#include "nice_flor_s.h"

#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"

/*
 * https://phreakerclub.com/1615
 * https://phreakerclub.com/forum/showthread.php?t=2360
 * https://vrtp.ru/index.php?showtopic=27867
 */

#define TAG "SubGhzProtocolNiceFlorS"

#define NICE_ONE_COUNT_BIT 72
#define NICE_ONE_NAME "Nice One"

static const SubGhzBlockConst subghz_protocol_nice_flor_s_const = {
    .te_short = 500,
    .te_long = 1000,
    .te_delta = 300,
    .min_count_bit_for_found = 52,
};

struct SubGhzProtocolDecoderNiceFlorS {
    SubGhzProtocolDecoderBase base;

    SubGhzBlockDecoder decoder;
    SubGhzBlockGeneric generic;

    const char* nice_flor_s_rainbow_table_file_name;
    uint64_t data;
};

struct SubGhzProtocolEncoderNiceFlorS {
    SubGhzProtocolEncoderBase base;

    SubGhzProtocolBlockEncoder encoder;
    SubGhzBlockGeneric generic;

    const char* nice_flor_s_rainbow_table_file_name;
};

typedef enum {
    NiceFlorSDecoderStepReset = 0,
    NiceFlorSDecoderStepCheckHeader,
    NiceFlorSDecoderStepFoundHeader,
    NiceFlorSDecoderStepSaveDuration,
    NiceFlorSDecoderStepCheckDuration,
} NiceFlorSDecoderStep;

const SubGhzProtocolDecoder subghz_protocol_nice_flor_s_decoder = {
    .alloc = subghz_protocol_decoder_nice_flor_s_alloc,
    .free = subghz_protocol_decoder_nice_flor_s_free,

    .feed = subghz_protocol_decoder_nice_flor_s_feed,
    .reset = subghz_protocol_decoder_nice_flor_s_reset,

    .get_hash_data = subghz_protocol_decoder_nice_flor_s_get_hash_data,
    .serialize = subghz_protocol_decoder_nice_flor_s_serialize,
    .deserialize = subghz_protocol_decoder_nice_flor_s_deserialize,
    .get_string = subghz_protocol_decoder_nice_flor_s_get_string,
};

const SubGhzProtocolEncoder subghz_protocol_nice_flor_s_encoder = {
    .alloc = subghz_protocol_encoder_nice_flor_s_alloc,
    .free = subghz_protocol_encoder_nice_flor_s_free,

    .deserialize = subghz_protocol_encoder_nice_flor_s_deserialize,
    .stop = subghz_protocol_encoder_nice_flor_s_stop,
    .yield = subghz_protocol_encoder_nice_flor_s_yield,
};

const SubGhzProtocol subghz_protocol_nice_flor_s = {
    .name = SUBGHZ_PROTOCOL_NICE_FLOR_S_NAME,
    .type = SubGhzProtocolTypeDynamic,
    .flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_868 | SubGhzProtocolFlag_AM |
            SubGhzProtocolFlag_Decodable | SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save |
            SubGhzProtocolFlag_Send,

    .decoder = &subghz_protocol_nice_flor_s_decoder,
    .encoder = &subghz_protocol_nice_flor_s_encoder,
};

static uint8_t n_btn_temp_id;
static uint8_t n_btn_temp_id_original;

void nice_flors_set_btn(uint8_t b) {
    n_btn_temp_id = b;
}

uint8_t nice_flors_get_original_btn() {
    return n_btn_temp_id_original;
}

uint8_t nice_flors_get_custom_btn() {
    return n_btn_temp_id;
}

void nice_flors_reset_original_btn() {
    n_btn_temp_id_original = 0;
}

static void subghz_protocol_nice_flor_s_remote_controller(
    SubGhzBlockGeneric* instance,
    const char* file_name);

void* subghz_protocol_encoder_nice_flor_s_alloc(SubGhzEnvironment* environment) {
    SubGhzProtocolEncoderNiceFlorS* instance = malloc(sizeof(SubGhzProtocolEncoderNiceFlorS));

