {CC1101_SYNC0, 0x4C}, {CC1101_ADDR, 0x00}, {CC1101_PKTLEN, 0x00}, {CC1101_CHANNR, 0x00}, {CC1101_PKTCTRL0, 0x05}, {CC1101_FSCTRL0, 0x23}, {CC1101_FSCTRL1, 0x06}, {CC1101_MDMCFG0, 0xF8}, {CC1101_MDMCFG1, 0x22}, {CC1101_MDMCFG2, 0x72}, {CC1101_MDMCFG3, 0xF8}, {CC1101_MDMCFG4, 0x5B}, {CC1101_DEVIATN, 0x47}, {CC1101_MCSM0, 0x18}, {CC1101_FOCCFG, 0x16}, {CC1101_AGCCTRL0, 0xB2}, {CC1101_AGCCTRL1, 0x00}, {CC1101_AGCCTRL2, 0xC7}, {CC1101_FREND0, 0x10}, {CC1101_FREND1, 0x56}, {CC1101_BSCFG, 0x1C}, {CC1101_FSTEST, 0x59}, /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_gfsk_9_99kb_async_regs[][2] = { {CC1101_IOCFG0, 0x06}, //GDO0 Output Pin Configuration {CC1101_FIFOTHR, 0x47}, //RX FIFO and TX FIFO Thresholds //1 : CRC calculation in TX and CRC check in RX enabled, //1 : Variable packet length mode. Packet length configured by the first byte after sync word {CC1101_PKTCTRL0, 0x05}, {CC1101_FSCTRL1, 0x06}, //Frequency Synthesizer Control {CC1101_SYNC1, 0x46}, {CC1101_SYNC0, 0x4C}, {CC1101_ADDR, 0x00}, {CC1101_PKTLEN, 0x00}, {CC1101_MDMCFG4, 0xC8}, //Modem Configuration 9.99 {CC1101_MDMCFG3, 0x93}, //Modem Configuration {CC1101_MDMCFG2, 0x12}, // 2: 16/16 sync word bits detected {CC1101_DEVIATN, 0x34}, //Deviation = 19.042969 {CC1101_MCSM0, 0x18}, //Main Radio Control State Machine Configuration {CC1101_FOCCFG, 0x16}, //Frequency Offset Compensation Configuration {CC1101_AGCCTRL2, 0x43}, //AGC Control {CC1101_AGCCTRL1, 0x40}, {CC1101_AGCCTRL0, 0x91}, {CC1101_WORCTRL, 0xFB}, //Wake On Radio Control /* End */ {0, 0}, }; static const uint8_t furi_hal_subghz_preset_ook_async_patable[8] = { 0x00, 0xC0, // 12dBm 0xC0, 10dBm 0xC5, 7dBm 0xCD, 5dBm 0x86, 0dBm 0x50, -6dBm 0x37, -10dBm 0x26, -15dBm 0x1D, -20dBm 0x17, -30dBm 0x03 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static const uint8_t furi_hal_subghz_preset_ook_async_patable_au[8] = { 0x00, 0xC0, // 12dBm 0xC0, 10dBm 0xC5, 7dBm 0xCD, 5dBm 0x86, 0dBm 0x50, -6dBm 0x37, -10dBm 0x26, -15dBm 0x1D, -20dBm 0x17, -30dBm 0x03 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static const uint8_t furi_hal_subghz_preset_2fsk_async_patable[8] = { 0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static const uint8_t furi_hal_subghz_preset_msk_async_patable[8] = { 0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; static const uint8_t furi_hal_subghz_preset_gfsk_async_patable[8] = { 0xC0, // 10dBm 0xC0, 7dBm 0xC8, 5dBm 0x84, 0dBm 0x60, -10dBm 0x34, -15dBm 0x1D, -20dBm 0x0E, -30dBm 0x12 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; void furi_hal_subghz_init() { furi_assert(furi_hal_subghz_state == SubGhzStateInit); furi_hal_subghz_state = SubGhzStateIdle; furi_hal_subghz_preset = FuriHalSubGhzPresetIDLE; furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_init(&FURI_HAL_SUBGHZ_TX_GPIO, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); #endif // Reset furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_reset(&furi_hal_spi_bus_handle_subghz); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance); // Prepare GD0 for power on self test furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullNo, GpioSpeedLow); // GD0 low cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW); while(furi_hal_gpio_read(&gpio_cc1101_g0) != false) ; // GD0 high cc1101_write_reg( &furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHW | CC1101_IOCFG_INV); while(furi_hal_gpio_read(&gpio_cc1101_g0) != true) ; // Reset GD0 to floating state cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); // RF switches furi_hal_gpio_init(&gpio_rf_sw_0, GpioModeOutputPushPull, GpioPullNo, GpioSpeedLow); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW); // Go to sleep cc1101_shutdown(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); FURI_LOG_I(TAG, "Init OK"); } void furi_hal_subghz_sleep() { furi_assert(furi_hal_subghz_state == SubGhzStateIdle); furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_shutdown(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); furi_hal_subghz_preset = FuriHalSubGhzPresetIDLE; } void furi_hal_subghz_dump_state() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); printf( "[furi_hal_subghz] cc1101 chip %d, version %d\r\n", cc1101_get_partnumber(&furi_hal_spi_bus_handle_subghz), cc1101_get_version(&furi_hal_spi_bus_handle_subghz)); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_load_preset(FuriHalSubGhzPreset preset) { if(preset == FuriHalSubGhzPresetOok650Async) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_ook_650khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable); } else if(preset == FuriHalSubGhzPresetOok270Async) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_ook_270khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable); } else if(preset == FuriHalSubGhzPreset2FSKDev238Async) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_2fsk_dev2_38khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable); } else if(preset == FuriHalSubGhzPreset2FSKDev476Async) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_2fsk_dev47_6khz_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_2fsk_async_patable); } else if(preset == FuriHalSubGhzPresetMSK99_97KbAsync) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_msk_99_97kb_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_msk_async_patable); } else if(preset == FuriHalSubGhzPresetGFSK9_99KbAsync) { furi_hal_subghz_load_registers(furi_hal_subghz_preset_gfsk_9_99kb_async_regs); furi_hal_subghz_load_patable(furi_hal_subghz_preset_gfsk_async_patable); } else { furi_crash("SugGhz: Missing config."); } furi_hal_subghz_preset = preset; } void furi_hal_subghz_load_registers(const uint8_t data[][2]) { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_reset(&furi_hal_spi_bus_handle_subghz); uint32_t i = 0; while(data[i][0]) { cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, data[i][0], data[i][1]); i++; } furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_load_patable(const uint8_t data[8]) { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_set_pa_table(&furi_hal_spi_bus_handle_subghz, data); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_write_packet(const uint8_t* data, uint8_t size) { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_FIFO, size); cc1101_write_fifo(&furi_hal_spi_bus_handle_subghz, data, size); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_flush_rx() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_flush_rx(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_flush_tx() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_flush_tx(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } bool furi_hal_subghz_rx_pipe_not_empty() { CC1101RxBytes status[1]; furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_read_reg( &furi_hal_spi_bus_handle_subghz, (CC1101_STATUS_RXBYTES) | CC1101_BURST, (uint8_t*)status); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); // TODO: you can add a buffer overflow flag if needed if(status->NUM_RXBYTES > 0) { return true; } else { return false; } } bool furi_hal_subghz_is_rx_data_crc_valid() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); uint8_t data[1]; cc1101_read_reg(&furi_hal_spi_bus_handle_subghz, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); if(((data[0] >> 7) & 0x01)) { return true; } else { return false; } } void furi_hal_subghz_read_packet(uint8_t* data, uint8_t* size) { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_read_fifo(&furi_hal_spi_bus_handle_subghz, data, size); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_shutdown() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); // Reset and shutdown