unleashed-firmware/lib/subghz/protocols/subghz_protocol_common.c
SG 274c12fc56
[FL-2274] Inventing streams and moving FFF to them (#981)
* Streams: string stream
* String stream: updated insert/delete api
* Streams: generic stream interface and string stream implementation
* Streams: helpers for insert and delete_and_insert
* FFF: now compatible with streams
* MinUnit: introduced tests with arguments
* FFF: stream access violation
* Streams: copy data between streams
* Streams: file stream
* FFF: documentation
* FFStream: documentation
* FFF: alloc as file
* MinUnit: support for nested tests
* Streams: changed delete_and_insert, now it returns success flag. Added ability dump stream inner parameters and data to cout.
* FFF: simplified file open function
* Streams: unit tests
* FFF: tests
* Streams: declare cache_size constant as define, to allow variable modified arrays
* FFF: lib moved to a separate folder
* iButton: new FFF
* RFID: new FFF
* Animations: new FFF
* IR: new FFF
* NFC: new FFF
* Flipper file format: delete lib
* U2F: new FFF
* Subghz: new FFF and streams
* Streams: read line
* Streams: split
* FuriCore: implement memset with extra asserts
* FuriCore: implement extra heap asserts without inventing memset
* Scene manager: protected access to the scene id stack with a size check
* NFC worker: dirty fix for issue where hal_nfc was busy on app start
* Furi: update allocator to erase memory on allocation. Replace furi_alloc with malloc.
* FuriCore: cleanup memmgr code.
* Furi HAL: furi_hal_init is split into critical and non-critical parts. The critical part is currently clock and console.
* Memmgr: added ability to track allocations and deallocations through console.
* FFStream: some speedup
* Streams, FF: minor fixes
* Tests: restore
* File stream: a slightly more thread-safe version of file_stream_delete_and_insert

Co-authored-by: Aleksandr Kutuzov <alleteam@gmail.com>
2022-02-18 22:53:46 +03:00