    instance->base.protocol = &subghz_protocol_nice_flor_s;
    instance->generic.protocol_name = instance->base.protocol->name;
    instance->nice_flor_s_rainbow_table_file_name =
        subghz_environment_get_nice_flor_s_rainbow_table_file_name(environment);
    if(instance->nice_flor_s_rainbow_table_file_name) {
        FURI_LOG_D(
            TAG, "Loading rainbow table from %s", instance->nice_flor_s_rainbow_table_file_name);
    }
    instance->encoder.repeat = 10;
    instance->encoder.size_upload = 2400; //wrong!! upload 186*16 = 2976 - actual size about 1728
    instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
    instance->encoder.is_running = false;
    return instance;
}

void subghz_protocol_encoder_nice_flor_s_free(void* context) {
    furi_assert(context);
    SubGhzProtocolEncoderNiceFlorS* instance = context;
    free(instance->encoder.upload);
    free(instance);
}

static void subghz_protocol_nice_one_get_data(uint8_t* p, uint8_t num_parcel, uint8_t hold_bit);

/**
 * Generating an upload from data.
 * @param instance Pointer to a SubGhzProtocolEncoderNiceFlorS instance
 * @return true On success
 */
static void subghz_protocol_encoder_nice_flor_s_get_upload(
    SubGhzProtocolEncoderNiceFlorS* instance,
    uint8_t btn,
    const char* file_name) {
    furi_assert(instance);
    size_t index = 0;
    btn = instance->generic.btn;

    // Save original button for later use
    if(n_btn_temp_id_original == 0) {
        n_btn_temp_id_original = btn;
    }

    // Set custom button
    if(n_btn_temp_id == 1) {
        switch(n_btn_temp_id_original) {
        case 0x1:
            btn = 0x2;
            break;
        case 0x2:
            btn = 0x1;
            break;
        case 0x4:
            btn = 0x1;
            break;
        case 0x8:
            btn = 0x1;
            break;

        default:
            break;
        }
    }
    if(n_btn_temp_id == 2) {
        switch(n_btn_temp_id_original) {
        case 0x1:
            btn = 0x4;
            break;
        case 0x2:
            btn = 0x4;
            break;
        case 0x4:
            btn = 0x2;
            break;
        case 0x8:
            btn = 0x4;
            break;

        default:
            break;
        }
    }
    if(n_btn_temp_id == 3) {
        switch(n_btn_temp_id_original) {
        case 0x1:
            btn = 0x8;
            break;
        case 0x2:
            btn = 0x8;
            break;
        case 0x4:
            btn = 0x8;
            break;
        case 0x8:
            btn = 0x2;
            break;

        default:
            break;
        }
    }

    if((n_btn_temp_id == 0) && (n_btn_temp_id_original != 0)) {
        btn = n_btn_temp_id_original;
    }

    size_t size_upload = ((instance->generic.data_count_bit * 2) + ((37 + 2 + 2) * 2) * 16);
    if(size_upload > instance->encoder.size_upload) {
        FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
    } else {
        instance->encoder.size_upload = size_upload;
    }

    if(instance->generic.cnt < 0xFFFF) {
        if((instance->generic.cnt + furi_hal_subghz_get_rolling_counter_mult()) >= 0xFFFF) {
            instance->generic.cnt = 0;
        } else {
            instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult();
        }
    } else if(instance->generic.cnt >= 0xFFFF) {
        instance->generic.cnt = 0;
    }
    uint64_t decrypt = ((uint64_t)instance->generic.serial << 16) | instance->generic.cnt;
    uint64_t enc_part = subghz_protocol_nice_flor_s_encrypt(decrypt, file_name);

    for(int i = 0; i < 16; i++) {
        static const uint64_t loops[16] = {
            0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF};

        uint8_t byte;

        byte = btn << 4 | (0xF ^ btn ^ loops[i]);
        instance->generic.data = (uint64_t)byte << 44 | enc_part;