cc1101_shutdown(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_reset() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz); cc1101_reset(&furi_hal_spi_bus_handle_subghz); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG0, CC1101IocfgHighImpedance); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_idle() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_switch_to_idle(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } void furi_hal_subghz_rx() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_switch_to_rx(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } bool furi_hal_subghz_tx() { if(furi_hal_subghz_regulation != SubGhzRegulationTxRx) return false; furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); cc1101_switch_to_tx(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); return true; } float furi_hal_subghz_get_rssi() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); int32_t rssi_dec = cc1101_get_rssi(&furi_hal_spi_bus_handle_subghz); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); float rssi = rssi_dec; if(rssi_dec >= 128) { rssi = ((rssi - 256.0f) / 2.0f) - 74.0f; } else { rssi = (rssi / 2.0f) - 74.0f; } return rssi; } uint8_t furi_hal_subghz_get_lqi() { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); uint8_t data[1]; cc1101_read_reg(&furi_hal_spi_bus_handle_subghz, CC1101_STATUS_LQI | CC1101_BURST, data); furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); return data[0] & 0x7F; } bool furi_hal_subghz_is_frequency_valid(uint32_t value) { if(!(value >= 299999755 && value <= 348000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000)) { return false; } return true; } uint32_t furi_hal_subghz_set_frequency_and_path(uint32_t value) { value = furi_hal_subghz_set_frequency(value); if(value >= 299999755 && value <= 348000335) { furi_hal_subghz_set_path(FuriHalSubGhzPath315); } else if(value >= 386999938 && value <= 464000000) { furi_hal_subghz_set_path(FuriHalSubGhzPath433); } else if(value >= 778999847 && value <= 928000000) { furi_hal_subghz_set_path(FuriHalSubGhzPath868); } else { furi_crash("SugGhz: Incorrect frequency during set."); } return value; } bool furi_hal_subghz_is_tx_allowed(uint32_t value) { //checking regional settings bool is_allowed = false; switch(furi_hal_version_get_hw_region()) { case FuriHalVersionRegionEuRu: //433,05..434,79; 868,15..868,55 if(!(value >= 299999755 && value <= 348000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000)) { } else { is_allowed = true; } break; case FuriHalVersionRegionUsCaAu: //304,10..321,95; 433,05..434,79; 915,00..928,00 if(!(value >= 299999755 && value <= 348000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000)) { } else { if(furi_hal_rtc_is_flag_set(FuriHalRtcFlagDebug)) { if((value >= 304100000 && value <= 321950000) && ((furi_hal_subghz_preset == FuriHalSubGhzPresetOok270Async) || (furi_hal_subghz_preset == FuriHalSubGhzPresetOok650Async))) { furi_hal_subghz_load_patable(furi_hal_subghz_preset_ook_async_patable_au); } } is_allowed = true; } break; case FuriHalVersionRegionJp: //312,00..315,25; 920,50..923,50 if(!(value >= 299999755 && value <= 348000335) && !(value >= 386999938 && value <= 464000000) && !(value >= 778999847 && value <= 928000000)) { } else { is_allowed = true; } break; default: is_allowed = true; break; } return is_allowed; } uint32_t furi_hal_subghz_set_frequency(uint32_t value) { if(furi_hal_subghz_is_tx_allowed(value)) { furi_hal_subghz_regulation = SubGhzRegulationTxRx; } else { furi_hal_subghz_regulation = SubGhzRegulationOnlyRx; } furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); uint32_t real_frequency = cc1101_set_frequency(&furi_hal_spi_bus_handle_subghz, value); cc1101_calibrate(&furi_hal_spi_bus_handle_subghz); while(true) { CC1101Status status = cc1101_get_status(&furi_hal_spi_bus_handle_subghz); if(status.STATE == CC1101StateIDLE) break; } furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); return real_frequency; } void furi_hal_subghz_set_path(FuriHalSubGhzPath path) { furi_hal_spi_acquire(&furi_hal_spi_bus_handle_subghz); if(path == FuriHalSubGhzPath433) { furi_hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg( &furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if(path == FuriHalSubGhzPath315) { furi_hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW); } else if(path == FuriHalSubGhzPath868) { furi_hal_gpio_write(&gpio_rf_sw_0, 1); cc1101_write_reg( &furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW | CC1101_IOCFG_INV); } else if(path == FuriHalSubGhzPathIsolate) { furi_hal_gpio_write(&gpio_rf_sw_0, 0); cc1101_write_reg(&furi_hal_spi_bus_handle_subghz, CC1101_IOCFG2, CC1101IocfgHW); } else { furi_crash("SubGhz: Incorrect path during set."); } furi_hal_spi_release(&furi_hal_spi_bus_handle_subghz); } volatile uint32_t furi_hal_subghz_capture_delta_duration = 0; volatile FuriHalSubGhzCaptureCallback furi_hal_subghz_capture_callback = NULL; volatile void* furi_hal_subghz_capture_callback_context = NULL; static void furi_hal_subghz_capture_ISR() { // Channel 1 if(LL_TIM_IsActiveFlag_CC1(TIM2)) { LL_TIM_ClearFlag_CC1(TIM2); furi_hal_subghz_capture_delta_duration = LL_TIM_IC_GetCaptureCH1(TIM2); if(furi_hal_subghz_capture_callback) { furi_hal_subghz_capture_callback( true, furi_hal_subghz_capture_delta_duration, (void*)furi_hal_subghz_capture_callback_context); } } // Channel 2 if(LL_TIM_IsActiveFlag_CC2(TIM2)) { LL_TIM_ClearFlag_CC2(TIM2); if(furi_hal_subghz_capture_callback) { furi_hal_subghz_capture_callback( false, LL_TIM_IC_GetCaptureCH2(TIM2) - furi_hal_subghz_capture_delta_duration, (void*)furi_hal_subghz_capture_callback_context); } } } void furi_hal_subghz_start_async_rx(FuriHalSubGhzCaptureCallback callback, void* context) { furi_assert(furi_hal_subghz_state == SubGhzStateIdle); furi_hal_subghz_state = SubGhzStateAsyncRx; furi_hal_subghz_capture_callback = callback; furi_hal_subghz_capture_callback_context = context; furi_hal_gpio_init_ex( &gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullNo, GpioSpeedLow, GpioAltFn1TIM2); // Timer: base LL_TIM_InitTypeDef TIM_InitStruct = {0}; TIM_InitStruct.Prescaler = 64 - 1; TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct.Autoreload = 0x7FFFFFFE; TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV4; LL_TIM_Init(TIM2, &TIM_InitStruct); // Timer: advanced LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_DisableARRPreload(TIM2); LL_TIM_SetTriggerInput(TIM2, LL_TIM_TS_TI2FP2); LL_TIM_SetSlaveMode(TIM2, LL_TIM_SLAVEMODE_RESET); LL_TIM_SetTriggerOutput(TIM2, LL_TIM_TRGO_RESET); LL_TIM_EnableMasterSlaveMode(TIM2); LL_TIM_DisableDMAReq_TRIG(TIM2); LL_TIM_DisableIT_TRIG(TIM2); // Timer: channel 1 indirect LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ACTIVEINPUT_INDIRECTTI); LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_ICPSC_DIV1); LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_POLARITY_FALLING); LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH1, LL_TIM_IC_FILTER_FDIV1); // Timer: channel 2 direct LL_TIM_IC_SetActiveInput(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ACTIVEINPUT_DIRECTTI); LL_TIM_IC_SetPrescaler(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_ICPSC_DIV1); LL_TIM_IC_SetPolarity(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_POLARITY_RISING); LL_TIM_IC_SetFilter(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_IC_FILTER_FDIV32_N8); // ISR setup furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_capture_ISR, NULL); // Interrupts and channels LL_TIM_EnableIT_CC1(TIM2); LL_TIM_EnableIT_CC2(TIM2); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH1); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2); // Start timer LL_TIM_SetCounter(TIM2, 