unleashed-firmware/lib/subghz/protocols/star_line.c
2023-08-22 20:22:49 +03:00

732 lines
28 KiB
C

#include "star_line.h"
#include "keeloq_common.h"
#include "../subghz_keystore.h"
#include <m-array.h>
#include "../blocks/const.h"
#include "../blocks/decoder.h"
#include "../blocks/encoder.h"
#include "../blocks/generic.h"
#include "../blocks/math.h"
#include "../subghz_keystore_i.h"
#define TAG "SubGhzProtocolStarLine"
static const SubGhzBlockConst subghz_protocol_star_line_const = {
.te_short = 250,
.te_long = 500,
.te_delta = 120,
.min_count_bit_for_found = 64,
};
struct SubGhzProtocolDecoderStarLine {
SubGhzProtocolDecoderBase base;
SubGhzBlockDecoder decoder;
SubGhzBlockGeneric generic;
uint16_t header_count;
SubGhzKeystore* keystore;
const char* manufacture_name;
FuriString* manufacture_from_file;
};
struct SubGhzProtocolEncoderStarLine {
SubGhzProtocolEncoderBase base;
SubGhzProtocolBlockEncoder encoder;
SubGhzBlockGeneric generic;
SubGhzKeystore* keystore;
const char* manufacture_name;
FuriString* manufacture_from_file;
};
typedef enum {
StarLineDecoderStepReset = 0,
StarLineDecoderStepCheckPreambula,
StarLineDecoderStepSaveDuration,
StarLineDecoderStepCheckDuration,
} StarLineDecoderStep;
const SubGhzProtocolDecoder subghz_protocol_star_line_decoder = {
.alloc = subghz_protocol_decoder_star_line_alloc,
.free = subghz_protocol_decoder_star_line_free,
.feed = subghz_protocol_decoder_star_line_feed,
.reset = subghz_protocol_decoder_star_line_reset,
.get_hash_data = subghz_protocol_decoder_star_line_get_hash_data,
.serialize = subghz_protocol_decoder_star_line_serialize,
.deserialize = subghz_protocol_decoder_star_line_deserialize,
.get_string = subghz_protocol_decoder_star_line_get_string,
};
const SubGhzProtocolEncoder subghz_protocol_star_line_encoder = {
.alloc = subghz_protocol_encoder_star_line_alloc,
.free = subghz_protocol_encoder_star_line_free,
.deserialize = subghz_protocol_encoder_star_line_deserialize,
.stop = subghz_protocol_encoder_star_line_stop,
.yield = subghz_protocol_encoder_star_line_yield,
};
const SubGhzProtocol subghz_protocol_star_line = {
.name = SUBGHZ_PROTOCOL_STAR_LINE_NAME,
.type = SubGhzProtocolTypeDynamic,
.flag = SubGhzProtocolFlag_433 | SubGhzProtocolFlag_AM | SubGhzProtocolFlag_Decodable |
SubGhzProtocolFlag_Load | SubGhzProtocolFlag_Save | SubGhzProtocolFlag_Send |
SubGhzProtocolFlag_StarLine,
.decoder = &subghz_protocol_star_line_decoder,
.encoder = &subghz_protocol_star_line_encoder,
};
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_star_line_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name);
void* subghz_protocol_encoder_star_line_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolEncoderStarLine* instance = malloc(sizeof(SubGhzProtocolEncoderStarLine));
instance->base.protocol = &subghz_protocol_star_line;
instance->generic.protocol_name = instance->base.protocol->name;
instance->keystore = subghz_environment_get_keystore(environment);
instance->manufacture_from_file = furi_string_alloc();
instance->encoder.repeat = 10;
instance->encoder.size_upload = 256;
instance->encoder.upload = malloc(instance->encoder.size_upload * sizeof(LevelDuration));
instance->encoder.is_running = false;
return instance;
}
void subghz_protocol_encoder_star_line_free(void* context) {
furi_assert(context);
SubGhzProtocolEncoderStarLine* instance = context;
furi_string_free(instance->manufacture_from_file);
free(instance->encoder.upload);
free(instance);
}
/**
* Key generation from simple data
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq* instance
* @param btn Button number, 4 bit
*/
static bool
subghz_protocol_star_line_gen_data(SubGhzProtocolEncoderStarLine* instance, uint8_t btn) {
if(instance->generic.cnt < 0xFFFF) {
if((instance->generic.cnt + furi_hal_subghz_get_rolling_counter_mult()) > 0xFFFF) {
instance->generic.cnt = 0;
} else {
instance->generic.cnt += furi_hal_subghz_get_rolling_counter_mult();
}
} else if(instance->generic.cnt >= 0xFFFF) {
instance->generic.cnt = 0;
}
uint32_t fix = btn << 24 | instance->generic.serial;
uint32_t decrypt = btn << 24 | (instance->generic.serial & 0xFF) << 16 | instance->generic.cnt;
uint32_t hop = 0;
uint64_t man = 0;
uint64_t code_found_reverse;
int res = 0;
if(instance->manufacture_name == 0x0) {
instance->manufacture_name = "";
}
if(strcmp(instance->manufacture_name, "Unknown") == 0) {
code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
hop = code_found_reverse & 0x00000000ffffffff;
