unleashed-firmware/firmware/targets/f7/furi_hal/furi_hal_crypto.c
あく dc2d12d468
Scripts: OB recovery (#2964)
* Scripts: OB recovery
* Scripts: slightly different ob
* Scripts: remove excessive return
* Scripts: simplifying work with registers
* Make PVS happy

Co-authored-by: SG <who.just.the.doctor@gmail.com>
2023-08-11 17:56:02 +03:00

733 lines
23 KiB
C

#include <furi_hal_crypto.h>
#include <furi_hal_cortex.h>
#include <furi_hal_bt.h>
#include <furi_hal_random.h>
#include <furi_hal_bus.h>
#include <stm32wbxx_ll_cortex.h>
#include <furi.h>
#include <interface/patterns/ble_thread/shci/shci.h>
#define TAG "FuriHalCrypto"
#define ENCLAVE_FACTORY_KEY_SLOTS 10
#define ENCLAVE_SIGNATURE_SIZE 16
#define CRYPTO_BLK_LEN (4 * sizeof(uint32_t))
#define CRYPTO_TIMEOUT_US (1000000)
#define CRYPTO_MODE_ENCRYPT 0U
#define CRYPTO_MODE_INIT (AES_CR_MODE_0)
#define CRYPTO_MODE_DECRYPT (AES_CR_MODE_1)
#define CRYPTO_MODE_DECRYPT_INIT (AES_CR_MODE_0 | AES_CR_MODE_1)
#define CRYPTO_DATATYPE_32B 0U
#define CRYPTO_KEYSIZE_256B (AES_CR_KEYSIZE)
#define CRYPTO_AES_CBC (AES_CR_CHMOD_0)
#define CRYPTO_AES_CTR (AES_CR_CHMOD_1)
#define CRYPTO_CTR_IV_LEN (12U)
#define CRYPTO_CTR_CTR_LEN (4U)
#define CRYPTO_AES_GCM (AES_CR_CHMOD_1 | AES_CR_CHMOD_0)
#define CRYPTO_GCM_IV_LEN (12U)
#define CRYPTO_GCM_CTR_LEN (4U)
#define CRYPTO_GCM_TAG_LEN (16U)
#define CRYPTO_GCM_PH_INIT (0x0U << AES_CR_GCMPH_Pos)
#define CRYPTO_GCM_PH_HEADER (AES_CR_GCMPH_0)
#define CRYPTO_GCM_PH_PAYLOAD (AES_CR_GCMPH_1)
#define CRYPTO_GCM_PH_FINAL (AES_CR_GCMPH_1 | AES_CR_GCMPH_0)
static FuriMutex* furi_hal_crypto_mutex = NULL;
static bool furi_hal_crypto_mode_init_done = false;
static const uint8_t enclave_signature_iv[ENCLAVE_FACTORY_KEY_SLOTS][16] = {
{0xac, 0x5d, 0x68, 0xb8, 0x79, 0x74, 0xfc, 0x7f, 0x45, 0x02, 0x82, 0xf1, 0x48, 0x7e, 0x75, 0x8a},
{0x38, 0xe6, 0x6a, 0x90, 0x5e, 0x5b, 0x8a, 0xa6, 0x70, 0x30, 0x04, 0x72, 0xc2, 0x42, 0xea, 0xaf},
{0x73, 0xd5, 0x8e, 0xfb, 0x0f, 0x4b, 0xa9, 0x79, 0x0f, 0xde, 0x0e, 0x53, 0x44, 0x7d, 0xaa, 0xfd},
{0x3c, 0x9a, 0xf4, 0x43, 0x2b, 0xfe, 0xea, 0xae, 0x8c, 0xc6, 0xd1, 0x60, 0xd2, 0x96, 0x64, 0xa9},
{0x10, 0xac, 0x7b, 0x63, 0x03, 0x7f, 0x43, 0x18, 0xec, 0x9d, 0x9c, 0xc4, 0x01, 0xdc, 0x35, 0xa7},
{0x26, 0x21, 0x64, 0xe6, 0xd0, 0xf2, 0x47, 0x49, 0xdc, 0x36, 0xcd, 0x68, 0x0c, 0x91, 0x03, 0x44},
{0x7a, 0xbd, 0xce, 0x9c, 0x24, 0x7a, 0x2a, 0xb1, 0x3c, 0x4f, 0x5a, 0x7d, 0x80, 0x3e, 0xfc, 0x0d},
{0xcd, 0xdd, 0xd3, 0x02, 0x85, 0x65, 0x43, 0x83, 0xf9, 0xac, 0x75, 0x2f, 0x21, 0xef, 0x28, 0x6b},
{0xab, 0x73, 0x70, 0xe8, 0xe2, 0x56, 0x0f, 0x58, 0xab, 0x29, 0xa5, 0xb1, 0x13, 0x47, 0x5e, 0xe8},
{0x4f, 0x3c, 0x43, 0x77, 0xde, 0xed, 0x79, 0xa1, 0x8d, 0x4c, 0x1f, 0xfd, 0xdb, 0x96, 0x87, 0x2e},
};
static const uint8_t enclave_signature_input[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = {
{0x9f, 0x5c, 0xb1, 0x43, 0x17, 0x53, 0x18, 0x8c, 0x66, 0x3d, 0x39, 0x45, 0x90, 0x13, 0xa9, 0xde},
{0xc5, 0x98, 0xe9, 0x17, 0xb8, 0x97, 0x9e, 0x03, 0x33, 0x14, 0x13, 0x8f, 0xce, 0x74, 0x0d, 0x54},
