unleashed-firmware/lib/FreeRTOS-glue/cmsis_os2.c
あく 839e52ac32
[FL-2591] Furi: remove CMSIS thread api, migrate to FuriThread, remove unused CMSIS APIs (#1333)
* Furi: remove CMSIS thread api, migrate to FuriThread, remove unused CMSIS APIs
* Furi: magic thread catcher validating thread completion; backtrace improver
* Furi: allow furi_thread_get_current_id outside of thread context
* Furi: use IRQ instead of ISR for core primitives
2022-06-20 18:54:48 +04:00

1121 lines
27 KiB
C

/* --------------------------------------------------------------------------
* Copyright (c) 2013-2021 Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Name: cmsis_os2.c
* Purpose: CMSIS RTOS2 wrapper for FreeRTOS
*
*---------------------------------------------------------------------------*/
#include <string.h>
#include <furi/common_defines.h>
#include "cmsis_os2.h" // ::CMSIS:RTOS2
#include "cmsis_compiler.h" // Compiler agnostic definitions
#include "FreeRTOS.h" // ARM.FreeRTOS::RTOS:Core
#include "timers.h" // ARM.FreeRTOS::RTOS:Timers
#include "queue.h"
#include "freertos_os2.h" // Configuration check and setup
#include CMSIS_device_header
#ifndef CMSIS_TASK_NOTIFY_INDEX
#define CMSIS_TASK_NOTIFY_INDEX 0
#endif
/*---------------------------------------------------------------------------*/
#ifndef __ARM_ARCH_6M__
#define __ARM_ARCH_6M__ 0
#endif
#ifndef __ARM_ARCH_7M__
#define __ARM_ARCH_7M__ 0
#endif
#ifndef __ARM_ARCH_7EM__
#define __ARM_ARCH_7EM__ 0
#endif
#ifndef __ARM_ARCH_8M_MAIN__
#define __ARM_ARCH_8M_MAIN__ 0
#endif
#ifndef __ARM_ARCH_7A__
#define __ARM_ARCH_7A__ 0
#endif
#if ((__ARM_ARCH_7M__ == 1U) || \
(__ARM_ARCH_7EM__ == 1U) || \
(__ARM_ARCH_8M_MAIN__ == 1U))
#define IS_IRQ_MASKED() ((__get_PRIMASK() != 0U) || (__get_BASEPRI() != 0U))
#elif (__ARM_ARCH_6M__ == 1U)
#define IS_IRQ_MASKED() (__get_PRIMASK() != 0U)
#elif (__ARM_ARCH_7A__ == 1U)
/* CPSR mask bits */
#define CPSR_MASKBIT_I 0x80U
#define IS_IRQ_MASKED() ((__get_CPSR() & CPSR_MASKBIT_I) != 0U)
#else
#define IS_IRQ_MASKED() (__get_PRIMASK() != 0U)
#endif
#if (__ARM_ARCH_7A__ == 1U)
/* CPSR mode bitmasks */
#define CPSR_MODE_USER 0x10U
#define CPSR_MODE_SYSTEM 0x1FU
#define IS_IRQ_MODE() ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM))
#else
#define IS_IRQ_MODE() (__get_IPSR() != 0U)
#endif
/* Limits */
#define MAX_BITS_TASK_NOTIFY 31U
#define THREAD_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_TASK_NOTIFY) - 1U))
/* Kernel version and identification string definition (major.minor.rev: mmnnnrrrr dec) */
#define KERNEL_VERSION (((uint32_t)tskKERNEL_VERSION_MAJOR * 10000000UL) | \
((uint32_t)tskKERNEL_VERSION_MINOR * 10000UL) | \
((uint32_t)tskKERNEL_VERSION_BUILD * 1UL))
#define KERNEL_ID ("FreeRTOS " tskKERNEL_VERSION_NUMBER)
/* Timer callback information structure definition */
typedef struct {
osTimerFunc_t func;
void *arg;
} TimerCallback_t;
/* Kernel initialization state */
static osKernelState_t KernelState = osKernelInactive;
/*
Heap region definition used by heap_5 variant
Define configAPPLICATION_ALLOCATED_HEAP as nonzero value in FreeRTOSConfig.h if
heap regions are already defined and vPortDefineHeapRegions is called in application.
