#include #include "u2f.h" #include "u2f_hid.h" #include "u2f_data.h" #include #include #include // for lfs_tobe32 #include "toolbox/sha256.h" #include "hmac_sha256.h" #include "micro-ecc/uECC.h" #define TAG "U2f" #define WORKER_TAG TAG "Worker" #define U2F_CMD_REGISTER 0x01 #define U2F_CMD_AUTHENTICATE 0x02 #define U2F_CMD_VERSION 0x03 typedef enum { U2fCheckOnly = 0x07, // "check-only" - only check key handle, don't send auth response U2fEnforce = 0x03, // "enforce-user-presence-and-sign" - send auth response only if user is present U2fDontEnforce = 0x08, // "dont-enforce-user-presence-and-sign" - send auth response even if user is missing } U2fAuthMode; typedef struct { uint8_t format; uint8_t xy[64]; } __attribute__((packed)) U2fPubKey; typedef struct { uint8_t len; uint8_t hash[32]; uint8_t nonce[32]; } __attribute__((packed)) U2fKeyHandle; typedef struct { uint8_t cla; uint8_t ins; uint8_t p1; uint8_t p2; uint8_t len[3]; uint8_t challenge[32]; uint8_t app_id[32]; } __attribute__((packed)) U2fRegisterReq; typedef struct { uint8_t reserved; U2fPubKey pub_key; U2fKeyHandle key_handle; uint8_t cert[]; } __attribute__((packed)) U2fRegisterResp; typedef struct { uint8_t cla; uint8_t ins; uint8_t p1; uint8_t p2; uint8_t len[3]; uint8_t challenge[32]; uint8_t app_id[32]; U2fKeyHandle key_handle; } __attribute__((packed)) U2fAuthReq; typedef struct { uint8_t user_present; uint32_t counter; uint8_t signature[]; } __attribute__((packed)) U2fAuthResp; static const uint8_t ver_str[] = {"U2F_V2"}; static const uint8_t state_no_error[] = {0x90, 0x00}; static const uint8_t state_not_supported[] = {0x6D, 0x00}; static const uint8_t state_user_missing[] = {0x69, 0x85}; static const uint8_t state_wrong_data[] = {0x6A, 0x80}; struct U2fData { uint8_t device_key[32]; uint8_t cert_key[32]; uint32_t counter; const struct uECC_Curve_t* p_curve; bool ready; bool user_present; U2fEvtCallback callback; void* context; }; static int u2f_uecc_random(uint8_t* dest, unsigned size) { furi_hal_random_fill_buf(dest, size); return 1; } U2fData* u2f_alloc() { return malloc(sizeof(U2fData)); } void u2f_free(U2fData* U2F) { furi_assert(U2F); free(U2F); } bool u2f_init(U2fData* U2F) { furi_assert(U2F); if(u2f_data_cert_check() == false) { FURI_LOG_E(TAG, "Certificate load error"); return false; } if(u2f_data_cert_key_load(U2F->cert_key) == false) { FURI_LOG_E(TAG, "Certificate key load error"); return false; } if(u2f_data_key_load(U2F->device_key) == false) { FURI_LOG_W(TAG, "Key loading error, generating new"); if(u2f_data_key_generate(U2F->device_key) == false) { FURI_LOG_E(TAG, "Key write failed"); return false; } } if(u2f_data_cnt_read(&U2F->counter) == false) { FURI_LOG_W(TAG, "Counter loading error, resetting counter"); U2F->counter = 0; if(u2f_data_cnt_write(0) == false) { FURI_LOG_E(TAG, "Counter write failed"); return false; } } U2F->p_curve = uECC_secp256r1(); uECC_set_rng(u2f_uecc_random); U2F->ready = true; return true; } void u2f_set_event_callback(U2fData* U2F, U2fEvtCallback callback, void* context) { furi_assert(U2F); furi_assert(callback); U2F->callback = callback; U2F->context = context; } void u2f_confirm_user_present(U2fData* U2F) { U2F->user_present = true; } static uint8_t u2f_der_encode_int(uint8_t* der, uint8_t* val, uint8_t val_len) { der[0] = 0x02; // Integer uint8_t len = 2; // Omit leading zeros while(val[0] == 0 && val_len > 0) { ++val; --val_len; } // Check if integer is negative if(val[0] > 0x7f) der[len++] = 0; memcpy(der + len, val, val_len); len += val_len; der[1] = len - 2; return len; } static uint8_t u2f_der_encode_signature(uint8_t* der, uint8_t* sig) { der[0] = 0x30; uint8_t len = 2; len += u2f_der_encode_int(der + len, sig, 32); len += u2f_der_encode_int(der + len, sig + 32, 32); der[1] = len - 2; return len; } static uint16_t u2f_register(U2fData* U2F, uint8_t* buf) { U2fRegisterReq* req = (U2fRegisterReq*)buf; U2fRegisterResp* resp = (U2fRegisterResp*)buf; U2fKeyHandle handle; uint8_t private[32]; U2fPubKey pub_key; uint8_t hash[32]; uint8_t signature[64]; if(u2f_data_check(false) == false) { U2F->ready = false; if(U2F->callback != NULL) U2F->callback(U2fNotifyError, U2F->context); memcpy(&buf[0], state_not_supported, 2); return 2; } if(U2F->callback != NULL) U2F->callback(U2fNotifyRegister, U2F->context); if(U2F->user_present == false) { memcpy(&buf[0], state_user_missing, 2); return 2; } U2F->user_present = false; hmac_sha256_context hmac_ctx; sha256_context sha_ctx; handle.len = 32 * 2; // Generate random nonce furi_hal_random_fill_buf(handle.nonce, 32); // Generate private key hmac_sha256_init(&hmac_ctx, U2F->device_key); hmac_sha256_update(&hmac_ctx, req->app_id, 32); hmac_sha256_update(&hmac_ctx, handle.nonce, 32); hmac_sha256_finish(&hmac_ctx, U2F->device_key, private); // Generate private key handle hmac_sha256_init(&hmac_ctx, U2F->device_key); hmac_sha256_update(&hmac_ctx, private, 32); hmac_sha256_update(&hmac_ctx, req->app_id, 32); hmac_sha256_finish(&hmac_ctx, U2F->device_key, handle.hash); // Generate public key pub_key.format = 0x04; // Uncompressed point uECC_compute_public_key(private, pub_key.xy, U2F->p_curve); // Generate signature uint8_t reserved_byte = 0; sha256_start(&sha_ctx); sha256_update(&sha_ctx, &reserved_byte, 1); sha256_update(&sha_ctx, req->app_id, 32); sha256_update(&sha_ctx, req->challenge, 32); sha256_update(&sha_ctx, handle.hash, handle.len); sha256_update(&sha_ctx, (uint8_t*)&pub_key, 65); sha256_finish(&sha_ctx, hash); uECC_sign(U2F->cert_key, hash, 32, signature, U2F->p_curve); // Encode response message resp->reserved = 0x05; memcpy(&(resp->pub_key), &pub_key, sizeof(U2fPubKey)); memcpy(&(resp->key_handle), &handle, sizeof(U2fKeyHandle)); uint32_t cert_len = u2f_data_cert_load(resp->cert); uint8_t signature_len = u2f_der_encode_signature(resp->cert + cert_len, signature); memcpy(resp->cert + cert_len + signature_len, state_no_error, 2); return (sizeof(U2fRegisterResp) + cert_len + signature_len + 2); } static uint16_t u2f_authenticate(U2fData* U2F, uint8_t* buf) { U2fAuthReq* req = (U2fAuthReq*)buf; U2fAuthResp* resp = (U2fAuthResp*)buf; uint8_t priv_key[32]; uint8_t