{0x34, 0xba, 0x99, 0x59, 0x9f, 0x70, 0x67, 0xe9, 0x09, 0xee, 0x64, 0x0e, 0xb3, 0xba, 0xfb, 0x75},
{0xdc, 0xfa, 0x6c, 0x9a, 0x6f, 0x0a, 0x3e, 0xdc, 0x42, 0xf6, 0xae, 0x0d, 0x3c, 0xf7, 0x83, 0xaf},
{0xea, 0x2d, 0xe3, 0x1f, 0x02, 0x99, 0x1a, 0x7e, 0x6d, 0x93, 0x4c, 0xb5, 0x42, 0xf0, 0x7a, 0x9b},
{0x53, 0x5e, 0x04, 0xa2, 0x49, 0xa0, 0x73, 0x49, 0x56, 0xb0, 0x88, 0x8c, 0x12, 0xa0, 0xe4, 0x18},
{0x7d, 0xa7, 0xc5, 0x21, 0x7f, 0x12, 0x95, 0xdd, 0x4d, 0x77, 0x01, 0xfa, 0x71, 0x88, 0x2b, 0x7f},
{0xdc, 0x9b, 0xc5, 0xa7, 0x6b, 0x84, 0x5c, 0x37, 0x7c, 0xec, 0x05, 0xa1, 0x9f, 0x91, 0x17, 0x3b},
{0xea, 0xcf, 0xd9, 0x9b, 0x86, 0xcd, 0x2b, 0x43, 0x54, 0x45, 0x82, 0xc6, 0xfe, 0x73, 0x1a, 0x1a},
{0x77, 0xb8, 0x1b, 0x90, 0xb4, 0xb7, 0x32, 0x76, 0x8f, 0x8a, 0x57, 0x06, 0xc7, 0xdd, 0x08, 0x90},
};
static const uint8_t enclave_signature_expected[ENCLAVE_FACTORY_KEY_SLOTS][ENCLAVE_SIGNATURE_SIZE] = {
{0xe9, 0x9a, 0xce, 0xe9, 0x4d, 0xe1, 0x7f, 0x55, 0xcb, 0x8a, 0xbf, 0xf2, 0x4d, 0x98, 0x27, 0x67},
{0x34, 0x27, 0xa7, 0xea, 0xa8, 0x98, 0x66, 0x9b, 0xed, 0x43, 0xd3, 0x93, 0xb5, 0xa2, 0x87, 0x8e},
{0x6c, 0xf3, 0x01, 0x78, 0x53, 0x1b, 0x11, 0x32, 0xf0, 0x27, 0x2f, 0xe3, 0x7d, 0xa6, 0xe2, 0xfd},
{0xdf, 0x7f, 0x37, 0x65, 0x2f, 0xdb, 0x7c, 0xcf, 0x5b, 0xb6, 0xe4, 0x9c, 0x63, 0xc5, 0x0f, 0xe0},
{0x9b, 0x5c, 0xee, 0x44, 0x0e, 0xd1, 0xcb, 0x5f, 0x28, 0x9f, 0x12, 0x17, 0x59, 0x64, 0x40, 0xbb},
{0x94, 0xc2, 0x09, 0x98, 0x62, 0xa7, 0x2b, 0x93, 0xed, 0x36, 0x1f, 0x10, 0xbc, 0x26, 0xbd, 0x41},
{0x4d, 0xb2, 0x2b, 0xc5, 0x96, 0x47, 0x61, 0xf4, 0x16, 0xe0, 0x81, 0xc3, 0x8e, 0xb9, 0x9c, 0x9b},
{0xc3, 0x6b, 0x83, 0x55, 0x90, 0x38, 0x0f, 0xea, 0xd1, 0x65, 0xbf, 0x32, 0x4f, 0x8e, 0x62, 0x5b},
{0x8d, 0x5e, 0x27, 0xbc, 0x14, 0x4f, 0x08, 0xa8, 0x2b, 0x14, 0x89, 0x5e, 0xdf, 0x77, 0x04, 0x31},
{0xc9, 0xf7, 0x03, 0xf1, 0x6c, 0x65, 0xad, 0x49, 0x74, 0xbe, 0x00, 0x54, 0xfd, 0xa6, 0x9c, 0x32},
};
void furi_hal_crypto_init() {
furi_hal_crypto_mutex = furi_mutex_alloc(FuriMutexTypeNormal);
FURI_LOG_I(TAG, "Init OK");
}
static bool furi_hal_crypto_generate_unique_keys(uint8_t start_slot, uint8_t end_slot) {
FuriHalCryptoKey key;
uint8_t key_data[32];
FURI_LOG_I(TAG, "Generating keys %u..%u", start_slot, end_slot);
for(uint8_t slot = start_slot; slot <= end_slot; slot++) {
key.type = FuriHalCryptoKeyTypeSimple;
key.size = FuriHalCryptoKeySize256;
key.data = key_data;
furi_hal_random_fill_buf(key_data, 32);
if(!furi_hal_crypto_enclave_store_key(&key, &slot)) {
FURI_LOG_E(TAG, "Error writing key to slot %u", slot);
return false;
}
}
return true;
}
bool furi_hal_crypto_enclave_ensure_key(uint8_t key_slot) {
uint8_t keys_nb = 0;
uint8_t valid_keys_nb = 0;
uint8_t last_valid_slot = ENCLAVE_FACTORY_KEY_SLOTS;
uint8_t empty_iv[16] = {0};
furi_hal_crypto_enclave_verify(&keys_nb, &valid_keys_nb);
if(key_slot <= ENCLAVE_FACTORY_KEY_SLOTS) { // It's a factory key
if(key_slot > keys_nb) return false;
} else { // Unique key