0); LL_TIM_EnableCounter(TIM2); // Switch to RX furi_hal_subghz_rx(); } void furi_hal_subghz_stop_async_rx() { furi_assert(furi_hal_subghz_state == SubGhzStateAsyncRx); furi_hal_subghz_state = SubGhzStateIdle; // Shutdown radio furi_hal_subghz_idle(); FURI_CRITICAL_ENTER(); LL_TIM_DeInit(TIM2); FURI_CRITICAL_EXIT(); furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL); furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); } #define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL (256) #define API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF (API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL / 2) #define API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME 333 typedef struct { uint32_t* buffer; bool flip_flop; FuriHalSubGhzAsyncTxCallback callback; void* callback_context; uint64_t duty_high; uint64_t duty_low; } FuriHalSubGhzAsyncTx; static FuriHalSubGhzAsyncTx furi_hal_subghz_async_tx = {0}; static void furi_hal_subghz_async_tx_refill(uint32_t* buffer, size_t samples) { while(samples > 0) { bool is_odd = samples % 2; LevelDuration ld = furi_hal_subghz_async_tx.callback(furi_hal_subghz_async_tx.callback_context); if(level_duration_is_wait(ld)) { return; } else if(level_duration_is_reset(ld)) { // One more even sample required to end at low level if(is_odd) { *buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; buffer++; samples--; furi_hal_subghz_async_tx.duty_low += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; } break; } else { // Inject guard time if level is incorrect bool level = level_duration_get_level(ld); if(is_odd == level) { *buffer = API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; buffer++; samples--; if(!level) { furi_hal_subghz_async_tx.duty_high += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; } else { furi_hal_subghz_async_tx.duty_low += API_HAL_SUBGHZ_ASYNC_TX_GUARD_TIME; } // This code must be invoked only once: when encoder starts with low level. // Otherwise whole thing will crash. furi_check(samples > 0); } uint32_t duration = level_duration_get_duration(ld); furi_assert(duration > 0); *buffer = duration; buffer++; samples--; if(level) { furi_hal_subghz_async_tx.duty_high += duration; } else { furi_hal_subghz_async_tx.duty_low += duration; } } } memset(buffer, 0, samples * sizeof(uint32_t)); } static void furi_hal_subghz_async_tx_dma_isr() { furi_assert(furi_hal_subghz_state == SubGhzStateAsyncTx); if(LL_DMA_IsActiveFlag_HT1(DMA1)) { LL_DMA_ClearFlag_HT1(DMA1); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF); } if(LL_DMA_IsActiveFlag_TC1(DMA1)) { LL_DMA_ClearFlag_TC1(DMA1); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer + API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_HALF); } } static void furi_hal_subghz_async_tx_timer_isr() { if(LL_TIM_IsActiveFlag_UPDATE(TIM2)) { LL_TIM_ClearFlag_UPDATE(TIM2); if(LL_TIM_GetAutoReload(TIM2) == 0) { if(furi_hal_subghz_state == SubGhzStateAsyncTx) { furi_hal_subghz_state = SubGhzStateAsyncTxLast; //forcibly pulls the pin to the ground so that there is no carrier furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeInput, GpioPullDown, GpioSpeedLow); } else { furi_hal_subghz_state = SubGhzStateAsyncTxEnd; LL_TIM_DisableCounter(TIM2); } } } } bool furi_hal_subghz_start_async_tx(FuriHalSubGhzAsyncTxCallback callback, void* context) { furi_assert(furi_hal_subghz_state == SubGhzStateIdle); furi_assert(callback); //If transmission is prohibited by regional settings if(furi_hal_subghz_regulation != SubGhzRegulationTxRx) return false; furi_hal_subghz_async_tx.callback = callback; furi_hal_subghz_async_tx.callback_context = context; furi_hal_subghz_state = SubGhzStateAsyncTx; furi_hal_subghz_async_tx.duty_low = 0; furi_hal_subghz_async_tx.duty_high = 0; furi_hal_subghz_async_tx.buffer = malloc(API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL * sizeof(uint32_t)); furi_hal_subghz_async_tx_refill( furi_hal_subghz_async_tx.buffer, API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL); // Connect CC1101_GD0 to TIM2 as output furi_hal_gpio_init_ex( &gpio_cc1101_g0, GpioModeAltFunctionPushPull, GpioPullDown, GpioSpeedLow, GpioAltFn1TIM2); // Configure DMA LL_DMA_InitTypeDef dma_config = {0}; dma_config.PeriphOrM2MSrcAddress = (uint32_t) & (TIM2->ARR); dma_config.MemoryOrM2MDstAddress = (uint32_t)furi_hal_subghz_async_tx.buffer; dma_config.Direction = LL_DMA_DIRECTION_MEMORY_TO_PERIPH; dma_config.Mode = LL_DMA_MODE_CIRCULAR; dma_config.PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT; dma_config.MemoryOrM2MDstIncMode = LL_DMA_MEMORY_INCREMENT; dma_config.PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_WORD; dma_config.MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_WORD; dma_config.NbData = API_HAL_SUBGHZ_ASYNC_TX_BUFFER_FULL; dma_config.PeriphRequest = LL_DMAMUX_REQ_TIM2_UP; dma_config.Priority = LL_DMA_MODE_NORMAL; LL_DMA_Init(DMA1, LL_DMA_CHANNEL_1, &dma_config); furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch1, furi_hal_subghz_async_tx_dma_isr, NULL); LL_DMA_EnableIT_TC(DMA1, LL_DMA_CHANNEL_1); LL_DMA_EnableIT_HT(DMA1, LL_DMA_CHANNEL_1); LL_DMA_EnableChannel(DMA1, LL_DMA_CHANNEL_1); // Configure TIM2 LL_TIM_InitTypeDef TIM_InitStruct = {0}; TIM_InitStruct.Prescaler = 64 - 1; TIM_InitStruct.CounterMode = LL_TIM_COUNTERMODE_UP; TIM_InitStruct.Autoreload = 1000; TIM_InitStruct.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; LL_TIM_Init(TIM2, &TIM_InitStruct); LL_TIM_SetClockSource(TIM2, LL_TIM_CLOCKSOURCE_INTERNAL); LL_TIM_EnableARRPreload(TIM2); // Configure TIM2 CH2 LL_TIM_OC_InitTypeDef TIM_OC_InitStruct = {0}; TIM_OC_InitStruct.OCMode = LL_TIM_OCMODE_TOGGLE; TIM_OC_InitStruct.OCState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct.OCNState = LL_TIM_OCSTATE_DISABLE; TIM_OC_InitStruct.CompareValue = 0; TIM_OC_InitStruct.OCPolarity = LL_TIM_OCPOLARITY_HIGH; LL_TIM_OC_Init(TIM2, LL_TIM_CHANNEL_CH2, &TIM_OC_InitStruct); LL_TIM_OC_DisableFast(TIM2, LL_TIM_CHANNEL_CH2); LL_TIM_DisableMasterSlaveMode(TIM2); furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, furi_hal_subghz_async_tx_timer_isr, NULL); LL_TIM_EnableIT_UPDATE(TIM2); LL_TIM_EnableDMAReq_UPDATE(TIM2); LL_TIM_CC_EnableChannel(TIM2, LL_TIM_CHANNEL_CH2); // Start counter LL_TIM_GenerateEvent_UPDATE(TIM2); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, true); #endif furi_hal_subghz_tx(); LL_TIM_SetCounter(TIM2, 0); LL_TIM_EnableCounter(TIM2); return true; } bool furi_hal_subghz_is_async_tx_complete() { return furi_hal_subghz_state == SubGhzStateAsyncTxEnd; } void furi_hal_subghz_stop_async_tx() { furi_assert( furi_hal_subghz_state == SubGhzStateAsyncTx || furi_hal_subghz_state == SubGhzStateAsyncTxLast || furi_hal_subghz_state == SubGhzStateAsyncTxEnd); // Shutdown radio furi_hal_subghz_idle(); #ifdef FURI_HAL_SUBGHZ_TX_GPIO furi_hal_gpio_write(&FURI_HAL_SUBGHZ_TX_GPIO, false); #endif // Deinitialize Timer FURI_CRITICAL_ENTER(); LL_TIM_DeInit(TIM2); furi_hal_interrupt_set_isr(FuriHalInterruptIdTIM2, NULL, NULL); // Deinitialize DMA LL_DMA_DeInit(DMA1, LL_DMA_CHANNEL_1); furi_hal_interrupt_set_isr(FuriHalInterruptIdDma1Ch1, NULL, NULL); // Deinitialize GPIO furi_hal_gpio_init(&gpio_cc1101_g0, GpioModeAnalog, GpioPullNo, GpioSpeedLow); FURI_CRITICAL_EXIT(); free(furi_hal_subghz_async_tx.buffer); float duty_cycle = 100.0f * (float)furi_hal_subghz_async_tx.duty_high / ((float)furi_hal_subghz_async_tx.duty_low + (float)furi_hal_subghz_async_tx.duty_high); FURI_LOG_D( TAG, "Async TX Radio stats: on %0.0fus, off %0.0fus, DutyCycle: %0.0f%%", (double)furi_hal_subghz_async_tx.duty_high, (double)furi_hal_subghz_async_tx.duty_low, (double)duty_cycle); furi_hal_subghz_state = SubGhzStateIdle; }