#include "faac_slh.h" #include "../subghz_keystore.h" #include #include "keeloq_common.h" #include "../blocks/const.h" #include "../blocks/decoder.h" #include "../blocks/encoder.h" #include "../blocks/generic.h" #include "../blocks/math.h" #include "../blocks/custom_btn_i.h" #define TAG "SubGhzProtocolFaacSLH" static const SubGhzBlockConst subghz_protocol_faac_slh_const = { .te_short = 255, .te_long = 595, .te_delta = 100, .min_count_bit_for_found = 64, }; static uint32_t temp_fix_backup = 0; static uint32_t temp_counter_backup = 0; static bool faac_prog_mode = false; static bool allow_zero_seed = false; void faac_slh_reset_prog_mode() { temp_fix_backup = 0; temp_counter_backup = 0; faac_prog_mode = false; allow_zero_seed = false; } struct SubGhzProtocolDecoderFaacSLH { SubGhzProtocolDecoderBase base; SubGhzBlockDecoder decoder; SubGhzBlockGeneric generic; SubGhzKeystore* keystore; const char* manufacture_name; }; struct SubGhzProtocolEncoderFaacSLH { SubGhzProtocolEncoderBase base; SubGhzProtocolBlockEncoder encoder; SubGhzBlockGeneric generic; SubGhzKeystore* keystore; const char* manufacture_name; }; typedef enum { FaacSLHDecoderStepReset = 0, FaacSLHDecoderStepFoundPreambula, FaacSLHDecoderStepSaveDuration, FaacSLHDecoderStepCheckDuration, } FaacSLHDecoderStep; const SubGhzProtocolDecoder subghz_protocol_faac_slh_decoder = { .alloc = subghz_protocol_decoder_faac_slh_alloc, .free = subghz_protocol_decoder_faac_slh_free, .feed = subghz_protocol_decoder_faac_slh_feed, .reset = subghz_protocol_decoder_faac_slh_reset, .get_hash_data = subghz_protocol_decoder_faac_slh_get_hash_data, .serialize = subghz_protocol_decoder_faac_slh_serialize, .deserialize = subghz_protocol_decoder_faac_slh_deserialize, .get_string = subghz_protocol_decoder_faac_slh_get_string, }; const SubGhzProtocolEncoder subghz_protocol_faac_slh_encoder = { .alloc = subghz_protocol_encoder_faac_slh_alloc, .free = subghz_protocol_encoder_faac_slh_free, .deserialize = subghz_protocol_encoder_faac_slh_deserialize, .stop = subghz_protocol_encoder_faac_slh_stop, .yield = subghz_protocol_encoder_faac_slh_yield, }; const SubGhzProtocol subghz_protocol_faac_slh = { .name = SUBGHZ_PROTOCOL_FAAC_SLH_NAME, .type = SubGhzProtocolTypeDynamic, .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send, .decoder = &subghz_protocol_faac_slh_decoder, .encoder = &subghz_protocol_faac_slh_encoder, }; /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param keystore Pointer to a SubGhzKeystore* instance * @param manufacture_name */ static void subghz_protocol_faac_slh_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name); void* subghz_protocol_encoder_faac_slh_alloc(SubGhzEnvironment* environment) { SubGhzProtocolEncoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolEncoderFaacSLH)); instance->base.protocol = &subghz_protocol_faac_slh; instance->generic.protocol_name = instance->base.protocol->name; instance->keystore = subghz_environment_get_keystore(environment); instance->encoder.repeat = 10; instance->encoder.size_upload = 256; instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration)); instance->encoder.is_running = false; return instance; } void subghz_protocol_encoder_faac_slh_free(void* context) { furi_assert(context); SubGhzProtocolEncoderFaacSLH* instance = context; free(instance->encoder.upload); free(instance); } static bool subghz_protocol_faac_slh_gen_data(SubGhzProtocolEncoderFaacSLH* instance) { // TODO: Stupid bypass for custom button, remake later if(subghz_custom_btn_get_original() == 0) { subghz_custom_btn_set_original(0xF); } uint8_t custom_btn_id = subghz_custom_btn_get(); // If we are using UP button - generate programming mode key and send it, otherwise - send regular key if possible if((custom_btn_id == SUBGHZ_CUSTOM_BTN_UP) && !