        //Send header
        instance->encoder.upload[index++] =
            level_duration_make(false, (uint32_t)subghz_protocol_nice_flor_s_const.te_short * 37);
        //Send start bit
        instance->encoder.upload[index++] =
            level_duration_make(true, (uint32_t)subghz_protocol_nice_flor_s_const.te_short * 3);
        instance->encoder.upload[index++] =
            level_duration_make(false, (uint32_t)subghz_protocol_nice_flor_s_const.te_short * 3);

        //Send key data
        for(uint8_t j = 52; j > 0; j--) {
            if(bit_read(instance->generic.data, j - 1)) {
                //send bit 1
                instance->encoder.upload[index++] =
                    level_duration_make(true, (uint32_t)subghz_protocol_nice_flor_s_const.te_long);
                instance->encoder.upload[index++] = level_duration_make(
                    false, (uint32_t)subghz_protocol_nice_flor_s_const.te_short);
            } else {
                //send bit 0
                instance->encoder.upload[index++] = level_duration_make(
                    true, (uint32_t)subghz_protocol_nice_flor_s_const.te_short);
                instance->encoder.upload[index++] = level_duration_make(
                    false, (uint32_t)subghz_protocol_nice_flor_s_const.te_long);
            }
        }
        if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
            uint8_t add_data[10] = {0};
            for(size_t i = 0; i < 7; i++) {
                add_data[i] = (instance->generic.data >> (48 - i * 8)) & 0xFF;
            }
            subghz_protocol_nice_one_get_data(add_data, loops[i], loops[i]);
            instance->generic.data_2 = 0;
            for(size_t j = 7; j < 10; j++) {
                instance->generic.data_2 <<= 8;
                instance->generic.data_2 += add_data[j];
            }

            //Send key data
            for(uint8_t j = 24; j > 4; j--) {
                if(bit_read(instance->generic.data_2, j - 1)) {
                    //send bit 1
                    instance->encoder.upload[index++] = level_duration_make(
                        true, (uint32_t)subghz_protocol_nice_flor_s_const.te_long);
                    instance->encoder.upload[index++] = level_duration_make(
                        false, (uint32_t)subghz_protocol_nice_flor_s_const.te_short);
                } else {
                    //send bit 0
                    instance->encoder.upload[index++] = level_duration_make(
                        true, (uint32_t)subghz_protocol_nice_flor_s_const.te_short);
                    instance->encoder.upload[index++] = level_duration_make(
                        false, (uint32_t)subghz_protocol_nice_flor_s_const.te_long);
                }
            }
        }
        //Send stop bit
        instance->encoder.upload[index++] =
            level_duration_make(true, (uint32_t)subghz_protocol_nice_flor_s_const.te_short * 3);
        //instance->encoder.upload[index++] =
        //level_duration_make(false, (uint32_t)subghz_protocol_nice_flor_s_const.te_short * 3);
    }
    instance->encoder.size_upload = index;
}

SubGhzProtocolStatus
    subghz_protocol_encoder_nice_flor_s_deserialize(void* context, FlipperFormat* flipper_format) {
    furi_assert(context);
    SubGhzProtocolEncoderNiceFlorS* instance = context;
    SubGhzProtocolStatus res = SubGhzProtocolStatusError;
    do {
        if(SubGhzProtocolStatusOk !=
           subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
            FURI_LOG_E(TAG, "Deserialize error");
            break;
        }

        //optional parameter parameter
        flipper_format_read_uint32(
            flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
        // flipper_format_read_uint32(
        // flipper_format, "Data", (uint32_t*)&instance->generic.data_2, 1);

        subghz_protocol_nice_flor_s_remote_controller(
            &instance->generic, instance->nice_flor_s_rainbow_table_file_name);
        subghz_protocol_encoder_nice_flor_s_get_upload(
            instance, instance->generic.btn, instance->nice_flor_s_rainbow_table_file_name);

        if(!flipper_format_rewind(flipper_format)) {
            FURI_LOG_E(TAG, "Rewind error");
            break;
        }
        uint8_t key_data[sizeof(uint64_t)] = {0};
        for(size_t i = 0; i < sizeof(uint64_t); i++) {
            key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
        }
        if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
            FURI_LOG_E(TAG, "Unable to add Key");
            break;
        }