Otherwise vPortDefineHeapRegions will be called by osKernelInitialize using
definition configHEAP_5_REGIONS as parameter. Overriding configHEAP_5_REGIONS
is possible by defining it globally or in FreeRTOSConfig.h.
*/
#if defined(USE_FreeRTOS_HEAP_5)
#if (configAPPLICATION_ALLOCATED_HEAP == 0)
/*
FreeRTOS heap is not defined by the application.
Single region of size configTOTAL_HEAP_SIZE (defined in FreeRTOSConfig.h)
is provided by default. Define configHEAP_5_REGIONS to provide custom
HeapRegion_t array.
*/
#define HEAP_5_REGION_SETUP 1
#ifndef configHEAP_5_REGIONS
#define configHEAP_5_REGIONS xHeapRegions
static uint8_t ucHeap[configTOTAL_HEAP_SIZE];
static HeapRegion_t xHeapRegions[] = {
{ ucHeap, configTOTAL_HEAP_SIZE },
{ NULL, 0 }
};
#else
/* Global definition is provided to override default heap array */
extern HeapRegion_t configHEAP_5_REGIONS[];
#endif
#else
/*
The application already defined the array used for the FreeRTOS heap and
called vPortDefineHeapRegions to initialize heap.
*/
#define HEAP_5_REGION_SETUP 0
#endif /* configAPPLICATION_ALLOCATED_HEAP */
#endif /* USE_FreeRTOS_HEAP_5 */
/*
Setup SVC to reset value.
*/
__STATIC_INLINE void SVC_Setup (void) {
#if (__ARM_ARCH_7A__ == 0U)
/* Service Call interrupt might be configured before kernel start */
/* and when its priority is lower or equal to BASEPRI, svc intruction */
/* causes a Hard Fault. */
NVIC_SetPriority (SVCall_IRQn, 0U);
#endif
}
/*
Function macro used to retrieve semaphore count from ISR
*/
#ifndef uxSemaphoreGetCountFromISR
#define uxSemaphoreGetCountFromISR( xSemaphore ) uxQueueMessagesWaitingFromISR( ( QueueHandle_t ) ( xSemaphore ) )
#endif
/*
Determine if CPU executes from interrupt context or if interrupts are masked.
*/
__STATIC_INLINE uint32_t IRQ_Context (void) {
uint32_t irq;
BaseType_t state;
irq = 0U;
if (IS_IRQ_MODE()) {
/* Called from interrupt context */
irq = 1U;
}
else {
/* Get FreeRTOS scheduler state */
state = xTaskGetSchedulerState();
if (state != taskSCHEDULER_NOT_STARTED) {
/* Scheduler was started */
if (IS_IRQ_MASKED()) {
/* Interrupts are masked */
irq = 1U;
}
}
}
/* Return context, 0: thread context, 1: IRQ context */
return (irq);
}
/* ==== Kernel Management Functions ==== */
/*
Initialize the RTOS Kernel.
*/
osStatus_t osKernelInitialize (void) {
osStatus_t stat;
BaseType_t state;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
state = xTaskGetSchedulerState();
/* Initialize if scheduler not started and not initialized before */
if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelInactive)) {
#if defined(USE_TRACE_EVENT_RECORDER)
/* Initialize the trace macro debugging output channel */
EvrFreeRTOSSetup(0U);
#endif
#if defined(USE_FreeRTOS_HEAP_5) && (HEAP_5_REGION_SETUP == 1)
/* Initialize the memory regions when using heap_5 variant */
vPortDefineHeapRegions (configHEAP_5_REGIONS);
#endif
KernelState = osKernelReady;
stat = osOK;
} else {
stat = osError;
}
}
/* Return execution status */
return (stat);
}
/*
Get RTOS Kernel Information.
