#include #include #include #include "lfrfid_protocols.h" #define NEXWATCH_PREAMBLE_BIT_SIZE (8) #define NEXWATCH_PREAMBLE_DATA_SIZE (1) #define NEXWATCH_ENCODED_BIT_SIZE (96) #define NEXWATCH_ENCODED_DATA_SIZE ((NEXWATCH_ENCODED_BIT_SIZE) / 8) #define NEXWATCH_DECODED_BIT_SIZE (NEXWATCH_DECODED_DATA_SIZE * 8) #define NEXWATCH_DECODED_DATA_SIZE (8) #define NEXWATCH_US_PER_BIT (255) #define NEXWATCH_ENCODER_PULSES_PER_BIT (16) typedef struct { uint8_t magic; char desc[13]; uint8_t chk; } ProtocolNexwatchMagic; ProtocolNexwatchMagic magic_items[] = { {0xBE, "Quadrakey", 0}, {0x88, "Nexkey", 0}, {0x86, "Honeywell", 0}}; typedef struct { uint8_t data_index; uint8_t bit_clock_index; bool last_bit; bool current_polarity; bool pulse_phase; } ProtocolNexwatchEncoder; typedef struct { uint8_t encoded_data[NEXWATCH_ENCODED_DATA_SIZE]; uint8_t negative_encoded_data[NEXWATCH_ENCODED_DATA_SIZE]; uint8_t corrupted_encoded_data[NEXWATCH_ENCODED_DATA_SIZE]; uint8_t corrupted_negative_encoded_data[NEXWATCH_ENCODED_DATA_SIZE]; uint8_t data[NEXWATCH_DECODED_DATA_SIZE]; ProtocolNexwatchEncoder encoder; } ProtocolNexwatch; ProtocolNexwatch* protocol_nexwatch_alloc(void) { ProtocolNexwatch* protocol = malloc(sizeof(ProtocolNexwatch)); return protocol; }; void protocol_nexwatch_free(ProtocolNexwatch* protocol) { free(protocol); }; uint8_t* protocol_nexwatch_get_data(ProtocolNexwatch* protocol) { return protocol->data; }; void protocol_nexwatch_decoder_start(ProtocolNexwatch* protocol) { memset(protocol->encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE); memset(protocol->negative_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE); memset(protocol->corrupted_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE); memset(protocol->corrupted_negative_encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE); }; static bool protocol_nexwatch_check_preamble(uint8_t* data, size_t bit_index) { // 01010110 if(bit_lib_get_bits(data, bit_index, 8) != 0b01010110) return false; return true; } static uint8_t protocol_nexwatch_parity_swap(uint8_t parity) { uint8_t a = (((parity >> 3) & 1)); a |= (((parity >> 1) & 1) << 1); a |= (((parity >> 2) & 1) << 2); a |= ((parity & 1) << 3); return a; } static uint8_t protocol_nexwatch_parity(const uint8_t hexid[5]) { uint8_t p = 0; for(uint8_t i = 0; i < 5; i++) { p ^= ((hexid[i]) & 0xF0) >> 4; p ^= ((hexid[i]) & 0x0F); } return protocol_nexwatch_parity_swap(p); } static uint8_t protocol_nexwatch_checksum(uint8_t magic, uint32_t id, uint8_t parity) { uint8_t a = ((id >> 24) & 0xFF); a -= ((id >> 16) & 0xFF); a -= ((id >> 8) & 0xFF); a -= (id & 0xFF); a -= magic; a -= (bit_lib_reverse_8_fast(parity) >> 4); return bit_lib_reverse_8_fast(a); } static bool protocol_nexwatch_can_be_decoded(uint8_t* data) { if(!protocol_nexwatch_check_preamble(data, 0)) return false; // Check for reserved word (32-bit) if(bit_lib_get_bits_32(data, 8, 32) != 0) { return false; } uint8_t parity = bit_lib_get_bits(data, 76, 4); // parity check // from 32b hex id, 4b mode uint8_t hex[5] = {0}; for(uint8_t i = 0; i < 5; i++) { hex[i] = bit_lib_get_bits(data, 40 + (i * 8), 8); } //mode is only 4 bits. hex[4] &= 0xf0; uint8_t calc_parity = protocol_nexwatch_parity(hex); if(calc_parity != parity) { return false; } return true; } static bool protocol_nexwatch_decoder_feed_internal(bool