        if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
            if(!flipper_format_rewind(flipper_format)) {
                FURI_LOG_E(TAG, "Rewind error");
                break;
            }
            uint32_t temp = (instance->generic.data_2 >> 4) & 0xFFFFF;
            if(!flipper_format_update_uint32(flipper_format, "Data", &temp, 1)) {
                FURI_LOG_E(TAG, "Unable to add Data");
            }
        }

        instance->encoder.is_running = true;

        res = SubGhzProtocolStatusOk;
    } while(false);

    return res;
}

void subghz_protocol_encoder_nice_flor_s_stop(void* context) {
    SubGhzProtocolEncoderNiceFlorS* instance = context;
    instance->encoder.is_running = false;
}

LevelDuration subghz_protocol_encoder_nice_flor_s_yield(void* context) {
    SubGhzProtocolEncoderNiceFlorS* instance = context;

    if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
        instance->encoder.is_running = false;
        return level_duration_reset();
    }

    LevelDuration ret = instance->encoder.upload[instance->encoder.front];

    if(++instance->encoder.front == instance->encoder.size_upload) {
        instance->encoder.repeat--;
        instance->encoder.front = 0;
    }

    return ret;
}

/**
 * Read bytes from rainbow table
 * @param p array[10]  P0-P1|P2-P3-P4-P5-P6-P7-P8-P9-P10
 * @return crc
 */
static uint32_t subghz_protocol_nice_one_crc(uint8_t* p) {
    uint8_t crc = 0;
    uint8_t crc_data = 0xff;
    for(uint8_t i = 4; i < 68; i++) {
        if(subghz_protocol_blocks_get_bit_array(p, i)) {
            crc = crc_data ^ 1;
        } else {
            crc = crc_data;
        }
        crc_data >>= 1;
        if((crc & 0x01)) {
            crc_data ^= 0x97;
        }
    }
    crc = 0;
    for(uint8_t i = 0; i < 8; i++) {
        crc <<= 1;
        if((crc_data >> i) & 0x01) crc = crc | 1;
    }
    return crc;
}

/**
 * Read bytes from rainbow table
 * @param p array[10]  P0-P1|P2-P3-P4-P5-P6-P7-XX-XX-XX
 * @param num_parcel  parcel number 0..15
 * @param hold_bit  0 - the button was only pressed, 1 - the button was held down
 */
static void subghz_protocol_nice_one_get_data(uint8_t* p, uint8_t num_parcel, uint8_t hold_bit) {
    uint8_t k = 0;
    uint8_t crc = 0;
    p[1] = (p[1] & 0x0f) | ((0x0f ^ (p[0] & 0x0F) ^ num_parcel) << 4);
    if(num_parcel < 4) {
        k = 0x8f;
    } else {
        k = 0x80;
    }

    if(!hold_bit) {
        hold_bit = 0;
    } else {
        hold_bit = 0x10;
    }
    k = num_parcel ^ k;
    p[7] = k;
    p[8] = hold_bit ^ (k << 4);

    crc = subghz_protocol_nice_one_crc(p);

    p[8] |= crc >> 4;
    p[9] = crc << 4;
}

/** 
 * Read bytes from rainbow table
 * @param file_name Full path to rainbow table the file 
 * @param address Byte address in file
 * @return data
 */
static uint8_t
    subghz_protocol_nice_flor_s_get_byte_in_file(const char* file_name, uint32_t address) {
    if(!file_name) return 0;

    uint8_t buffer[1] = {0};
    if(subghz_keystore_raw_get_data(file_name, address, buffer, sizeof(uint8_t))) {
        return buffer[0];
    } else {
        return 0;
    }
}

static inline void subghz_protocol_decoder_nice_flor_s_magic_xor(uint8_t* p, uint8_t k) {
    for(uint8_t i = 1; i < 6; i++) {
        p[i] ^= k;
    }
}

uint64_t subghz_protocol_nice_flor_s_encrypt(uint64_t data, const char* file_name) {
    uint8_t* p = (uint8_t*)&data;