if(keys_nb < ENCLAVE_FACTORY_KEY_SLOTS) // Some factory keys are missing
return false;
for(uint8_t i = key_slot; i > ENCLAVE_FACTORY_KEY_SLOTS; i--) {
if(furi_hal_crypto_enclave_load_key(i, empty_iv)) {
last_valid_slot = i;
furi_hal_crypto_enclave_unload_key(i);
break;
}
}
if(last_valid_slot == key_slot)
return true;
else // Generate missing unique keys
return furi_hal_crypto_generate_unique_keys(last_valid_slot + 1, key_slot);
}
return true;
}
bool furi_hal_crypto_enclave_verify(uint8_t* keys_nb, uint8_t* valid_keys_nb) {
furi_assert(keys_nb);
furi_assert(valid_keys_nb);
uint8_t keys = 0;
uint8_t keys_valid = 0;
uint8_t buffer[ENCLAVE_SIGNATURE_SIZE];
for(size_t key_slot = 0; key_slot < ENCLAVE_FACTORY_KEY_SLOTS; key_slot++) {
if(furi_hal_crypto_enclave_load_key(key_slot + 1, enclave_signature_iv[key_slot])) {
keys++;
if(furi_hal_crypto_encrypt(
enclave_signature_input[key_slot], buffer, ENCLAVE_SIGNATURE_SIZE)) {
keys_valid +=
memcmp(buffer, enclave_signature_expected[key_slot], ENCLAVE_SIGNATURE_SIZE) ==
0;
}
furi_hal_crypto_enclave_unload_key(key_slot + 1);
}
}
*keys_nb = keys;
*valid_keys_nb = keys_valid;
if(*valid_keys_nb == ENCLAVE_FACTORY_KEY_SLOTS)
return true;
else
return false;
}
bool furi_hal_crypto_enclave_store_key(FuriHalCryptoKey* key, uint8_t* slot) {
furi_assert(key);
furi_assert(slot);
furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
if(!furi_hal_bt_is_alive()) {
return false;
}
SHCI_C2_FUS_StoreUsrKey_Cmd_Param_t pParam;
size_t key_data_size = 0;
if(key->type == FuriHalCryptoKeyTypeMaster) {
pParam.KeyType = KEYTYPE_MASTER;
} else if(key->type == FuriHalCryptoKeyTypeSimple) {
pParam.KeyType = KEYTYPE_SIMPLE;
} else if(key->type == FuriHalCryptoKeyTypeEncrypted) {
pParam.KeyType = KEYTYPE_ENCRYPTED;
key_data_size += 12;
} else {
furi_crash("Incorrect key type");
}
if(key->size == FuriHalCryptoKeySize128) {
pParam.KeySize = KEYSIZE_16;
key_data_size += 16;
} else if(key->size == FuriHalCryptoKeySize256) {
pParam.KeySize = KEYSIZE_32;
key_data_size += 32;
} else {
furi_crash("Incorrect key size");
}
memcpy(pParam.KeyData, key->data, key_data_size);
SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_StoreUsrKey(&pParam, slot);
furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
return (shci_state == SHCI_Success);
}
static void crypto_key_init(uint32_t* key, uint32_t* iv) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
MODIFY_REG(
AES1->CR,
AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | CRYPTO_AES_CBC);
if(key != NULL) {
AES1->KEYR7 = key[0];
AES1->KEYR6 = key[1];
AES1->KEYR5 = key[2];
AES1->KEYR4 = key[3];
AES1->KEYR3 = key[4];
AES1->KEYR2 = key[5];
AES1->KEYR1 = key[6];
AES1->KEYR0 = key[7];
}
AES1->IVR3 = iv[0];
AES1->IVR2 = iv[1];
AES1->IVR1 = iv[2];
AES1->IVR0 = iv[3];
}
static bool furi_hal_crypto_wait_flag(uint32_t flag) {
FuriHalCortexTimer timer = furi_hal_cortex_timer_get(CRYPTO_TIMEOUT_US);
while(!READ_BIT(AES1->SR, flag)) {
if(furi_hal_cortex_timer_is_expired(timer)) {