*/
osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) {
if (version != NULL) {
/* Version encoding is major.minor.rev: mmnnnrrrr dec */
version->api = KERNEL_VERSION;
version->kernel = KERNEL_VERSION;
}
if ((id_buf != NULL) && (id_size != 0U)) {
/* Buffer for retrieving identification string is provided */
if (id_size > sizeof(KERNEL_ID)) {
id_size = sizeof(KERNEL_ID);
}
/* Copy kernel identification string into provided buffer */
memcpy(id_buf, KERNEL_ID, id_size);
}
/* Return execution status */
return (osOK);
}
/*
Get the current RTOS Kernel state.
*/
osKernelState_t osKernelGetState (void) {
osKernelState_t state;
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_RUNNING:
state = osKernelRunning;
break;
case taskSCHEDULER_SUSPENDED:
state = osKernelLocked;
break;
case taskSCHEDULER_NOT_STARTED:
default:
if (KernelState == osKernelReady) {
/* Ready, osKernelInitialize was already called */
state = osKernelReady;
} else {
/* Not initialized */
state = osKernelInactive;
}
break;
}
/* Return current state */
return (state);
}
/*
Start the RTOS Kernel scheduler.
*/
osStatus_t osKernelStart (void) {
osStatus_t stat;
BaseType_t state;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
state = xTaskGetSchedulerState();
/* Start scheduler if initialized and not started before */
if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelReady)) {
/* Ensure SVC priority is at the reset value */
SVC_Setup();
/* Change state to ensure correct API flow */
KernelState = osKernelRunning;
/* Start the kernel scheduler */
vTaskStartScheduler();
stat = osOK;
} else {
stat = osError;
}
}
/* Return execution status */
return (stat);
}
/*
Lock the RTOS Kernel scheduler.
*/
int32_t osKernelLock (void) {
int32_t lock;
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
lock = 1;
break;
case taskSCHEDULER_RUNNING:
vTaskSuspendAll();
lock = 0;
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return previous lock state */
return (lock);
}
/*
Unlock the RTOS Kernel scheduler.
*/
int32_t osKernelUnlock (void) {
int32_t lock;
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
lock = 1;
if (xTaskResumeAll() != pdTRUE) {
if (xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) {
lock = (int32_t)osError;
}
}
break;
case taskSCHEDULER_RUNNING:
lock = 0;
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return previous lock state */
return (lock);
}
/*
Restore the RTOS Kernel scheduler lock state.
*/
int32_t osKernelRestoreLock (int32_t lock) {
if (IRQ_Context() != 0U) {
lock = (int32_t)osErrorISR;
}
else {
switch (xTaskGetSchedulerState()) {
case taskSCHEDULER_SUSPENDED:
case taskSCHEDULER_RUNNING:
if (lock == 1) {
vTaskSuspendAll();
}
else {
if (lock != 0) {
lock = (int32_t)osError;
}
else {
if (xTaskResumeAll() != pdTRUE) {
if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
lock = (int32_t)osError;
}
}
}
}
break;
case taskSCHEDULER_NOT_STARTED:
default:
lock = (int32_t)osError;
break;
}
}
/* Return new lock state */
return (lock);
}
/*
Get the RTOS kernel tick count.
*/
uint32_t osKernelGetTickCount (void) {
TickType_t ticks;
if (IRQ_Context() != 0U) {
ticks = xTaskGetTickCountFromISR();
} else {
ticks = xTaskGetTickCount();
}
/* Return kernel tick count */
return (ticks);
}
/*
Get the RTOS kernel tick frequency.
*/
uint32_t osKernelGetTickFreq (void) {
/* Return frequency in hertz */
return (configTICK_RATE_HZ);
}
/*
Get the RTOS kernel system timer frequency.
*/
uint32_t osKernelGetSysTimerFreq (void) {
/* Return frequency in hertz */
return (configCPU_CLOCK_HZ);
}
/* ==== Generic Wait Functions ==== */
/*
Wait for Timeout (Time Delay).
*/
osStatus_t osDelay (uint32_t ticks) {
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
stat = osOK;
if (ticks != 0U) {
vTaskDelay(ticks);
}
}
/* Return execution status */
return (stat);
}
/*
Wait until specified time.