    uint8_t k = 0;
    for(uint8_t y = 0; y < 2; y++) {
        k = subghz_protocol_nice_flor_s_get_byte_in_file(file_name, p[0] & 0x1f);
        subghz_protocol_decoder_nice_flor_s_magic_xor(p, k);

        p[5] &= 0x0f;
        p[0] ^= k & 0xe0;
        k = subghz_protocol_nice_flor_s_get_byte_in_file(file_name, p[0] >> 3) + 0x25;
        subghz_protocol_decoder_nice_flor_s_magic_xor(p, k);

        p[5] &= 0x0f;
        p[0] ^= k & 0x7;
        if(y == 0) {
            k = p[0];
            p[0] = p[1];
            p[1] = k;
        }
    }

    p[5] = ~p[5] & 0x0f;
    k = ~p[4];
    p[4] = ~p[0];
    p[0] = ~p[2];
    p[2] = k;
    k = ~p[3];
    p[3] = ~p[1];
    p[1] = k;

    return data;
}

static uint64_t
    subghz_protocol_nice_flor_s_decrypt(SubGhzBlockGeneric* instance, const char* file_name) {
    furi_assert(instance);
    uint64_t data = instance->data;
    uint8_t* p = (uint8_t*)&data;

    uint8_t k = 0;

    k = ~p[4];
    p[5] = ~p[5];
    p[4] = ~p[2];
    p[2] = ~p[0];
    p[0] = k;
    k = ~p[3];
    p[3] = ~p[1];
    p[1] = k;

    for(uint8_t y = 0; y < 2; y++) {
        k = subghz_protocol_nice_flor_s_get_byte_in_file(file_name, p[0] >> 3) + 0x25;
        subghz_protocol_decoder_nice_flor_s_magic_xor(p, k);

        p[5] &= 0x0f;
        p[0] ^= k & 0x7;
        k = subghz_protocol_nice_flor_s_get_byte_in_file(file_name, p[0] & 0x1f);
        subghz_protocol_decoder_nice_flor_s_magic_xor(p, k);

        p[5] &= 0x0f;
        p[0] ^= k & 0xe0;

        if(y == 0) {
            k = p[0];
            p[0] = p[1];
            p[1] = k;
        }
    }

    return data;
}

bool subghz_protocol_nice_flor_s_create_data(
    void* context,
    FlipperFormat* flipper_format,
    uint32_t serial,
    uint8_t btn,
    uint16_t cnt,
    SubGhzRadioPreset* preset,
    bool nice_one) {
    furi_assert(context);
    SubGhzProtocolEncoderNiceFlorS* instance = context;
    instance->generic.serial = serial;
    instance->generic.cnt = cnt;
    if(nice_one) {
        instance->generic.data_count_bit = NICE_ONE_COUNT_BIT;
    } else {
        instance->generic.data_count_bit = 52;
    }
    uint64_t decrypt = ((uint64_t)instance->generic.serial << 16) | instance->generic.cnt;
    uint64_t enc_part = subghz_protocol_nice_flor_s_encrypt(
        decrypt, instance->nice_flor_s_rainbow_table_file_name);
    uint8_t byte = btn << 4 | (0xF ^ btn ^ 0x3);
    instance->generic.data = (uint64_t)byte << 44 | enc_part;

    if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
        uint8_t add_data[10] = {0};
        for(size_t i = 0; i < 7; i++) {
            add_data[i] = (instance->generic.data >> (48 - i * 8)) & 0xFF;
        }
        subghz_protocol_nice_one_get_data(add_data, 0, 0);
        instance->generic.data_2 = 0;
        for(size_t j = 7; j < 10; j++) {
            instance->generic.data_2 <<= 8;
            instance->generic.data_2 += add_data[j];
        }
    }