polarity, uint32_t time, uint8_t* data) { time += (NEXWATCH_US_PER_BIT / 2); size_t bit_count = (time / NEXWATCH_US_PER_BIT); bool result = false; if(bit_count < NEXWATCH_ENCODED_BIT_SIZE) { for(size_t i = 0; i < bit_count; i++) { bit_lib_push_bit(data, NEXWATCH_ENCODED_DATA_SIZE, polarity); if(protocol_nexwatch_can_be_decoded(data)) { result = true; break; } } } return result; } static void protocol_nexwatch_descramble(uint32_t* id, uint32_t* scrambled) { // 255 = Not used/Unknown other values are the bit offset in the ID/FC values const uint8_t hex_2_id[] = {31, 27, 23, 19, 15, 11, 7, 3, 30, 26, 22, 18, 14, 10, 6, 2, 29, 25, 21, 17, 13, 9, 5, 1, 28, 24, 20, 16, 12, 8, 4, 0}; *id = 0; for(uint8_t idx = 0; idx < 32; idx++) { bool bit_state = (*scrambled >> hex_2_id[idx]) & 1; *id |= (bit_state << (31 - idx)); } } static void protocol_nexwatch_decoder_save(uint8_t* data_to, const uint8_t* data_from) { uint32_t id = bit_lib_get_bits_32(data_from, 40, 32); data_to[4] = (uint8_t)id; data_to[3] = (uint8_t)(id >>= 8); data_to[2] = (uint8_t)(id >>= 8); data_to[1] = (uint8_t)(id >>= 8); data_to[0] = (uint8_t)(id >>= 8); uint32_t check = bit_lib_get_bits_32(data_from, 72, 24); data_to[7] = (uint8_t)check; data_to[6] = (uint8_t)(check >>= 8); data_to[5] = (uint8_t)(check >>= 8); } bool protocol_nexwatch_decoder_feed(ProtocolNexwatch* protocol, bool level, uint32_t duration) { bool result = false; if(duration > (NEXWATCH_US_PER_BIT / 2)) { if(protocol_nexwatch_decoder_feed_internal(level, duration, protocol->encoded_data)) { protocol_nexwatch_decoder_save(protocol->data, protocol->encoded_data); result = true; return result; } if(protocol_nexwatch_decoder_feed_internal( !level, duration, protocol->negative_encoded_data)) { protocol_nexwatch_decoder_save(protocol->data, protocol->negative_encoded_data); result = true; return result; } } if(duration > (NEXWATCH_US_PER_BIT / 4)) { // Try to decode wrong phase synced data if(level) { duration += 120; } else { if(duration > 120) { duration -= 120; } } if(protocol_nexwatch_decoder_feed_internal( level, duration, protocol->corrupted_encoded_data)) { protocol_nexwatch_decoder_save(protocol->data, protocol->corrupted_encoded_data); result = true; return result; } if(protocol_nexwatch_decoder_feed_internal( !level, duration, protocol->corrupted_negative_encoded_data)) { protocol_nexwatch_decoder_save( protocol->data, protocol->corrupted_negative_encoded_data); result = true; return result; } } return result; }; bool protocol_nexwatch_encoder_start(ProtocolNexwatch* protocol) { memset(protocol->encoded_data, 0, NEXWATCH_ENCODED_DATA_SIZE); *(uint32_t*)&protocol->encoded_data[0] = 0b00000000000000000000000001010110; bit_lib_copy_bits(protocol->encoded_data, 32, 32, protocol->data, 0); bit_lib_copy_bits(protocol->encoded_data, 64, 32, protocol->data, 32); protocol->encoder.last_bit = bit_lib_get_bit(protocol->encoded_data, NEXWATCH_ENCODED_BIT_SIZE - 1); protocol->encoder.data_index = 0; protocol->encoder.current_polarity = true; protocol->encoder.pulse_phase = true; protocol->encoder.bit_clock_index = 0; return true; }; LevelDuration protocol_nexwatch_encoder_yield(ProtocolNexwatch* protocol) { LevelDuration level_duration; ProtocolNexwatchEncoder* encoder = &protocol->encoder; if(encoder->pulse_phase) { level_duration = level_duration_make(encoder->current_polarity, 1); encoder->pulse_phase = false; } else { level_duration = level_duration_make(!encoder->current_polarity, 1); encoder->pulse_phase = true; encoder->bit_clock_index++; if(encoder->bit_clock_index >= NEXWATCH_ENCODER_PULSES_PER_BIT) { encoder->bit_clock_index = 0; bool current_bit = bit_lib_get_bit(protocol->encoded_data, encoder->data_index); if(current_bit != encoder->last_bit) { encoder->current_polarity = !encoder->current_polarity; } encoder->last_bit = current_bit; bit_lib_increment_index(encoder->data_index, NEXWATCH_ENCODED_BIT_SIZE); } } return level_duration; }; static void protocol_nexwatch_render_data_internal( ProtocolNexwatch* protocol, FuriString* result, bool brief) { uint32_t id = 0; uint32_t scrambled = bit_lib_get_bits_32(protocol->data, 8, 32); protocol_nexwatch_descramble(&id, &scrambled); uint8_t m_idx; uint8_t mode = bit_lib_get_bits(protocol->data, 40, 4); uint8_t parity = bit_lib_get_bits(protocol->data, 44, 4); uint8_t chk = bit_lib_get_bits(protocol->data, 48, 8); for(m_idx = 0; m_idx < COUNT_OF(magic_items); m_idx++) { magic_items[m_idx].chk = protocol_nexwatch_checksum(magic_items[m_idx].magic, id, parity); if(magic_items[m_idx].chk == chk) { break; } } const char* type = m_idx < COUNT_OF(magic_items) ? magic_items[m_idx].desc : "Unknown"; if(brief) { furi_string_printf( result, "ID: %lu\n" "Mode: %hhu; Type: %s", id, mode, type); } else { furi_string_printf( result, "ID: %lu\n" "Mode: %hhu\n" "Type: %s", id, mode, type); } } void protocol_nexwatch_render_data(ProtocolNexwatch* protocol, FuriString* result) { protocol_nexwatch_render_data_internal(protocol, result, false); } void protocol_nexwatch_render_brief_data(ProtocolNexwatch* protocol, FuriString* result) { protocol_nexwatch_render_data_internal(protocol, result, true); } bool protocol_nexwatch_write_data(ProtocolNexwatch* protocol, void* data) { LFRFIDWriteRequest* request = (LFRFIDWriteRequest*)data; bool result = false; protocol_nexwatch_encoder_start(protocol); if(request->write_type == LFRFIDWriteTypeT5577) { request->t5577.block[0] = LFRFID_T5577_MODULATION_PSK1 | LFRFID_T5577_BITRATE_RF_32 | (3 << LFRFID_T5577_MAXBLOCK_SHIFT); request->t5577.block[1] = bit_lib_get_bits_32(protocol->encoded_data, 0, 32); request->t5577.block[2] = bit_lib_get_bits_32(protocol->encoded_data, 32, 32); request->t5577.block[3] = bit_lib_get_bits_32(protocol->encoded_data, 64, 32); request->t5577.blocks_to_write = 4; result = true; } return result; }; const ProtocolBase protocol_nexwatch = { .name = "Nexwatch", .manufacturer = "Honeywell", .data_size = NEXWATCH_DECODED_DATA_SIZE, .features = LFRFIDFeaturePSK, .validate_count = 6, .alloc = (ProtocolAlloc)protocol_nexwatch_alloc, .free = (ProtocolFree)protocol_nexwatch_free, .get_data = (ProtocolGetData)protocol_nexwatch_get_data, .decoder = { .start = (ProtocolDecoderStart)protocol_nexwatch_decoder_start, .feed = (ProtocolDecoderFeed)protocol_nexwatch_decoder_feed, }, .encoder = { .start = (ProtocolEncoderStart)protocol_nexwatch_encoder_start, .yield = (ProtocolEncoderYield)protocol_nexwatch_encoder_yield, }, .render_data = (ProtocolRenderData)protocol_nexwatch_render_data, .render_brief_data = (ProtocolRenderData)protocol_nexwatch_render_brief_data, .write_data = (ProtocolWriteData)protocol_nexwatch_write_data, };