(!allow_zero_seed && (instance->generic.seed == 0x0))) { uint8_t data_tmp = 0; uint8_t data_prg[8]; data_prg[0] = 0x00; if(allow_zero_seed || (instance->generic.seed != 0x0)) { instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult(); if(temp_counter_backup != 0x0) { temp_counter_backup += furi_hal_subghz_get_rolling_counter_mult(); } } data_prg[1] = instance->generic.cnt & 0xFF; data_prg[2] = (uint8_t)(instance->generic.seed & 0xFF); data_prg[3] = (uint8_t)(instance->generic.seed >> 8 & 0xFF); data_prg[4] = (uint8_t)(instance->generic.seed >> 16 & 0xFF); data_prg[5] = (uint8_t)(instance->generic.seed >> 24); data_prg[2] ^= data_prg[1]; data_prg[3] ^= data_prg[1]; data_prg[4] ^= data_prg[1]; data_prg[5] ^= data_prg[1]; for(uint8_t i = data_prg[1] & 0x0F; i != 0; i--) { data_tmp = data_prg[5]; data_prg[5] = ((data_prg[5] << 1) & 0xFF) | (data_prg[4] & 0x80) >> 7; data_prg[4] = ((data_prg[4] << 1) & 0xFF) | (data_prg[3] & 0x80) >> 7; data_prg[3] = ((data_prg[3] << 1) & 0xFF) | (data_prg[2] & 0x80) >> 7; data_prg[2] = ((data_prg[2] << 1) & 0xFF) | (data_tmp & 0x80) >> 7; } data_prg[6] = 0x0F; data_prg[7] = 0x52; uint32_t enc_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 | data_prg[4]; uint32_t enc_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 | data_prg[0]; instance->generic.data = (uint64_t)enc_prg_1 << 32 | enc_prg_2; //FURI_LOG_D(TAG, "New Prog Mode Key Generated: %016llX\r", instance->generic.data); return true; } else { if(!allow_zero_seed && (instance->generic.seed == 0x0)) { // Do not generate new data, send data from buffer return true; } // If we are in prog mode and regular Send button is used - Do not generate new data, send data from buffer if((faac_prog_mode == true) && (instance->generic.serial == 0x0) && (instance->generic.btn == 0x0) && (temp_fix_backup == 0x0)) { return true; } } // Restore main remote data when we exit programming mode if((instance->generic.serial == 0x0) && (instance->generic.btn == 0x0) && (temp_fix_backup != 0x0) && !faac_prog_mode) { instance->generic.serial = temp_fix_backup >> 4; instance->generic.btn = temp_fix_backup & 0xF; instance->generic.cnt = temp_counter_backup; } uint32_t fix = instance->generic.serial << 4 | instance->generic.btn; uint32_t hop = 0; uint32_t decrypt = 0; uint64_t man = 0; int res = 0; char fixx[8] = {}; int shiftby = 32; for(int i = 0; i < 8; i++) { fixx[i] = (fix >> (shiftby -= 4)) & 0xF; } if(allow_zero_seed || (instance->generic.seed != 0x0)) { instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult(); } if((instance->generic.cnt % 2) == 0) { decrypt = fixx[6] << 28 | fixx[7] << 24 | fixx[5] << 20 | (instance->generic.cnt & 0xFFFFF); } else { decrypt = fixx[2] << 28 | fixx[3] << 24 | fixx[4] << 20 | (instance->generic.cnt & 0xFFFFF); } for M_EACH(manufacture_code, *subghz_keystore_get_data(instance->keystore), SubGhzKeyArray_t) { res = strcmp(furi_string_get_cstr(manufacture_code->name), instance->manufacture_name); if(res == 0) { switch(manufacture_code->type) { case KEELOQ_LEARNING_FAAC: //FAAC Learning man = subghz_protocol_keeloq_common_faac_learning( instance->generic.seed, manufacture_code->key); hop = subghz_protocol_keeloq_common_encrypt(decrypt, man); break; } break; } } if(hop) { instance->generic.data = (uint64_t)fix << 32 | hop; } return true; } bool subghz_protocol_faac_slh_create_data( void* context, FlipperFormat* flipper_format, uint32_t serial, uint8_t btn, uint32_t cnt, uint32_t seed, const char* manufacture_name, SubGhzRadioPreset* preset) { furi_assert(context); // roguemaster don't steal!!! SubGhzProtocolEncoderFaacSLH* instance = context; instance->generic.serial = serial; instance->generic.btn = btn; instance->generic.cnt = (cnt & 0xFFFFF); instance->generic.seed = seed; instance->manufacture_name = manufacture_name; instance->generic.data_count_bit = 64; allow_zero_seed = true; bool res = subghz_protocol_faac_slh_gen_data(instance); if(res) { return SubGhzProtocolStatusOk == subghz_block_generic_serialize(&instance->generic, flipper_format, preset); } return res; } /** * Generating an upload from data. * @param instance Pointer to a SubGhzProtocolEncoderFaacSLH instance * @return true On success */ static bool subghz_protocol_encoder_faac_slh_get_upload(SubGhzProtocolEncoderFaacSLH* instance) { furi_assert(instance); subghz_protocol_faac_slh_gen_data(instance); size_t index = 0; size_t size_upload = 2 + (instance->generic.data_count_bit * 2); if(size_upload > instance->encoder.size_upload) { FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer."); return false; } else { instance->encoder.size_upload = size_upload; } //Send header instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long * 2); //Send key data for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) { if(bit_read(instance->generic.data, i - 1)) { //send bit 1 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_long); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_short); } else { //send bit 0 instance->encoder.upload[index++] = level_duration_make(true, (uint32_t)subghz_protocol_faac_slh_const.te_short); instance->encoder.upload[index++] = level_duration_make(false, (uint32_t)subghz_protocol_faac_slh_const.te_long); } } return true; } SubGhzProtocolStatus subghz_protocol_encoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolEncoderFaacSLH* instance = context; SubGhzProtocolStatus res = SubGhzProtocolStatusError; do { if(SubGhzProtocolStatusOk != subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } uint8_t seed_data[sizeof(uint32_t)] = {0}; for(size_t i = 0; i < sizeof(uint32_t); i++) { seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF; } if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) { FURI_LOG_E(TAG, "Missing Seed"); break; } bool tmp_allow_zero_seed; if(flipper_format_read_bool(flipper_format, "AllowZeroSeed", &tmp_allow_zero_seed, 1)) { allow_zero_seed = true; } else { allow_zero_seed = false; } instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 | seed_data[3]; subghz_protocol_faac_slh_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); //optional parameter parameter flipper_format_read_uint32( flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1); subghz_protocol_encoder_faac_slh_get_upload(instance); if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } uint8_t key_data[sizeof(uint64_t)] = {0}; for(size_t i = 0; i < sizeof(uint64_t); i++) { key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF; } if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) { FURI_LOG_E(TAG, "Unable to add Key"); break; } instance->encoder.is_running = true; res = SubGhzProtocolStatusOk; } while(false); return res; } void subghz_protocol_encoder_faac_slh_stop(void* context) { SubGhzProtocolEncoderFaacSLH* instance = context; instance->encoder.is_running = false; } LevelDuration subghz_protocol_encoder_faac_slh_yield(void* context) { SubGhzProtocolEncoderFaacSLH* instance = context; if(instance->encoder.repeat == 0 || !instance->encoder.is_running) { instance->encoder.is_running = false; return level_duration_reset(); } LevelDuration ret = instance->encoder.upload[instance->encoder.front]; if(++instance->encoder.front == instance->encoder.size_upload) { instance->encoder.repeat--; instance->encoder.front = 0; } return ret; } void* subghz_protocol_decoder_faac_slh_alloc(SubGhzEnvironment* environment) { UNUSED(environment); SubGhzProtocolDecoderFaacSLH* instance = malloc(sizeof(SubGhzProtocolDecoderFaacSLH)); instance->base.protocol = &subghz_protocol_faac_slh; instance->generic.protocol_name = instance->base.protocol->name; instance->keystore = subghz_environment_get_keystore(environment); return instance; } void subghz_protocol_decoder_faac_slh_free(void* context) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; free(instance); } void subghz_protocol_decoder_faac_slh_reset(void* context) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; instance->decoder.parser_step = FaacSLHDecoderStepReset; } void subghz_protocol_decoder_faac_slh_feed(void* context, bool level, uint32_t duration) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; switch(instance->decoder.parser_step) { case FaacSLHDecoderStepReset: if((level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) < subghz_protocol_faac_slh_const.te_delta * 3)) { instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula; } break; case FaacSLHDecoderStepFoundPreambula: if((!level) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long * 2) < subghz_protocol_faac_slh_const.te_delta * 3)) { //Found Preambula instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration; instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; } else { instance->decoder.parser_step = FaacSLHDecoderStepReset; } break; case FaacSLHDecoderStepSaveDuration: if(level) { if(duration >= ((uint32_t)subghz_protocol_faac_slh_const.te_short * 3 + subghz_protocol_faac_slh_const.te_delta)) { instance->decoder.parser_step = FaacSLHDecoderStepFoundPreambula; if(instance->decoder.decode_count_bit == subghz_protocol_faac_slh_const.min_count_bit_for_found) { instance->generic.data = instance->decoder.decode_data; instance->generic.data_count_bit = instance->decoder.decode_count_bit; if(instance->base.callback) instance->base.callback(&instance->base, instance->base.context); } instance->decoder.decode_data = 0; instance->decoder.decode_count_bit = 0; break; } else { instance->decoder.te_last = duration; instance->decoder.parser_step = FaacSLHDecoderStepCheckDuration; } } else { instance->decoder.parser_step = FaacSLHDecoderStepReset; } break; case FaacSLHDecoderStepCheckDuration: if(!level) { if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_short) < subghz_protocol_faac_slh_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_long) < subghz_protocol_faac_slh_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 0); instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration; } else if( (DURATION_DIFF(instance->decoder.te_last, subghz_protocol_faac_slh_const.te_long) < subghz_protocol_faac_slh_const.te_delta) && (DURATION_DIFF(duration, subghz_protocol_faac_slh_const.te_short) < subghz_protocol_faac_slh_const.te_delta)) { subghz_protocol_blocks_add_bit(&instance->decoder, 1); instance->decoder.parser_step = FaacSLHDecoderStepSaveDuration; } else { instance->decoder.parser_step = FaacSLHDecoderStepReset; } } else { instance->decoder.parser_step = FaacSLHDecoderStepReset; } break; } } /** * Analysis of received data * @param instance Pointer to a SubGhzBlockGeneric* instance * @param keystore Pointer to a SubGhzKeystore* instance * @param manifacture_name Manufacturer name */ static void subghz_protocol_faac_slh_check_remote_controller( SubGhzBlockGeneric* instance, SubGhzKeystore* keystore, const char** manufacture_name) { uint32_t code_fix = instance->data >> 32; uint32_t code_hop = instance->data & 0xFFFFFFFF; uint32_t decrypt = 0; uint64_t man; // TODO: Stupid bypass for custom button, remake later if(subghz_custom_btn_get_original() == 0) { subghz_custom_btn_set_original(0xF); } subghz_custom_btn_set_max(1); uint8_t data_tmp = 0; uint8_t data_prg[8]; data_prg[0] = (code_hop & 0xFF); data_prg[1] = ((code_hop >> 8) & 0xFF); data_prg[2] = ((code_hop >> 16) & 0xFF); data_prg[3] = (code_hop >> 24); data_prg[4] = (code_fix & 0xFF); data_prg[5] = ((code_fix >> 8) & 0xFF); data_prg[6] = ((code_fix >> 16) & 0xFF); data_prg[7] = (code_fix >> 24); if(((data_prg[7] == 0x52) && (data_prg[6] == 0x0F) && (data_prg[0] == 0x00))) { faac_prog_mode = true; // ProgMode ON for(uint8_t i = data_prg[1] & 0xF; i != 0; i--) { data_tmp = data_prg[2]; data_prg[2] = data_prg[2] >> 1 | (data_prg[3] & 1) << 7; data_prg[3] = data_prg[3] >> 1 | (data_prg[4] & 1) << 7; data_prg[4] = data_prg[4] >> 1 | (data_prg[5] & 1) << 7; data_prg[5] = data_prg[5] >> 1 | (data_tmp & 1) << 7; } data_prg[2] ^= data_prg[1]; data_prg[3] ^= data_prg[1]; data_prg[4] ^= data_prg[1]; data_prg[5] ^= data_prg[1]; instance->seed = data_prg[5] << 24 | data_prg[4] << 16 | data_prg[3] << 8 | data_prg[2]; uint32_t dec_prg_1 = data_prg[7] << 24 | data_prg[6] << 16 | data_prg[5] << 8 | data_prg[4]; uint32_t dec_prg_2 = data_prg[3] << 24 | data_prg[2] << 16 | data_prg[1] << 8 | data_prg[0]; instance->data_2 = (uint64_t)dec_prg_1 << 32 | dec_prg_2; instance->cnt = data_prg[1]; *manufacture_name = "FAAC_SLH"; return; } else { if(code_fix != 0x0) { temp_fix_backup = code_fix; instance->serial = code_fix >> 4; instance->btn = code_fix & 0xF; } faac_prog_mode = false; } for M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) { switch(manufacture_code->type) { case KEELOQ_LEARNING_FAAC: // FAAC Learning man = subghz_protocol_keeloq_common_faac_learning( instance->seed, manufacture_code->key); decrypt = subghz_protocol_keeloq_common_decrypt(code_hop, man); *manufacture_name = furi_string_get_cstr(manufacture_code->name); break; } } instance->cnt = decrypt & 0xFFFFF; // Backup counter in case when we need to use programming mode if(code_fix != 0x0) { temp_counter_backup = instance->cnt; } } uint8_t subghz_protocol_decoder_faac_slh_get_hash_data(void* context) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; return subghz_protocol_blocks_get_hash_data( &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1); } SubGhzProtocolStatus subghz_protocol_decoder_faac_slh_serialize( void* context, FlipperFormat* flipper_format, SubGhzRadioPreset* preset) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; // Reset seed leftover from previous decoded signal instance->generic.seed = 0x0; temp_fix_backup = 0x0; SubGhzProtocolStatus res = subghz_block_generic_serialize(&instance->generic, flipper_format, preset); uint8_t seed_data[sizeof(uint32_t)] = {0}; for(size_t i = 0; i < sizeof(uint32_t); i++) { seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF; } if((res == SubGhzProtocolStatusOk) && !flipper_format_write_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) { FURI_LOG_E(TAG, "Unable to add Seed"); res = SubGhzProtocolStatusError; } instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 | seed_data[3]; subghz_protocol_faac_slh_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); return res; } SubGhzProtocolStatus subghz_protocol_decoder_faac_slh_deserialize(void* context, FlipperFormat* flipper_format) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; SubGhzProtocolStatus res = SubGhzProtocolStatusError; do { if(SubGhzProtocolStatusOk != subghz_block_generic_deserialize(&instance->generic, flipper_format)) { FURI_LOG_E(TAG, "Deserialize error"); break; } if(instance->generic.data_count_bit != subghz_protocol_faac_slh_const.min_count_bit_for_found) { FURI_LOG_E(TAG, "Wrong number of bits in key"); break; } uint8_t seed_data[sizeof(uint32_t)] = {0}; for(size_t i = 0; i < sizeof(uint32_t); i++) { seed_data[sizeof(uint32_t) - i - 1] = (instance->generic.seed >> i * 8) & 0xFF; } if(!flipper_format_read_hex(flipper_format, "Seed", seed_data, sizeof(uint32_t))) { FURI_LOG_E(TAG, "Missing Seed"); break; } bool tmp_allow_zero_seed; if(flipper_format_read_bool(flipper_format, "AllowZeroSeed", &tmp_allow_zero_seed, 1)) { allow_zero_seed = true; } else { allow_zero_seed = false; } instance->generic.seed = seed_data[0] << 24 | seed_data[1] << 16 | seed_data[2] << 8 | seed_data[3]; if(!flipper_format_rewind(flipper_format)) { FURI_LOG_E(TAG, "Rewind error"); break; } res = SubGhzProtocolStatusOk; } while(false); return res; } void subghz_protocol_decoder_faac_slh_get_string(void* context, FuriString* output) { furi_assert(context); SubGhzProtocolDecoderFaacSLH* instance = context; subghz_protocol_faac_slh_check_remote_controller( &instance->generic, instance->keystore, &instance->manufacture_name); uint32_t code_fix = instance->generic.data >> 32; uint32_t code_hop = instance->generic.data & 0xFFFFFFFF; if(faac_prog_mode == true) { furi_string_cat_printf( output, "%s %dbit\r\n" "Master Remote Prog Mode\r\n" "Ke:%lX%08lX\r\n" "Kd:%lX%08lX\r\n" "Seed:%08lX mCnt:%02X", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, (uint32_t)(instance->generic.data_2 >> 32), (uint32_t)instance->generic.data_2, instance->generic.seed, (uint8_t)(instance->generic.cnt & 0xFF)); } else if((allow_zero_seed == false) && (instance->generic.seed == 0x0)) { furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%lX%08lX\r\n" "Fix:%08lX\r\n" "Hop:%08lX Btn:%X\r\n" "Sn:%07lX Sd:Unknown", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, code_fix, code_hop, instance->generic.btn, instance->generic.serial); } else { furi_string_cat_printf( output, "%s %dbit\r\n" "Key:%lX%08lX\r\n" "Fix:%08lX Cnt:%05lX\r\n" "Hop:%08lX Btn:%X\r\n" "Sn:%07lX Sd:%08lX", instance->generic.protocol_name, instance->generic.data_count_bit, (uint32_t)(instance->generic.data >> 32), (uint32_t)instance->generic.data, code_fix, instance->generic.cnt, code_hop, instance->generic.btn, instance->generic.serial, instance->generic.seed); } }