*/
osStatus_t osDelayUntil (uint32_t ticks) {
TickType_t tcnt, delay;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else {
stat = osOK;
tcnt = xTaskGetTickCount();
/* Determine remaining number of ticks to delay */
delay = (TickType_t)ticks - tcnt;
/* Check if target tick has not expired */
if((delay != 0U) && (0 == (delay >> (8 * sizeof(TickType_t) - 1)))) {
if (xTaskDelayUntil (&tcnt, delay) == pdFALSE) {
/* Did not delay */
stat = osError;
}
}
else
{
/* No delay or already expired */
stat = osErrorParameter;
}
}
/* Return execution status */
return (stat);
}
/* ==== Timer Management Functions ==== */
#if (configUSE_OS2_TIMER == 1)
static void TimerCallback (TimerHandle_t hTimer) {
TimerCallback_t *callb;
/* Retrieve pointer to callback function and argument */
callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer);
/* Remove dynamic allocation flag */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
if (callb != NULL) {
callb->func (callb->arg);
}
}
/*
Create and Initialize a timer.
*/
osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) {
const char *name;
TimerHandle_t hTimer;
TimerCallback_t *callb;
UBaseType_t reload;
int32_t mem;
uint32_t callb_dyn;
hTimer = NULL;
if ((IRQ_Context() == 0U) && (func != NULL)) {
callb = NULL;
callb_dyn = 0U;
#if (configSUPPORT_STATIC_ALLOCATION == 1)
/* Static memory allocation is available: check if memory for control block */
/* is provided and if it also contains space for callback and its argument */
if ((attr != NULL) && (attr->cb_mem != NULL)) {
if (attr->cb_size >= (sizeof(StaticTimer_t) + sizeof(TimerCallback_t))) {
callb = (TimerCallback_t *)((uint32_t)attr->cb_mem + sizeof(StaticTimer_t));
}
}
#endif
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
/* Dynamic memory allocation is available: if memory for callback and */
/* its argument is not provided, allocate it from dynamic memory pool */
if (callb == NULL) {
callb = (TimerCallback_t *)pvPortMalloc (sizeof(TimerCallback_t));
if (callb != NULL) {
/* Callback memory was allocated from dynamic pool, set flag */
callb_dyn = 1U;
}
}
#endif
if (callb != NULL) {
callb->func = func;
callb->arg = argument;
if (type == osTimerOnce) {
reload = pdFALSE;
} else {
reload = pdTRUE;
}
mem = -1;
name = NULL;
if (attr != NULL) {
if (attr->name != NULL) {
name = attr->name;
}
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTimer_t))) {
/* The memory for control block is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
/* Store callback memory dynamic allocation flag */
callb = (TimerCallback_t *)((uint32_t)callb | callb_dyn);
/*
TimerCallback function is always provided as a callback and is used to call application
specified function with its argument both stored in structure callb.
*/
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hTimer = xTimerCreateStatic (name, 1, reload, callb, TimerCallback, (StaticTimer_t *)attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hTimer = xTimerCreate (name, 1, reload, callb, TimerCallback);
#endif
}
}
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if ((hTimer == NULL) && (callb != NULL) && (callb_dyn == 1U)) {
/* Failed to create a timer, release allocated resources */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
vPortFree (callb);
}
#endif
}
}
/* Return timer ID */
return ((osTimerId_t)hTimer);
}
/*
Get name of a timer.
*/
const char *osTimerGetName (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
const char *p;
if ((IRQ_Context() != 0U) || (hTimer == NULL)) {
p = NULL;
} else {
p = pcTimerGetName (hTimer);
}
/* Return name as null-terminated string */
return (p);
}
/*
Start or restart a timer.
*/
osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
if (xTimerChangePeriod (hTimer, ticks, portMAX_DELAY) == pdPASS) {
stat = osOK;
} else {
stat = osErrorResource;
}
}
/* Return execution status */
return (stat);
}
/*
Stop a timer.
*/
osStatus_t osTimerStop (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
if (xTimerIsTimerActive (hTimer) == pdFALSE) {
stat = osErrorResource;
}
else {
if (xTimerStop (hTimer, portMAX_DELAY) == pdPASS) {
stat = osOK;
} else {
stat = osError;
}
}
}
/* Return execution status */
return (stat);
}
/*
Check if a timer is running.