    SubGhzProtocolStatus res =
        subghz_block_generic_serialize(&instance->generic, flipper_format, preset);

    return res == SubGhzProtocolStatusOk;
}

void* subghz_protocol_decoder_nice_flor_s_alloc(SubGhzEnvironment* environment) {
    SubGhzProtocolDecoderNiceFlorS* instance = malloc(sizeof(SubGhzProtocolDecoderNiceFlorS));
    instance->base.protocol = &subghz_protocol_nice_flor_s;
    instance->generic.protocol_name = instance->base.protocol->name;
    instance->nice_flor_s_rainbow_table_file_name =
        subghz_environment_get_nice_flor_s_rainbow_table_file_name(environment);
    if(instance->nice_flor_s_rainbow_table_file_name) {
        FURI_LOG_D(
            TAG, "Loading rainbow table from %s", instance->nice_flor_s_rainbow_table_file_name);
    }
    return instance;
}

void subghz_protocol_decoder_nice_flor_s_free(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;
    instance->nice_flor_s_rainbow_table_file_name = NULL;
    free(instance);
}

void subghz_protocol_decoder_nice_flor_s_reset(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;
    instance->decoder.parser_step = NiceFlorSDecoderStepReset;
}

void subghz_protocol_decoder_nice_flor_s_feed(void* context, bool level, uint32_t duration) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;

    switch(instance->decoder.parser_step) {
    case NiceFlorSDecoderStepReset:
        if((!level) && (DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_short * 38) <
                        subghz_protocol_nice_flor_s_const.te_delta * 38)) {
            //Found start header Nice Flor-S
            instance->decoder.parser_step = NiceFlorSDecoderStepCheckHeader;
        }
        break;
    case NiceFlorSDecoderStepCheckHeader:
        if((level) && (DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_short * 3) <
                       subghz_protocol_nice_flor_s_const.te_delta * 3)) {
            //Found next header Nice Flor-S
            instance->decoder.parser_step = NiceFlorSDecoderStepFoundHeader;
        } else {
            instance->decoder.parser_step = NiceFlorSDecoderStepReset;
        }
        break;
    case NiceFlorSDecoderStepFoundHeader:
        if((!level) && (DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_short * 3) <
                        subghz_protocol_nice_flor_s_const.te_delta * 3)) {
            //Found header Nice Flor-S
            instance->decoder.parser_step = NiceFlorSDecoderStepSaveDuration;
            instance->decoder.decode_data = 0;
            instance->decoder.decode_count_bit = 0;
        } else {
            instance->decoder.parser_step = NiceFlorSDecoderStepReset;
        }
        break;
    case NiceFlorSDecoderStepSaveDuration:
        if(level) {
            if(DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_short * 3) <
               subghz_protocol_nice_flor_s_const.te_delta) {
                //Found STOP bit
                instance->decoder.parser_step = NiceFlorSDecoderStepReset;
                if((instance->decoder.decode_count_bit ==
                    subghz_protocol_nice_flor_s_const.min_count_bit_for_found) ||
                   (instance->decoder.decode_count_bit == NICE_ONE_COUNT_BIT)) {
                    instance->generic.data = instance->data;
                    instance->data = instance->decoder.decode_data;
                    instance->decoder.decode_data = instance->generic.data;
                    instance->generic.data_count_bit = instance->decoder.decode_count_bit;

                    if(instance->base.callback)
                        instance->base.callback(&instance->base, instance->base.context);
                }
                break;
            } else {
                //save interval
                instance->decoder.te_last = duration;
                instance->decoder.parser_step = NiceFlorSDecoderStepCheckDuration;
            }
        }
        break;
    case NiceFlorSDecoderStepCheckDuration:
        if(!level) {
            if((DURATION_DIFF(
                    instance->decoder.te_last, subghz_protocol_nice_flor_s_const.te_short) <
                subghz_protocol_nice_flor_s_const.te_delta) &&
               (DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_long) <
                subghz_protocol_nice_flor_s_const.te_delta)) {
                subghz_protocol_blocks_add_bit(&instance->decoder, 0);
                instance->decoder.parser_step = NiceFlorSDecoderStepSaveDuration;
            } else if(
                (DURATION_DIFF(
                     instance->decoder.te_last, subghz_protocol_nice_flor_s_const.te_long) <
                 subghz_protocol_nice_flor_s_const.te_delta) &&
                (DURATION_DIFF(duration, subghz_protocol_nice_flor_s_const.te_short) <
                 subghz_protocol_nice_flor_s_const.te_delta)) {
                subghz_protocol_blocks_add_bit(&instance->decoder, 1);
                instance->decoder.parser_step = NiceFlorSDecoderStepSaveDuration;
            } else
                instance->decoder.parser_step = NiceFlorSDecoderStepReset;
        } else {
            instance->decoder.parser_step = NiceFlorSDecoderStepReset;
        }
        if(instance->decoder.decode_count_bit ==
           subghz_protocol_nice_flor_s_const.min_count_bit_for_found) {
            instance->data = instance->decoder.decode_data;
            instance->decoder.decode_data = 0;
        }
        break;
    }
}