return false;
}
}
return true;
}
static bool crypto_process_block(uint32_t* in, uint32_t* out, uint8_t blk_len) {
furi_check((blk_len <= 4) && (blk_len > 0));
for(uint8_t i = 0; i < 4; i++) {
if(i < blk_len) {
AES1->DINR = in[i];
} else {
AES1->DINR = 0;
}
}
if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) {
return false;
}
SET_BIT(AES1->CR, AES_CR_CCFC);
uint32_t out_temp[4];
for(uint8_t i = 0; i < 4; i++) {
out_temp[i] = AES1->DOUTR;
}
memcpy(out, out_temp, blk_len * sizeof(uint32_t));
return true;
}
bool furi_hal_crypto_enclave_load_key(uint8_t slot, const uint8_t* iv) {
furi_assert(slot > 0 && slot <= 100);
furi_assert(furi_hal_crypto_mutex);
furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
furi_hal_bus_enable(FuriHalBusAES1);
if(!furi_hal_bt_is_alive()) {
return false;
}
furi_hal_crypto_mode_init_done = false;
crypto_key_init(NULL, (uint32_t*)iv);
if(SHCI_C2_FUS_LoadUsrKey(slot) == SHCI_Success) {
return true;
} else {
CLEAR_BIT(AES1->CR, AES_CR_EN);
furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
return false;
}
}
bool furi_hal_crypto_enclave_unload_key(uint8_t slot) {
if(!furi_hal_bt_is_alive()) {
return false;
}
CLEAR_BIT(AES1->CR, AES_CR_EN);
SHCI_CmdStatus_t shci_state = SHCI_C2_FUS_UnloadUsrKey(slot);
furi_assert(shci_state == SHCI_Success);
furi_hal_bus_disable(FuriHalBusAES1);
furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
return (shci_state == SHCI_Success);
}
bool furi_hal_crypto_load_key(const uint8_t* key, const uint8_t* iv) {
furi_assert(furi_hal_crypto_mutex);
furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
furi_hal_bus_enable(FuriHalBusAES1);
furi_hal_crypto_mode_init_done = false;
crypto_key_init((uint32_t*)key, (uint32_t*)iv);
return true;
}
bool furi_hal_crypto_unload_key(void) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
furi_hal_bus_disable(FuriHalBusAES1);
furi_check(furi_mutex_release(furi_hal_crypto_mutex) == FuriStatusOk);
return true;
}
bool furi_hal_crypto_encrypt(const uint8_t* input, uint8_t* output, size_t size) {
bool state = false;
SET_BIT(AES1->CR, AES_CR_EN);
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT);
for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
size_t blk_len = size - i;
if(blk_len > CRYPTO_BLK_LEN) {
blk_len = CRYPTO_BLK_LEN;
}
state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
if(state == false) {
break;
}
}
CLEAR_BIT(AES1->CR, AES_CR_EN);
return state;
}
bool furi_hal_crypto_decrypt(const uint8_t* input, uint8_t* output, size_t size) {
bool state = false;
if(!furi_hal_crypto_mode_init_done) {
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_INIT);
SET_BIT(AES1->CR, AES_CR_EN);
if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) {
return false;
}
SET_BIT(AES1->CR, AES_CR_CCFC);
furi_hal_crypto_mode_init_done = true;
}
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT);
SET_BIT(AES1->CR, AES_CR_EN);
for(size_t i = 0; i < size; i += CRYPTO_BLK_LEN) {