mac_control[32]; hmac_sha256_context hmac_ctx; sha256_context sha_ctx; uint8_t flags = 0; uint8_t hash[32]; uint8_t signature[64]; uint32_t be_u2f_counter; if(u2f_data_check(false) == false) { U2F->ready = false; if(U2F->callback != NULL) U2F->callback(U2fNotifyError, U2F->context); memcpy(&buf[0], state_not_supported, 2); return 2; } if(U2F->callback != NULL) U2F->callback(U2fNotifyAuth, U2F->context); if(U2F->user_present == true) { flags |= 1; } else { if(req->p1 == U2fEnforce) { memcpy(&buf[0], state_user_missing, 2); return 2; } } U2F->user_present = false; // The 4 byte counter is represented in big endian. Increment it before use be_u2f_counter = lfs_tobe32(U2F->counter + 1); // Generate hash sha256_start(&sha_ctx); sha256_update(&sha_ctx, req->app_id, 32); sha256_update(&sha_ctx, &flags, 1); sha256_update(&sha_ctx, (uint8_t*)&(be_u2f_counter), 4); sha256_update(&sha_ctx, req->challenge, 32); sha256_finish(&sha_ctx, hash); // Recover private key hmac_sha256_init(&hmac_ctx, U2F->device_key); hmac_sha256_update(&hmac_ctx, req->app_id, 32); hmac_sha256_update(&hmac_ctx, req->key_handle.nonce, 32); hmac_sha256_finish(&hmac_ctx, U2F->device_key, priv_key); // Generate and verify private key handle hmac_sha256_init(&hmac_ctx, U2F->device_key); hmac_sha256_update(&hmac_ctx, priv_key, 32); hmac_sha256_update(&hmac_ctx, req->app_id, 32); hmac_sha256_finish(&hmac_ctx, U2F->device_key, mac_control); if(memcmp(req->key_handle.hash, mac_control, 32) != 0) { FURI_LOG_W(TAG, "Wrong handle!"); memcpy(&buf[0], state_wrong_data, 2); return 2; } if(req->p1 == U2fCheckOnly) { // Check-only: don't need to send full response memcpy(&buf[0], state_user_missing, 2); return 2; } uECC_sign(priv_key, hash, 32, signature, U2F->p_curve); resp->user_present = flags; resp->counter = be_u2f_counter; uint8_t signature_len = u2f_der_encode_signature(resp->signature, signature); memcpy(resp->signature + signature_len, state_no_error, 2); U2F->counter++; FURI_LOG_D(TAG, "Counter: %lu", U2F->counter); u2f_data_cnt_write(U2F->counter); if(U2F->callback != NULL) U2F->callback(U2fNotifyAuthSuccess, U2F->context); return (sizeof(U2fAuthResp) + signature_len + 2); } uint16_t u2f_msg_parse(U2fData* U2F, uint8_t* buf, uint16_t len) { furi_assert(U2F); if(!U2F->ready) return 0; if((buf[0] != 0x00) && (len < 5)) return 0; if(buf[1] == U2F_CMD_REGISTER) { // Register request return u2f_register(U2F, buf); } else if(buf[1] == U2F_CMD_AUTHENTICATE) { // Authenticate request return u2f_authenticate(U2F, buf); } else if(buf[1] == U2F_CMD_VERSION) { // Get U2F version string memcpy(&buf[0], ver_str, 6); memcpy(&buf[6], state_no_error, 2); return 8; } else { memcpy(&buf[0], state_not_supported, 2); return 2; } return 0; } void u2f_wink(U2fData* U2F) { if(U2F->callback != NULL) U2F->callback(U2fNotifyWink, U2F->context); } void u2f_set_state(U2fData* U2F, uint8_t state) { if(state == 0) { if(U2F->callback != NULL) U2F->callback(U2fNotifyDisconnect, U2F->context); } else { if(U2F->callback != NULL) U2F->callback(U2fNotifyConnect, U2F->context); } U2F->user_present = false; }