237 lines
7.2 KiB
C

#include "subghz_protocol_common.h"
#include <stdio.h>
#include <lib/toolbox/hex.h>
SubGhzProtocolCommonEncoder* subghz_protocol_encoder_common_alloc() {
SubGhzProtocolCommonEncoder* instance = malloc(sizeof(SubGhzProtocolCommonEncoder));
instance->upload = malloc(SUBGHZ_ENCODER_UPLOAD_MAX_SIZE * sizeof(LevelDuration));
instance->start = true;
instance->repeat = 10; //default number of repeat
return instance;
}
void subghz_protocol_encoder_common_free(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
if(instance->callback_end) {
instance->callback_end((SubGhzProtocolCommon*)instance->context_end);
}
free(instance->upload);
free(instance);
}
size_t subghz_encoder_common_get_repeat_left(SubGhzProtocolCommonEncoder* instance) {
furi_assert(instance);
return instance->repeat;
}
void subghz_protocol_encoder_common_set_callback(
SubGhzProtocolCommonEncoder* instance,
SubGhzProtocolCommonEncoderCallback callback,
void* context) {
furi_assert(instance);
furi_assert(callback);
instance->callback = callback;
instance->context = context;
}
void subghz_protocol_encoder_common_set_callback_end(
SubGhzProtocolCommonEncoder* instance,
SubGhzProtocolCommonEncoderCallbackEnd callback_end,
void* context_end) {
furi_assert(instance);
furi_assert(callback_end);
instance->callback_end = callback_end;
instance->context_end = context_end;
}
LevelDuration subghz_protocol_encoder_common_yield(void* context) {
SubGhzProtocolCommonEncoder* instance = context;
if(instance->callback) {
return instance->callback((SubGhzProtocolCommon*)instance->context);
}
if(instance->repeat == 0) {
return level_duration_reset();
}
LevelDuration ret = instance->upload[instance->front];
if(++instance->front == instance->size_upload) {
instance->repeat--;
instance->front = 0;
}
return ret;
}
void subghz_protocol_common_add_bit(SubGhzProtocolCommon* common, uint8_t bit) {
common->code_found = common->code_found << 1 | bit;
common->code_count_bit++;
}
bool subghz_protocol_common_check_interval(
SubGhzProtocolCommon* common,
uint32_t duration,
uint16_t duration_check) {
if((duration_check >= (duration - common->te_delta)) &&
(duration_check <= (duration + common->te_delta))) {
return true;
} else {
return false;
}
}
uint64_t subghz_protocol_common_reverse_key(uint64_t key, uint8_t count_bit) {
uint64_t key_reverse = 0;
for(uint8_t i = 0; i < count_bit; i++) {
key_reverse = key_reverse << 1 | bit_read(key, i);
}
return key_reverse;
}
void subghz_protocol_common_set_callback(
SubGhzProtocolCommon* common,
SubGhzProtocolCommonCallback callback,
void* context) {
common->callback = callback;
common->context = context;
}
void subghz_protocol_common_to_str(SubGhzProtocolCommon* instance, string_t output) {
if(instance->to_string) {
instance->to_string(instance, output);
} else {
uint32_t code_found_hi = instance->code_found >> 32;
uint32_t code_found_lo = instance->code_found & 0x00000000ffffffff;
uint64_t code_found_reverse =
subghz_protocol_common_reverse_key(instance->code_found, instance->code_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
if(code_found_hi > 0) {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%08lX\r\n"
" YEK:0x%lX%08lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn);
} else {
string_cat_printf(
output,
"Protocol %s, %d Bit\r\n"
" KEY:0x%lX%lX\r\n"
" YEK:0x%lX%lX\r\n"
" SN:0x%05lX BTN:%02X\r\n",
instance->name,
instance->code_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
code_found_reverse_lo,
instance->serial,
instance->btn);
}
}
}
bool subghz_protocol_common_read_hex(string_t str, uint8_t* buff, uint16_t len) {
string_strim(str);
uint8_t nibble_high = 0;
uint8_t nibble_low = 0;
bool parsed = true;
for(uint16_t i = 0; i < len; i++) {
if(hex_char_to_hex_nibble(string_get_char(str, 0), &nibble_high) &&
hex_char_to_hex_nibble(string_get_char(str, 1), &nibble_low)) {
buff[i] = (nibble_high << 4) | nibble_low;
if(string_size(str) > 2) {
string_right(str, 2);
} else if(i < len - 1) {
parsed = false;
break;
};
} else {
parsed = false;
break;
}
}
return parsed;
}
bool subghz_protocol_common_to_save_file(
SubGhzProtocolCommon* instance,
FlipperFormat* flipper_format) {
furi_assert(instance);
furi_assert(flipper_format);
bool res = false;
do {
if(!flipper_format_write_string_cstr(flipper_format, "Protocol", instance->name)) {
FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Protocol");
break;
}
uint32_t temp = instance->code_last_count_bit;
if(!flipper_format_write_uint32(flipper_format, "Bit", &temp, 1)) {
FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Bit");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->code_last_found >> i * 8) & 0xFF;
}
if(!flipper_format_write_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(SUBGHZ_PARSER_TAG, "Unable to add Key");
break;
}
res = true;
} while(false);
return res;
}
bool subghz_protocol_common_to_load_protocol_from_file(
SubGhzProtocolCommon* instance,
FlipperFormat* flipper_format) {
furi_assert(instance);
furi_assert(flipper_format);
bool loaded = false;
string_t temp_str;
string_init(temp_str);
uint32_t temp_data = 0;
do {
if(!flipper_format_read_uint32(flipper_format, "Bit", (uint32_t*)&temp_data, 1)) {
FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing Bit");
break;
}
instance->code_last_count_bit = (uint8_t)temp_data;
uint8_t key_data[sizeof(uint64_t)] = {0};
if(!flipper_format_read_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(SUBGHZ_PARSER_TAG, "Missing Key");
break;
}
for(uint8_t i = 0; i < sizeof(uint64_t); i++) {
instance->code_last_found = instance->code_last_found << 8 | key_data[i];
}
loaded = true;
} while(0);
string_clear(temp_str);
return loaded;
}