size_t blk_len = size - i;
if(blk_len > CRYPTO_BLK_LEN) {
blk_len = CRYPTO_BLK_LEN;
}
state = crypto_process_block((uint32_t*)&input[i], (uint32_t*)&output[i], blk_len / 4);
if(state == false) {
break;
}
}
CLEAR_BIT(AES1->CR, AES_CR_EN);
return state;
}
static void crypto_key_init_bswap(uint32_t* key, uint32_t* iv, uint32_t chaining_mode) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
MODIFY_REG(
AES1->CR,
AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
CRYPTO_DATATYPE_32B | CRYPTO_KEYSIZE_256B | chaining_mode);
if(key != NULL) {
AES1->KEYR7 = __builtin_bswap32(key[0]);
AES1->KEYR6 = __builtin_bswap32(key[1]);
AES1->KEYR5 = __builtin_bswap32(key[2]);
AES1->KEYR4 = __builtin_bswap32(key[3]);
AES1->KEYR3 = __builtin_bswap32(key[4]);
AES1->KEYR2 = __builtin_bswap32(key[5]);
AES1->KEYR1 = __builtin_bswap32(key[6]);
AES1->KEYR0 = __builtin_bswap32(key[7]);
}
AES1->IVR3 = __builtin_bswap32(iv[0]);
AES1->IVR2 = __builtin_bswap32(iv[1]);
AES1->IVR1 = __builtin_bswap32(iv[2]);
AES1->IVR0 = __builtin_bswap32(iv[3]);
}
static bool
furi_hal_crypto_load_key_bswap(const uint8_t* key, const uint8_t* iv, uint32_t chaining_mode) {
furi_assert(furi_hal_crypto_mutex);
furi_check(furi_mutex_acquire(furi_hal_crypto_mutex, FuriWaitForever) == FuriStatusOk);
furi_hal_bus_enable(FuriHalBusAES1);
crypto_key_init_bswap((uint32_t*)key, (uint32_t*)iv, chaining_mode);
return true;
}
static bool wait_for_crypto(void) {
if(!furi_hal_crypto_wait_flag(AES_SR_CCF)) {
return false;
}
SET_BIT(AES1->CR, AES_CR_CCFC);
return true;
}
static bool furi_hal_crypto_process_block_bswap(const uint8_t* in, uint8_t* out, size_t bytes) {
uint32_t block[CRYPTO_BLK_LEN / 4];
memset(block, 0, sizeof(block));
memcpy(block, in, bytes);
block[0] = __builtin_bswap32(block[0]);
block[1] = __builtin_bswap32(block[1]);
block[2] = __builtin_bswap32(block[2]);
block[3] = __builtin_bswap32(block[3]);
if(!crypto_process_block(block, block, CRYPTO_BLK_LEN / 4)) {
return false;
}
block[0] = __builtin_bswap32(block[0]);
block[1] = __builtin_bswap32(block[1]);
block[2] = __builtin_bswap32(block[2]);
block[3] = __builtin_bswap32(block[3]);
memcpy(out, block, bytes);
return true;
}
static bool furi_hal_crypto_process_block_no_read_bswap(const uint8_t* in, size_t bytes) {
uint32_t block[CRYPTO_BLK_LEN / 4];
memset(block, 0, sizeof(block));
memcpy(block, in, bytes);
AES1->DINR = __builtin_bswap32(block[0]);
AES1->DINR = __builtin_bswap32(block[1]);
AES1->DINR = __builtin_bswap32(block[2]);
AES1->DINR = __builtin_bswap32(block[3]);
return wait_for_crypto();
}
static void furi_hal_crypto_ctr_prep_iv(uint8_t* iv) {
/* append counter to IV */
iv[CRYPTO_CTR_IV_LEN] = 0;
iv[CRYPTO_CTR_IV_LEN + 1] = 0;
iv[CRYPTO_CTR_IV_LEN + 2] = 0;
iv[CRYPTO_CTR_IV_LEN + 3] = 1;
}
static bool furi_hal_crypto_ctr_payload(const uint8_t* input, uint8_t* output, size_t length) {
SET_BIT(AES1->CR, AES_CR_EN);
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT);
size_t last_block_bytes = length % CRYPTO_BLK_LEN;