} else {
uint8_t kl_type_en = instance->keystore->kl_type;
for
M_EACH(
manufacture_code,
*subghz_keystore_get_data(instance->keystore),
SubGhzKeyArray_t) {
res = strcmp(
furi_string_get_cstr(manufacture_code->name), instance->manufacture_name);
if(res == 0) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
//Simple Learning
hop =
subghz_protocol_keeloq_common_encrypt(decrypt, manufacture_code->key);
break;
case KEELOQ_LEARNING_NORMAL:
//Normal Learning
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
break;
case KEELOQ_LEARNING_UNKNOWN:
if(kl_type_en == 1) {
hop = subghz_protocol_keeloq_common_encrypt(
decrypt, manufacture_code->key);
}
if(kl_type_en == 2) {
man = subghz_protocol_keeloq_common_normal_learning(
fix, manufacture_code->key);
hop = subghz_protocol_keeloq_common_encrypt(decrypt, man);
}
break;
}
break;
}
}
}
if(hop) {
uint64_t yek = (uint64_t)fix << 32 | hop;
instance->generic.data =
subghz_protocol_blocks_reverse_key(yek, instance->generic.data_count_bit);
return true;
} else {
instance->manufacture_name = "Unknown";
return false;
}
}
bool subghz_protocol_star_line_create_data(
void* context,
FlipperFormat* flipper_format,
uint32_t serial,
uint8_t btn,
uint16_t cnt,
const char* manufacture_name,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolEncoderStarLine* instance = context;
instance->generic.serial = serial;
instance->generic.cnt = cnt;
instance->manufacture_name = manufacture_name;
instance->generic.data_count_bit = 64;
bool res = subghz_protocol_star_line_gen_data(instance, btn);
if(res) {
return SubGhzProtocolStatusOk ==
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
}
return res;
}
/**
* Generating an upload from data.
* @param instance Pointer to a SubGhzProtocolEncoderKeeloq instance
* @return true On success
*/
static bool subghz_protocol_encoder_star_line_get_upload(
SubGhzProtocolEncoderStarLine* instance,
uint8_t btn) {
furi_assert(instance);
// Gen new key
if(!subghz_protocol_star_line_gen_data(instance, btn)) {
return false;
}
size_t index = 0;
size_t size_upload = 6 * 2 + (instance->generic.data_count_bit * 2);
if(size_upload > instance->encoder.size_upload) {
FURI_LOG_E(TAG, "Size upload exceeds allocated encoder buffer.");
return false;
} else {
instance->encoder.size_upload = size_upload;
}
//Send header
for(uint8_t i = 6; i > 0; i--) {
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_long * 2);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_long * 2);
}
//Send key data
for(uint8_t i = instance->generic.data_count_bit; i > 0; i--) {
if(bit_read(instance->generic.data, i - 1)) {
//send bit 1
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_long);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_long);
} else {
//send bit 0
instance->encoder.upload[index++] =
level_duration_make(true, (uint32_t)subghz_protocol_star_line_const.te_short);
instance->encoder.upload[index++] =
level_duration_make(false, (uint32_t)subghz_protocol_star_line_const.te_short);
}
}
return true;
}
SubGhzProtocolStatus
subghz_protocol_encoder_star_line_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolEncoderStarLine* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
// Read manufacturer from file
if(flipper_format_read_string(
flipper_format, "Manufacture", instance->manufacture_from_file)) {
instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file);
instance->keystore->mfname = instance->manufacture_name;
} else {
FURI_LOG_D(TAG, "ENCODER: Missing Manufacture");
}
subghz_protocol_star_line_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
//optional parameter parameter
flipper_format_read_uint32(
flipper_format, "Repeat", (uint32_t*)&instance->encoder.repeat, 1);
subghz_protocol_encoder_star_line_get_upload(instance, instance->generic.btn);
if(!flipper_format_rewind(flipper_format)) {
FURI_LOG_E(TAG, "Rewind error");
break;
}
uint8_t key_data[sizeof(uint64_t)] = {0};
for(size_t i = 0; i < sizeof(uint64_t); i++) {
key_data[sizeof(uint64_t) - i - 1] = (instance->generic.data >> i * 8) & 0xFF;
}
if(!flipper_format_update_hex(flipper_format, "Key", key_data, sizeof(uint64_t))) {
FURI_LOG_E(TAG, "Unable to add Key");
break;
}
instance->encoder.is_running = true;
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_encoder_star_line_stop(void* context) {
SubGhzProtocolEncoderStarLine* instance = context;
instance->encoder.is_running = false;
}
LevelDuration subghz_protocol_encoder_star_line_yield(void* context) {