/** 
 * Analysis of received data
 * @param instance Pointer to a SubGhzBlockGeneric* instance
 * @param file_name Full path to rainbow table the file 
 */
static void subghz_protocol_nice_flor_s_remote_controller(
    SubGhzBlockGeneric* instance,
    const char* file_name) {
    /*
    * Protocol Nice Flor-S
    * Packet format Nice Flor-s: START-P0-P1-P2-P3-P4-P5-P6-P7-STOP
    * P0 (4-bit)    - button positional code - 1:0x1, 2:0x2, 3:0x4, 4:0x8;
    * P1 (4-bit)    - batch repetition number, calculated by the formula:
    * P1 = 0xF ^ P0 ^ n; where n changes from 1 to 15, then 0, and then in a circle
    * key 1: {0xE,0xF,0xC,0xD,0xA,0xB,0x8,0x9,0x6,0x7,0x4,0x5,0x2,0x3,0x0,0x1};
    * key 2: {0xD,0xC,0xF,0xE,0x9,0x8,0xB,0xA,0x5,0x4,0x7,0x6,0x1,0x0,0x3,0x2};
    * key 3: {0xB,0xA,0x9,0x8,0xF,0xE,0xD,0xC,0x3,0x2,0x1,0x0,0x7,0x6,0x5,0x4};
    * key 4: {0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0,0xF,0xE,0xD,0xC,0xB,0xA,0x9,0x8};
    * P2 (4-bit)    - part of the serial number, P2 = (K ^ S3) & 0xF;
    * P3 (byte)     - the major part of the encrypted index
    * P4 (byte)     - the low-order part of the encrypted index
    * P5 (byte)     - part of the serial number, P5 = K ^ S2;
    * P6 (byte)     - part of the serial number, P6 = K ^ S1;
    * P7 (byte)     - part of the serial number, P7 = K ^ S0;
    * K (byte)      - depends on P3 and P4, K = Fk(P3, P4);
    * S3,S2,S1,S0   - serial number of the console 28 bit.
    *
    * data    => 0x1c5783607f7b3     key  serial  cnt
    * decrypt => 0x10436c6820444 => 0x1  0436c682 0444
    * 
    * Protocol Nice One
    * Generally repeats the Nice Flor-S protocol, but there are a few changes
    * Packet format first 52 bytes repeat Nice Flor-S protocol
    * The additional 20 bytes contain the code of the pressed button,
    *    the button hold bit and the CRC of the entire message.
    *       START-P0-P1-P2-P3-P4-P5-P6-P7-P8-P9-P10-STOP
    * P7 (byte)     - if (n<4) k=0x8f : k=0x80; P7= k^n;
    * P8 (byte)     - if (hold bit) b=0x00 : b=0x10; P8= b^(k<<4) | 4 hi bit crc
    * P10 (4-bit)   - 4 lo bit crc 
    *                            key+b crc  
    * data    => 0x1724A7D9A522F  899  D6 hold bit = 0 - just pressed the button
    * data    => 0x1424A7D9A522F  8AB  03 hold bit = 1 - button hold
    * 
    * A small button hold counter (0..15) is stored between each press,
    *  i.e. if 1 press of the button stops counter 6, then the next press 
    *  of the button will start from the value 7 (hold bit = 0), 8 (hold bit = 1)...
    *  further up to 15 with overflow
    * 
    */
    if(!file_name) {
        instance->cnt = 0;
        instance->serial = 0;
        instance->btn = 0;
    } else {
        uint64_t decrypt = subghz_protocol_nice_flor_s_decrypt(instance, file_name);
        instance->cnt = decrypt & 0xFFFF;
        instance->serial = (decrypt >> 16) & 0xFFFFFFF;
        instance->btn = (decrypt >> 48) & 0xF;
    }