size_t i;
for(i = 0; i < length - last_block_bytes; i += CRYPTO_BLK_LEN) {
if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], CRYPTO_BLK_LEN)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
if(last_block_bytes > 0) {
if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], last_block_bytes)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
CLEAR_BIT(AES1->CR, AES_CR_EN);
return true;
}
bool furi_hal_crypto_ctr(
const uint8_t* key,
const uint8_t* iv,
const uint8_t* input,
uint8_t* output,
size_t length) {
/* prepare IV and counter */
uint8_t iv_and_counter[CRYPTO_CTR_IV_LEN + CRYPTO_CTR_CTR_LEN];
memcpy(iv_and_counter, iv, CRYPTO_CTR_IV_LEN); //-V1086
furi_hal_crypto_ctr_prep_iv(iv_and_counter);
/* load key and IV and set the mode to CTR */
if(!furi_hal_crypto_load_key_bswap(key, iv_and_counter, CRYPTO_AES_CTR)) {
furi_hal_crypto_unload_key();
return false;
}
/* process the input and write to output */
bool state = furi_hal_crypto_ctr_payload(input, output, length);
furi_hal_crypto_unload_key();
return state;
}
static void furi_hal_crypto_gcm_prep_iv(uint8_t* iv) {
/* append counter to IV */
iv[CRYPTO_GCM_IV_LEN] = 0;
iv[CRYPTO_GCM_IV_LEN + 1] = 0;
iv[CRYPTO_GCM_IV_LEN + 2] = 0;
iv[CRYPTO_GCM_IV_LEN + 3] = 2;
}
static bool furi_hal_crypto_gcm_init(bool decrypt) {
/* GCM init phase */
MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_INIT);
if(decrypt) {
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_DECRYPT);
} else {
MODIFY_REG(AES1->CR, AES_CR_MODE, CRYPTO_MODE_ENCRYPT);
}
SET_BIT(AES1->CR, AES_CR_EN);
if(!wait_for_crypto()) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
return true;
}
static bool furi_hal_crypto_gcm_header(const uint8_t* aad, size_t aad_length) {
/* GCM header phase */
MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_HEADER);
SET_BIT(AES1->CR, AES_CR_EN);
size_t last_block_bytes = aad_length % CRYPTO_BLK_LEN;
size_t i;
for(i = 0; i < aad_length - last_block_bytes; i += CRYPTO_BLK_LEN) {
if(!furi_hal_crypto_process_block_no_read_bswap(&aad[i], CRYPTO_BLK_LEN)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
if(last_block_bytes > 0) {
if(!furi_hal_crypto_process_block_no_read_bswap(&aad[i], last_block_bytes)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
return true;
}
static bool furi_hal_crypto_gcm_payload(
const uint8_t* input,
uint8_t* output,
size_t length,
bool decrypt) {
/* GCM payload phase */
MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_PAYLOAD);
SET_BIT(AES1->CR, AES_CR_EN);
size_t last_block_bytes = length % CRYPTO_BLK_LEN;
size_t i;
for(i = 0; i < length - last_block_bytes; i += CRYPTO_BLK_LEN) {
if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], CRYPTO_BLK_LEN)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
if(last_block_bytes > 0) {
if(!decrypt) {
MODIFY_REG(
AES1->CR, AES_CR_NPBLB, (CRYPTO_BLK_LEN - last_block_bytes) << AES_CR_NPBLB_Pos);
}