SubGhzProtocolEncoderStarLine* instance = context;
if(instance->encoder.repeat == 0 || !instance->encoder.is_running) {
instance->encoder.is_running = false;
return level_duration_reset();
}
LevelDuration ret = instance->encoder.upload[instance->encoder.front];
if(++instance->encoder.front == instance->encoder.size_upload) {
instance->encoder.repeat--;
instance->encoder.front = 0;
}
return ret;
}
void* subghz_protocol_decoder_star_line_alloc(SubGhzEnvironment* environment) {
SubGhzProtocolDecoderStarLine* instance = malloc(sizeof(SubGhzProtocolDecoderStarLine));
instance->base.protocol = &subghz_protocol_star_line;
instance->generic.protocol_name = instance->base.protocol->name;
instance->manufacture_from_file = furi_string_alloc();
instance->keystore = subghz_environment_get_keystore(environment);
return instance;
}
void subghz_protocol_decoder_star_line_free(void* context) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
furi_string_free(instance->manufacture_from_file);
free(instance);
}
void subghz_protocol_decoder_star_line_reset(void* context) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
instance->decoder.parser_step = StarLineDecoderStepReset;
// TODO
instance->keystore->mfname = "";
instance->keystore->kl_type = 0;
}
void subghz_protocol_decoder_star_line_feed(void* context, bool level, uint32_t duration) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
switch(instance->decoder.parser_step) {
case StarLineDecoderStepReset:
if(level) {
if(DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long * 2) <
subghz_protocol_star_line_const.te_delta * 2) {
instance->decoder.parser_step = StarLineDecoderStepCheckPreambula;
instance->header_count++;
} else if(instance->header_count > 4) {
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->decoder.te_last = duration;
instance->decoder.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->header_count = 0;
}
break;
case StarLineDecoderStepCheckPreambula:
if((!level) && (DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long * 2) <
subghz_protocol_star_line_const.te_delta * 2)) {
//Found Preambula
instance->decoder.parser_step = StarLineDecoderStepReset;
} else {
instance->header_count = 0;
instance->decoder.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepSaveDuration:
if(level) {
if(duration >= (subghz_protocol_star_line_const.te_long +
subghz_protocol_star_line_const.te_delta)) {
instance->decoder.parser_step = StarLineDecoderStepReset;
if((instance->decoder.decode_count_bit >=
subghz_protocol_star_line_const.min_count_bit_for_found) &&
(instance->decoder.decode_count_bit <=
subghz_protocol_star_line_const.min_count_bit_for_found + 2)) {
if(instance->generic.data != instance->decoder.decode_data) {
instance->generic.data = instance->decoder.decode_data;
instance->generic.data_count_bit =
subghz_protocol_star_line_const.min_count_bit_for_found;
if(instance->base.callback)
instance->base.callback(&instance->base, instance->base.context);
}
}
instance->decoder.decode_data = 0;
instance->decoder.decode_count_bit = 0;
instance->header_count = 0;
break;
} else {
instance->decoder.te_last = duration;
instance->decoder.parser_step = StarLineDecoderStepCheckDuration;
}
} else {
instance->decoder.parser_step = StarLineDecoderStepReset;
}
break;
case StarLineDecoderStepCheckDuration:
if(!level) {
if((DURATION_DIFF(instance->decoder.te_last, subghz_protocol_star_line_const.te_short) <
subghz_protocol_star_line_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_star_line_const.te_short) <
subghz_protocol_star_line_const.te_delta)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_star_line_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 0);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = StarLineDecoderStepSaveDuration;
} else if(
(DURATION_DIFF(instance->decoder.te_last, subghz_protocol_star_line_const.te_long) <
subghz_protocol_star_line_const.te_delta) &&
(DURATION_DIFF(duration, subghz_protocol_star_line_const.te_long) <
subghz_protocol_star_line_const.te_delta)) {
if(instance->decoder.decode_count_bit <
subghz_protocol_star_line_const.min_count_bit_for_found) {
subghz_protocol_blocks_add_bit(&instance->decoder, 1);
} else {
instance->decoder.decode_count_bit++;
}
instance->decoder.parser_step = StarLineDecoderStepSaveDuration;
} else {
instance->decoder.parser_step = StarLineDecoderStepReset;
}
} else {
instance->decoder.parser_step = StarLineDecoderStepReset;
}
break;
}
}
/**
* Validation of decrypt data.