*/
uint32_t osTimerIsRunning (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
uint32_t running;
if ((IRQ_Context() != 0U) || (hTimer == NULL)) {
running = 0U;
} else {
running = (uint32_t)xTimerIsTimerActive (hTimer);
}
/* Return 0: not running, 1: running */
return (running);
}
/*
Delete a timer.
*/
osStatus_t osTimerDelete (osTimerId_t timer_id) {
TimerHandle_t hTimer = (TimerHandle_t)timer_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
TimerCallback_t *callb;
#endif
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hTimer == NULL) {
stat = osErrorParameter;
}
else {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer);
#endif
if (xTimerDelete (hTimer, portMAX_DELAY) == pdPASS) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
if ((uint32_t)callb & 1U) {
/* Callback memory was allocated from dynamic pool, clear flag */
callb = (TimerCallback_t *)((uint32_t)callb & ~1U);
/* Return allocated memory to dynamic pool */
vPortFree (callb);
}
#endif
stat = osOK;
} else {
stat = osErrorResource;
}
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
#endif /* (configUSE_OS2_TIMER == 1) */
/* ==== Message Queue Management Functions ==== */
/*
Create and Initialize a Message Queue object.
Limitations:
- The memory for control block and and message data must be provided in the
osThreadAttr_t structure in order to allocate object statically.
*/
osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr) {
QueueHandle_t hQueue;
int32_t mem;
hQueue = NULL;
if ((IRQ_Context() == 0U) && (msg_count > 0U) && (msg_size > 0U)) {
mem = -1;
if (attr != NULL) {
if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticQueue_t)) &&
(attr->mq_mem != NULL) && (attr->mq_size >= (msg_count * msg_size))) {
/* The memory for control block and message data is provided, use static object */
mem = 1;
}
else {
if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) &&
(attr->mq_mem == NULL) && (attr->mq_size == 0U)) {
/* Control block will be allocated from the dynamic pool */
mem = 0;
}
}
}
else {
mem = 0;
}
if (mem == 1) {
#if (configSUPPORT_STATIC_ALLOCATION == 1)
hQueue = xQueueCreateStatic (msg_count, msg_size, attr->mq_mem, attr->cb_mem);
#endif
}
else {
if (mem == 0) {
#if (configSUPPORT_DYNAMIC_ALLOCATION == 1)
hQueue = xQueueCreate (msg_count, msg_size);
#endif
}
}
#if (configQUEUE_REGISTRY_SIZE > 0)
if (hQueue != NULL) {
if ((attr != NULL) && (attr->name != NULL)) {
/* Only non-NULL name objects are added to the Queue Registry */
vQueueAddToRegistry (hQueue, attr->name);
}
}
#endif
}
/* Return message queue ID */
return ((osMessageQueueId_t)hQueue);
}
/*
Put a Message into a Queue or timeout if Queue is full.
Limitations:
- Message priority is ignored
*/
osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
BaseType_t yield;
(void)msg_prio; /* Message priority is ignored */
stat = osOK;
if (IRQ_Context() != 0U) {
if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) {
stat = osErrorParameter;
}
else {
yield = pdFALSE;
if (xQueueSendToBackFromISR (hQueue, msg_ptr, &yield) != pdTRUE) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
}
else {
if ((hQueue == NULL) || (msg_ptr == NULL)) {
stat = osErrorParameter;
}
else {
if (xQueueSendToBack (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Get a Message from a Queue or timeout if Queue is empty.
Limitations:
- Message priority is ignored
*/
osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
BaseType_t yield;
(void)msg_prio; /* Message priority is ignored */
stat = osOK;
if (IRQ_Context() != 0U) {
if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) {
stat = osErrorParameter;
}
else {
yield = pdFALSE;
if (xQueueReceiveFromISR (hQueue, msg_ptr, &yield) != pdPASS) {
stat = osErrorResource;
} else {
portYIELD_FROM_ISR (yield);
}
}
}
else {
if ((hQueue == NULL) || (msg_ptr == NULL)) {
stat = osErrorParameter;
}
else {
if (xQueueReceive (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) {
if (timeout != 0U) {
stat = osErrorTimeout;
} else {
stat = osErrorResource;
}
}
}
}
/* Return execution status */
return (stat);
}
/*
Get maximum number of messages in a Message Queue.