if(!furi_hal_crypto_process_block_bswap(&input[i], &output[i], last_block_bytes)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
}
return true;
}
static bool furi_hal_crypto_gcm_finish(size_t aad_length, size_t payload_length, uint8_t* tag) {
/* GCM final phase */
MODIFY_REG(AES1->CR, AES_CR_GCMPH, CRYPTO_GCM_PH_FINAL);
uint32_t last_block[CRYPTO_BLK_LEN / 4];
memset(last_block, 0, sizeof(last_block));
last_block[1] = __builtin_bswap32((uint32_t)(aad_length * 8));
last_block[3] = __builtin_bswap32((uint32_t)(payload_length * 8));
if(!furi_hal_crypto_process_block_bswap((uint8_t*)&last_block[0], tag, CRYPTO_BLK_LEN)) {
CLEAR_BIT(AES1->CR, AES_CR_EN);
return false;
}
return true;
}
static bool furi_hal_crypto_gcm_compare_tag(const uint8_t* tag1, const uint8_t* tag2) {
uint8_t diff = 0;
size_t i;
for(i = 0; i < CRYPTO_GCM_TAG_LEN; i++) {
diff |= tag1[i] ^ tag2[i];
}
return (diff == 0);
}
bool furi_hal_crypto_gcm(
const uint8_t* key,
const uint8_t* iv,
const uint8_t* aad,
size_t aad_length,
const uint8_t* input,
uint8_t* output,
size_t length,
uint8_t* tag,
bool decrypt) {
/* GCM init phase */
/* prepare IV and counter */
uint8_t iv_and_counter[CRYPTO_GCM_IV_LEN + CRYPTO_GCM_CTR_LEN];
memcpy(iv_and_counter, iv, CRYPTO_GCM_IV_LEN); //-V1086
furi_hal_crypto_gcm_prep_iv(iv_and_counter);
/* load key and IV and set the mode to CTR */
if(!furi_hal_crypto_load_key_bswap(key, iv_and_counter, CRYPTO_AES_GCM)) {
furi_hal_crypto_unload_key();
return false;
}
if(!furi_hal_crypto_gcm_init(decrypt)) {
furi_hal_crypto_unload_key();
return false;
}
/* GCM header phase */
if(aad_length > 0) {
if(!furi_hal_crypto_gcm_header(aad, aad_length)) {
furi_hal_crypto_unload_key();
return false;
}
}
/* GCM payload phase */
if(!furi_hal_crypto_gcm_payload(input, output, length, decrypt)) {
furi_hal_crypto_unload_key();
return false;
}
/* GCM final phase */
if(!furi_hal_crypto_gcm_finish(aad_length, length, tag)) {
furi_hal_crypto_unload_key();
return false;
}
furi_hal_crypto_unload_key();
return true;
}
FuriHalCryptoGCMState furi_hal_crypto_gcm_encrypt_and_tag(
const uint8_t* key,
const uint8_t* iv,
const uint8_t* aad,
size_t aad_length,
const uint8_t* input,
uint8_t* output,
size_t length,
uint8_t* tag) {
if(!furi_hal_crypto_gcm(key, iv, aad, aad_length, input, output, length, tag, false)) {
memset(output, 0, length);
memset(tag, 0, CRYPTO_GCM_TAG_LEN);
return FuriHalCryptoGCMStateError;
}
return FuriHalCryptoGCMStateOk;
}
FuriHalCryptoGCMState furi_hal_crypto_gcm_decrypt_and_verify(
const uint8_t* key,
const uint8_t* iv,
const uint8_t* aad,
size_t aad_length,
const uint8_t* input,
uint8_t* output,
size_t length,
const uint8_t* tag) {
uint8_t dtag[CRYPTO_GCM_TAG_LEN];
if(!furi_hal_crypto_gcm(key, iv, aad, aad_length, input, output, length, dtag, true)) {
memset(output, 0, length);
return FuriHalCryptoGCMStateError;
}
if(!furi_hal_crypto_gcm_compare_tag(dtag, tag)) {
memset(output, 0, length);
return FuriHalCryptoGCMStateAuthFailure;
}
return FuriHalCryptoGCMStateOk;
}