* @param instance Pointer to a SubGhzBlockGeneric instance
* @param decrypt Decrypd data
* @param btn Button number, 4 bit
* @param end_serial decrement the last 10 bits of the serial number
* @return true On success
*/
static inline bool subghz_protocol_star_line_check_decrypt(
SubGhzBlockGeneric* instance,
uint32_t decrypt,
uint8_t btn,
uint32_t end_serial) {
furi_assert(instance);
if((decrypt >> 24 == btn) && ((((uint16_t)(decrypt >> 16)) & 0x00FF) == end_serial)) {
instance->cnt = decrypt & 0x0000FFFF;
return true;
}
return false;
}
/**
* Checking the accepted code against the database manafacture key
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param fix Fix part of the parcel
* @param hop Hop encrypted part of the parcel
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
* @return true on successful search
*/
static uint8_t subghz_protocol_star_line_check_remote_controller_selector(
SubGhzBlockGeneric* instance,
uint32_t fix,
uint32_t hop,
SubGhzKeystore* keystore,
const char** manufacture_name) {
uint16_t end_serial = (uint16_t)(fix & 0xFF);
uint8_t btn = (uint8_t)(fix >> 24);
uint32_t decrypt = 0;
uint64_t man_normal_learning;
bool mf_not_set = false;
// TODO:
// if(mfname == 0x0) {
// mfname = "";
// }
const char* mfname = keystore->mfname;
if(strcmp(mfname, "Unknown") == 0) {
return 1;
} else if(strcmp(mfname, "") == 0) {
mf_not_set = true;
}
for
M_EACH(manufacture_code, *subghz_keystore_get_data(keystore), SubGhzKeyArray_t) {
if(mf_not_set || (strcmp(furi_string_get_cstr(manufacture_code->name), mfname) == 0)) {
switch(manufacture_code->type) {
case KEELOQ_LEARNING_SIMPLE:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_NORMAL:
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
return 1;
}
break;
case KEELOQ_LEARNING_UNKNOWN:
// Simple Learning
decrypt = subghz_protocol_keeloq_common_decrypt(hop, manufacture_code->key);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
keystore->kl_type = 1;
return 1;
}
// Check for mirrored man
uint64_t man_rev = 0;
uint64_t man_rev_byte = 0;
for(uint8_t i = 0; i < 64; i += 8) {
man_rev_byte = (uint8_t)(manufacture_code->key >> i);
man_rev = man_rev | man_rev_byte << (56 - i);
}
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_rev);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
keystore->kl_type = 1;
return 1;
}
//###########################
// Normal Learning
// https://phreakerclub.com/forum/showpost.php?p=43557&postcount=37
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, manufacture_code->key);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
keystore->kl_type = 2;
return 1;
}
// Check for mirrored man
man_normal_learning =
subghz_protocol_keeloq_common_normal_learning(fix, man_rev);
decrypt = subghz_protocol_keeloq_common_decrypt(hop, man_normal_learning);
if(subghz_protocol_star_line_check_decrypt(
instance, decrypt, btn, end_serial)) {
*manufacture_name = furi_string_get_cstr(manufacture_code->name);
keystore->mfname = *manufacture_name;
keystore->kl_type = 2;
return 1;
}
break;
}
}
}
*manufacture_name = "Unknown";
keystore->mfname = "Unknown";
instance->cnt = 0;
return 0;
}
/**
* Analysis of received data
* @param instance Pointer to a SubGhzBlockGeneric* instance
* @param keystore Pointer to a SubGhzKeystore* instance
* @param manufacture_name
*/
static void subghz_protocol_star_line_check_remote_controller(