    // Save original button for later use
    if(n_btn_temp_id_original == 0) {
        n_btn_temp_id_original = instance->btn;
    }
}

uint8_t subghz_protocol_decoder_nice_flor_s_get_hash_data(void* context) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;
    return subghz_protocol_blocks_get_hash_data(
        &instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}

SubGhzProtocolStatus subghz_protocol_decoder_nice_flor_s_serialize(
    void* context,
    FlipperFormat* flipper_format,
    SubGhzRadioPreset* preset) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;
    SubGhzProtocolStatus ret =
        subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
    if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
        if((ret == SubGhzProtocolStatusOk) &&
           !flipper_format_write_uint32(flipper_format, "Data", (uint32_t*)&instance->data, 1)) {
            FURI_LOG_E(TAG, "Unable to add Data");
            ret = SubGhzProtocolStatusErrorParserOthers;
        }
    }
    return ret;
}

SubGhzProtocolStatus
    subghz_protocol_decoder_nice_flor_s_deserialize(void* context, FlipperFormat* flipper_format) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;
    SubGhzProtocolStatus ret = SubGhzProtocolStatusError;
    do {
        ret = subghz_block_generic_deserialize(&instance->generic, flipper_format);
        if(ret != SubGhzProtocolStatusOk) {
            break;
        }
        if((instance->generic.data_count_bit !=
            subghz_protocol_nice_flor_s_const.min_count_bit_for_found) &&
           (instance->generic.data_count_bit != NICE_ONE_COUNT_BIT)) {
            FURI_LOG_E(TAG, "Wrong number of bits in key");
            ret = SubGhzProtocolStatusErrorValueBitCount;
            break;
        }
        if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
            if(!flipper_format_rewind(flipper_format)) {
                FURI_LOG_E(TAG, "Rewind error");
                ret = SubGhzProtocolStatusErrorParserOthers;
                break;
            }
            uint32_t temp = 0;
            if(!flipper_format_read_uint32(flipper_format, "Data", (uint32_t*)&temp, 1)) {
                FURI_LOG_E(TAG, "Missing Data");
                ret = SubGhzProtocolStatusErrorParserOthers;
                break;
            }
            instance->data = (uint64_t)temp;
        }
    } while(false);
    return ret;
}

void subghz_protocol_decoder_nice_flor_s_get_string(void* context, FuriString* output) {
    furi_assert(context);
    SubGhzProtocolDecoderNiceFlorS* instance = context;

    subghz_protocol_nice_flor_s_remote_controller(
        &instance->generic, instance->nice_flor_s_rainbow_table_file_name);

    if(instance->generic.data_count_bit == NICE_ONE_COUNT_BIT) {
        furi_string_cat_printf(
            output,
            "%s %dbit\r\n"
            "Key:0x%013llX%llX\r\n"
            "Sn:%05lX\r\n"
            "Cnt:%04lX Btn:%02X\r\n",
            NICE_ONE_NAME,
            instance->generic.data_count_bit,
            instance->generic.data,
            instance->data,
            instance->generic.serial,
            instance->generic.cnt,
            instance->generic.btn);
    } else {
        furi_string_cat_printf(
            output,
            "%s %dbit\r\n"
            "Key:0x%013llX\r\n"
            "Sn:%05lX\r\n"
            "Cnt:%04lX Btn:%02X\r\n",
            instance->generic.protocol_name,
            instance->generic.data_count_bit,
            instance->generic.data,
            instance->generic.serial,
            instance->generic.cnt,
            instance->generic.btn);
    }
}