*/
uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t capacity;
if (mq == NULL) {
capacity = 0U;
} else {
/* capacity = pxQueue->uxLength */
capacity = mq->uxDummy4[1];
}
/* Return maximum number of messages */
return (capacity);
}
/*
Get maximum message size in a Message Queue.
*/
uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t size;
if (mq == NULL) {
size = 0U;
} else {
/* size = pxQueue->uxItemSize */
size = mq->uxDummy4[2];
}
/* Return maximum message size */
return (size);
}
/*
Get number of queued messages in a Message Queue.
*/
uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
UBaseType_t count;
if (hQueue == NULL) {
count = 0U;
}
else if (IRQ_Context() != 0U) {
count = uxQueueMessagesWaitingFromISR (hQueue);
}
else {
count = uxQueueMessagesWaiting (hQueue);
}
/* Return number of queued messages */
return ((uint32_t)count);
}
/*
Get number of available slots for messages in a Message Queue.
*/
uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id) {
StaticQueue_t *mq = (StaticQueue_t *)mq_id;
uint32_t space;
uint32_t isrm;
if (mq == NULL) {
space = 0U;
}
else if (IRQ_Context() != 0U) {
isrm = taskENTER_CRITICAL_FROM_ISR();
/* space = pxQueue->uxLength - pxQueue->uxMessagesWaiting; */
space = mq->uxDummy4[1] - mq->uxDummy4[0];
taskEXIT_CRITICAL_FROM_ISR(isrm);
}
else {
space = (uint32_t)uxQueueSpacesAvailable ((QueueHandle_t)mq);
}
/* Return number of available slots */
return (space);
}
/*
Reset a Message Queue to initial empty state.
*/
osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hQueue == NULL) {
stat = osErrorParameter;
}
else {
stat = osOK;
(void)xQueueReset (hQueue);
}
/* Return execution status */
return (stat);
}
/*
Delete a Message Queue object.
*/
osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id) {
QueueHandle_t hQueue = (QueueHandle_t)mq_id;
osStatus_t stat;
#ifndef USE_FreeRTOS_HEAP_1
if (IRQ_Context() != 0U) {
stat = osErrorISR;
}
else if (hQueue == NULL) {
stat = osErrorParameter;
}
else {
#if (configQUEUE_REGISTRY_SIZE > 0)
vQueueUnregisterQueue (hQueue);
#endif
stat = osOK;
vQueueDelete (hQueue);
}
#else
stat = osError;
#endif
/* Return execution status */
return (stat);
}
/* Callback function prototypes */
extern void vApplicationIdleHook (void);
extern void vApplicationMallocFailedHook (void);
extern void vApplicationDaemonTaskStartupHook (void);
/**
Dummy implementation of the callback function vApplicationIdleHook().
*/
#if (configUSE_IDLE_HOOK == 1)
__WEAK void vApplicationIdleHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationTickHook().
*/
#if (configUSE_TICK_HOOK == 1)
__WEAK void vApplicationTickHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationMallocFailedHook().
*/
#if (configUSE_MALLOC_FAILED_HOOK == 1)
__WEAK void vApplicationMallocFailedHook (void) {
/* Assert when malloc failed hook is enabled but no application defined function exists */
configASSERT(0);
}
#endif
/**
Dummy implementation of the callback function vApplicationDaemonTaskStartupHook().
*/
#if (configUSE_DAEMON_TASK_STARTUP_HOOK == 1)
__WEAK void vApplicationDaemonTaskStartupHook (void){}
#endif
/**
Dummy implementation of the callback function vApplicationStackOverflowHook().
*/
#if (configCHECK_FOR_STACK_OVERFLOW > 0)
__WEAK void vApplicationStackOverflowHook (TaskHandle_t xTask, char *pcTaskName) {
(void)xTask;
(void)pcTaskName;
/* Assert when stack overflow is enabled but no application defined function exists */
configASSERT(0);
}
#endif