SubGhzBlockGeneric* instance,
SubGhzKeystore* keystore,
const char** manufacture_name) {
uint64_t key = subghz_protocol_blocks_reverse_key(instance->data, instance->data_count_bit);
uint32_t key_fix = key >> 32;
uint32_t key_hop = key & 0x00000000ffffffff;
subghz_protocol_star_line_check_remote_controller_selector(
instance, key_fix, key_hop, keystore, manufacture_name);
instance->serial = key_fix & 0x00FFFFFF;
instance->btn = key_fix >> 24;
}
uint8_t subghz_protocol_decoder_star_line_get_hash_data(void* context) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
return subghz_protocol_blocks_get_hash_data(
&instance->decoder, (instance->decoder.decode_count_bit / 8) + 1);
}
SubGhzProtocolStatus subghz_protocol_decoder_star_line_serialize(
void* context,
FlipperFormat* flipper_format,
SubGhzRadioPreset* preset) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
subghz_protocol_star_line_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
SubGhzProtocolStatus ret =
subghz_block_generic_serialize(&instance->generic, flipper_format, preset);
if((ret == SubGhzProtocolStatusOk) &&
!flipper_format_write_string_cstr(
flipper_format, "Manufacture", instance->manufacture_name)) {
FURI_LOG_E(TAG, "Unable to add manufacture name");
ret = SubGhzProtocolStatusErrorParserOthers;
}
if((ret == SubGhzProtocolStatusOk) &&
instance->generic.data_count_bit !=
subghz_protocol_star_line_const.min_count_bit_for_found) {
FURI_LOG_E(TAG, "Wrong number of bits in key");
ret = SubGhzProtocolStatusErrorParserOthers;
}
return ret;
}
SubGhzProtocolStatus
subghz_protocol_decoder_star_line_deserialize(void* context, FlipperFormat* flipper_format) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
SubGhzProtocolStatus res = SubGhzProtocolStatusError;
do {
if(SubGhzProtocolStatusOk !=
subghz_block_generic_deserialize(&instance->generic, flipper_format)) {
FURI_LOG_E(TAG, "Deserialize error");
break;
}
// Read manufacturer from file
if(flipper_format_read_string(
flipper_format, "Manufacture", instance->manufacture_from_file)) {
instance->manufacture_name = furi_string_get_cstr(instance->manufacture_from_file);
instance->keystore->mfname = instance->manufacture_name;
} else {
FURI_LOG_D(TAG, "DECODER: Missing Manufacture");
}
res = SubGhzProtocolStatusOk;
} while(false);
return res;
}
void subghz_protocol_decoder_star_line_get_string(void* context, FuriString* output) {
furi_assert(context);
SubGhzProtocolDecoderStarLine* instance = context;
subghz_protocol_star_line_check_remote_controller(
&instance->generic, instance->keystore, &instance->manufacture_name);
uint32_t code_found_hi = instance->generic.data >> 32;
uint32_t code_found_lo = instance->generic.data & 0x00000000ffffffff;
uint64_t code_found_reverse = subghz_protocol_blocks_reverse_key(
instance->generic.data, instance->generic.data_count_bit);
uint32_t code_found_reverse_hi = code_found_reverse >> 32;
uint32_t code_found_reverse_lo = code_found_reverse & 0x00000000ffffffff;
furi_string_cat_printf(
output,
"%s %dbit\r\n"
"Key:%08lX%08lX\r\n"
"Fix:0x%08lX Cnt:%04lX\r\n"
"Hop:0x%08lX Btn:%02X\r\n"
"MF:%s\r\n",
instance->generic.protocol_name,
instance->generic.data_count_bit,
code_found_hi,
code_found_lo,
code_found_reverse_hi,
instance->generic.cnt,
code_found_reverse_lo,
instance->generic.btn,
instance->manufacture_name);
}