unleashed-firmware/lib/subghz/protocols/subghz_protocol_princeton.c
Skorpionm 0a8a944e10
Skorp subghz signal archive (#667)
* SubGhz: Add millis() furi, add subghz history struct
* SubGhz: Fix subghz history
* Gubghz: Fix code repeat  history, add clean history
* SubGhz: reading and adding keys to history
* Gui: Renaming Sub 1-Ghz -> SubGhz
* Archive: Renaming Sub 1-Ghz -> SubGhz
* SubGhz:  Add menu history, modified button for sending a signal, changed output of data about accepted protocol
* Archive: Fix name subghz
* SubGhz: Menu navigation
* Assets: Add assets/SubGHz/icon.png
* Assets: add new icons for subghz
* SubGhz: Fix name Add manually scene
* SubGhz: Fix load icon Read scene. rename encoder struct,  rename protocol function load from file, add load raw data protocol, add info pleasant signals all protocol
* SubGhz: fix memory leak
* SubGhz: change of receiving frequency for read scene
* SubGhz: Add save/load frequency and preset, add automatic configuration of transmit/receive to the desired frequency and modulation, add button "save" config scene
* SubGhz: Fix frequency and preset, fix frequency add manualli scene, fix re-executing the parser
* Furi-hal-subghz: add 2-FSK config, fix ook config 650KHz BW Tx filter
* Fix formatting and release build
* SubGhz: Delete read scene
* SubGhz: Fix frequency add manualli scene,  refactoring code
* SubGhz: 2 profiles for OOK, fix broken build.
* SubGhz: Add passing static codes from read scene, add notification read scene, refactoring code
* SubGhz: fix assert on worker double stop.

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2021-08-28 16:51:48 +03:00

321 lines
11 KiB
C

#include "subghz_protocol_princeton.h"
/*
* Help
* https://phreakerclub.com/447
*
*/
#define SUBGHZ_PT_SHORT 450
#define SUBGHZ_PT_LONG (SUBGHZ_PT_SHORT * 3)
#define SUBGHZ_PT_GUARD (SUBGHZ_PT_SHORT * 30)
struct SubGhzEncoderPrinceton {
uint32_t key;
uint16_t te;
size_t repeat;
size_t front;
};
SubGhzEncoderPrinceton* subghz_encoder_princeton_alloc() {
SubGhzEncoderPrinceton* instance = furi_alloc(sizeof(SubGhzEncoderPrinceton));
return instance;
}
void subghz_encoder_princeton_free(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
void subghz_encoder_princeton_set_te(SubGhzEncoderPrinceton* instance, void* decoder) {
SubGhzDecoderPrinceton* pricenton = decoder;
if((pricenton->te) != 0) {
instance->te = pricenton->te;
} else {
instance->te = SUBGHZ_PT_SHORT;
}
}
void subghz_encoder_princeton_set(SubGhzEncoderPrinceton* instance, uint32_t key, size_t repeat) {
furi_assert(instance);
instance->te = SUBGHZ_PT_SHORT;
instance->key = key;
instance->repeat = repeat;
instance->front = 48;
}
size_t subghz_encoder_princeton_get_repeat_left(SubGhzEncoderPrinceton* instance) {
furi_assert(instance);
return instance->repeat;
}
LevelDuration subghz_encoder_princeton_yield(void* context) {
SubGhzEncoderPrinceton* instance = context;
if(instance->repeat == 0) return level_duration_reset();
size_t bit = instance->front / 2;
bool level = !(instance->front % 2);
LevelDuration ret;
if(bit < 24) {
uint8_t byte = bit / 8;
uint8_t bit_in_byte = bit % 8;
bool value = (((uint8_t*)&instance->key)[2 - byte] >> (7 - bit_in_byte)) & 1;
if(value) {
ret = level_duration_make(level, level ? instance->te * 3 : instance->te);
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 3);
}
} else {
ret = level_duration_make(level, level ? instance->te : instance->te * 30);
}
instance->front++;
if(instance->front == 50) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
SubGhzDecoderPrinceton* subghz_decoder_princeton_alloc(void) {
SubGhzDecoderPrinceton* instance = furi_alloc(sizeof(SubGhzDecoderPrinceton));
instance->te = SUBGHZ_PT_SHORT;
instance->common.name = "Princeton";
instance->common.code_min_count_bit_for_found = 24;
instance->common.te_short = SUBGHZ_PT_SHORT; //150;
instance->common.te_long = SUBGHZ_PT_LONG; //450;
instance->common.te_delta = 200; //50;
instance->common.type_protocol = TYPE_PROTOCOL_STATIC;
instance->common.to_string = (SubGhzProtocolCommonToStr)subghz_decoder_princeton_to_str;
instance->common.to_save_string =
(SubGhzProtocolCommonGetStrSave)subghz_decoder_princeton_to_save_str;
instance->common.to_load_protocol_from_file =
(SubGhzProtocolCommonLoadFromFile)subghz_decoder_princeton_to_load_protocol_from_file;
instance->common.to_load_protocol =
(SubGhzProtocolCommonLoadFromRAW)subghz_decoder_princeton_to_load_protocol;
instance->common.get_upload_protocol =
(SubGhzProtocolCommonEncoderGetUpLoad)subghz_protocol_princeton_send_key;
return instance;
}
void subghz_decoder_princeton_free(SubGhzDecoderPrinceton* instance) {
furi_assert(instance);
free(instance);
}
uint16_t subghz_protocol_princeton_get_te(void* context) {
SubGhzDecoderPrinceton* instance = context;
return instance->te;
}
bool subghz_protocol_princeton_send_key(
SubGhzDecoderPrinceton* instance,
SubGhzProtocolCommonEncoder* encoder) {
furi_assert(instance);
furi_assert(encoder);
size_t index = 0;
encoder->size_upload = (instance->common.code_last_count_bit * 2) + 2;
if(encoder->size_upload > SUBGHZ_ENCODER_UPLOAD_MAX_SIZE) return false;
//Send key data
for(uint8_t i = instance->common.code_last_count_bit; i > 0; i--) {
if(bit_read(instance->common.code_last_found, i - 1)) {
//send bit 1
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te * 3);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te);
} else {
//send bit 0
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 3);
}
}
//Send Stop bit
encoder->upload[index++] = level_duration_make(true, (uint32_t)instance->te);
//Send PT_GUARD
encoder->upload[index++] = level_duration_make(false, (uint32_t)instance->te * 30);
return true;
}
void subghz_decoder_princeton_reset(SubGhzDecoderPrinceton* instance) {
instance->common.parser_step = 0;
}
void subghz_decoder_princeton_parse(
SubGhzDecoderPrinceton* instance,
bool level,
uint32_t duration) {
switch(instance->common.parser_step) {
case 0:
if((!level) && (DURATION_DIFF(duration, instance->common.te_short * 36) <
instance->common.te_delta * 36)) {
//Found Preambula
instance->common.parser_step = 1;
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
} else {
instance->common.parser_step = 0;
}
break;
case 1:
//save duration
if(level) {
instance->common.te_last = duration;
instance->common.parser_step = 2;
}
break;
case 2:
if(!level) {
if(duration >= (instance->common.te_short * 10 + instance->common.te_delta)) {
instance->common.parser_step = 1;
if(instance->common.code_count_bit >=
instance->common.code_min_count_bit_for_found) {
if(instance->common.code_last_found == instance->common.code_found) {
//instance->te = (instance->te+instance->common.te_last)/2; //Option 1 TE averaging
if(instance->te > instance->common.te_last)
instance->te = instance->common.te_last; //Option 2 TE averaging
} else {
instance->te = instance->common.te_last;
}
instance->common.code_last_found = instance->common.code_found;
instance->common.code_last_count_bit = instance->common.code_count_bit;
instance->common.serial = instance->common.code_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_found & 0x00000F;
if(instance->common.callback)
instance->common.callback(
(SubGhzProtocolCommon*)instance, instance->common.context);
}
instance->common.code_found = 0;
instance->common.code_count_bit = 0;
break;
}
if((DURATION_DIFF(instance->common.te_last, instance->common.te_short) <
instance->common.te_delta) &&
(DURATION_DIFF(duration, instance->common.te_long) <
instance->common.te_delta * 3)) {
subghz_protocol_common_add_bit(&instance->common, 0);
instance->common.parser_step = 1;
} else if(
(DURATION_DIFF(instance->common.te_last, instance->common.te_long) <
instance->common.te_delta * 3) &&
(DURATION_DIFF(duration, instance->common.te_short) < instance->common.te_delta)) {
subghz_protocol_common_add_bit(&instance->common, 1);
instance->common.parser_step = 1;
} else {
instance->common.parser_step = 0;
}
} else {
instance->common.parser_step = 0;
}
break;
}
}
void subghz_decoder_princeton_to_str(SubGhzDecoderPrinceton* instance, string_t output) {
uint32_t code_found_lo = instance->common.code_last_found & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_common_reverse_key(
instance->common.code_last_found, instance->common.code_last_count_bit);
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
string_cat_printf(
output,
"%s %dbit\r\n"
"Key:0x%08lX\r\n"
"Yek:0x%08lX\r\n"
"Sn:0x%05lX BTN:%02X\r\n"
"Te:%dus\r\n",
instance->common.name,
instance->common.code_last_count_bit,
code_found_lo,
code_found_reverse_lo,
instance->common.serial,
instance->common.btn,
instance->te);
}
void subghz_decoder_princeton_to_save_str(SubGhzDecoderPrinceton* instance, string_t output) {
string_printf(
output,
"Protocol: %s\n"
"Bit: %d\n"
"Te: %d\n"
"Key: %08lX\n",
instance->common.name,
instance->common.code_last_count_bit,
instance->te,
(uint32_t)(instance->common.code_last_found & 0x00000000ffffffff));
}
bool subghz_decoder_princeton_to_load_protocol_from_file(
FileWorker* file_worker,
SubGhzDecoderPrinceton* instance) {
bool loaded = false;
string_t temp_str;
string_init(temp_str);
int res = 0;
int data = 0;
do {
// Read and parse bit data from 2nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Bit: %d\n", &data);
if(res != 1) {
break;
}
instance->common.code_last_count_bit = (uint8_t)data;
// Read and parse te data from 3nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
res = sscanf(string_get_cstr(temp_str), "Te: %d\n", &data);
if(res != 1) {
break;
}
instance->te = (uint16_t)data;
// Read and parse key data from 4nd line
if(!file_worker_read_until(file_worker, temp_str, '\n')) {
break;
}
uint32_t temp_key = 0;
res = sscanf(string_get_cstr(temp_str), "Key: %08lX\n", &temp_key);
if(res != 1) {
break;
}
instance->common.code_last_found = (uint64_t)temp_key;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}
void subghz_decoder_princeton_to_load_protocol(
SubGhzDecoderPrinceton* instance,
void* context) {
furi_assert(context);
furi_assert(instance);
SubGhzProtocolCommonLoad* data = context;
instance->common.code_last_found = data->code_found;
instance->common.code_last_count_bit = data->code_count_bit;
instance->te = data->param1;
instance->common.serial = instance->common.code_last_found >> 4;
instance->common.btn = (uint8_t)instance->common.code_last_found & 0x00000F;
}